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A MODEL-THEORETIC ACCOUNT OF CONFIRMATION

JOHN PAULOS

Ever since Hempel’s 1946 paper on confirmation, the subject and its
paradoxes have attracted many investigators. The paper attempted to come
to some reasonable understanding of confirmation, specifically to list some
axioms or properties satisfied by the notion. Problems arose from even
the most seemingly modest axioms and properties however. Our paper
attempts both to provide a clearer understanding of confirmation and to
‘‘explain away the paradoxes’’. Notions from model theory provide us with
a very useful and flexible framework for this project.

Before we embark on our model-theoretic construction, we will list
here some of the axioms Hempel considered in his 1946 paper and some of
the paradoxes they engender.

1) If evidence e confirms 7% and % — k, then e confirms k.

2) If evidence e confirms k and 2 — k, then e confirms %.

3) Any instance of a universal statement confirms the statement.
4) If e confirms % and 2 <>k, then e confirms k.

From 1 and 2 we can derive the following. Let % = the theory of rela-
tivity and k = the thermostat is above 80°. Then its being hot in this room
tends to confirm & (on any intuitive understanding of confirmation) and thus
tends to confirm % Ak by 2 since 2 A 2 — k. Hence by 1) % is confirmed since
h Ak —h. Clearly something is wrong with 1 and 2 together. 2 seems
especially suspect, but some (weakened) version of 2 is certainly often used
and is necessary in the everyday practice of science. Even 1, as we shall
see, is not always the case.

The following, the so-called raven paradox, derives from 3 and 4. A
black raven confirms the hypothesis that all ravens are black by 3. Equiv-
alent to this hypothesis is the hypothesis that all non-black things are non-
ravens. Any non-black non-raven, a green table say, confirms this latter
hypothesis. Hence by 4, observation of this green table also confirms that
all ravens are black!
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These paradoxes result, in part, from an attempt to impose the deduc-
tive technique on inductive problems. A natural place to look for clarifica-
tion is the theory of probability, and a natural definition for ‘e confirms 2’
is the following.

Tentative Definition: e confirms % iff P(k/e) > P(h).
There are three problems with this definition.

1) What sort of things are % and e ?
2) On what o-algebra of sets (classes) is the probability measure defined?
3) What criteria for assigning probabilities do we use?

We will in the sequel solve the first and the second problem and say
something (more or less vacuous) about the third. We will show clearly
how the paradoxes we constructed are resolved. Other anomalies (e can
confirm %, and %, yet disconfirm %, A k, or &, v h;) will also be discussed and
resolved. We begin our formal development

Definition 1 A language L of the form K U {¢} where K= {c; R}, f;,@;} is a
finite collection of constant, relation, function, and sort symbols and where
¢ is a distinguished binary relation symbol. Sentences in . are built up in
the usual inductive manner with clauses for 1, v, and 3.

We can also deal with languages of the form .{ = K, UK, U {€} where the
K; are different formal languages. See [2]. We want, however, to charac-
terize our models independently of the K;. We do this by 1) taking all our
models to be models of a certain set theory (ZF set theory for the sake of
being definite) and by 2) interpreting the non-logical constants and relations
of our languages K, to be fixed elements of the universe. The intention is
to think of the languages K; as formal scientific languages. The symbol &
is added so that statements in any K; as well as extra-linguistic observa-
tions can be described in some neutral formal language. Although we as-
sume the universe to be set-theoretic, we do not assume that a K;-speaker
‘thinks’’ in terms of sets, but only that an omniscient scientist could
analyse the K;-sentences in set-theoretic terms.

Definition 2 A scientific theory T expressed in a language L = KU {¢g} is
a set of sentences T=2F U S U D where ZF stands for the Zermelo-Frankel
axioms of set theory, S is a set of (scientific) sentences expressed in K and
D is a finite set of sentences in . stipulating the set-theoretic type of the
K -symbols.

As an example of a sentence from D we have Vy(y e R — ¥ = (2, . . ., 2,))
stating that the element R is an n-ary relation. Similar sentences concern-
ing constant, function, sort, and other relation symbols also appear in D.
The semantics of a language .L = K U {g} is described in the following def-
inition.

Definition 3  The universe of a model is any set M large enough to contain
an element corresponding to each object, relation, function, etc. in the
‘world’’. (It may contain extra elements). That is, we conceive of every
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object, property, etc. in the ‘world’’ as being associated with an element in
M. (Our ontology is intended to be very flexible and for our purposes here
need not be made more precise.) The interpretation of each cj, R, fj, @; in
L is a fixed element in M while the interpretation of ¢ can be any binary
relation on M. Truth of a sentence in a model (M,...) is defined in the
usual inductive manner.

The last definition needed to complete our preliminaries follows.

Definition 4 An observation e is of the form (¢(x,, ..., %,), ay,...a,)
where ¢(x,,...,%,) is a formula in the language of set theory, {¢}, and
where a,, ...,a, € M. The a; need not be named by K.

An observation ¢ is thus a sentence in the e-diagram of model (M, ...}).
The definition of an ‘‘observation’’ e is extra-linguistic, independent of any
particular K-language. Though most ordinary observations are express-
ible in the K-language, others will be expressible only in the g-diagram
of some model (M, ...).

A final dose of notation is still necessary. The class of all models of
ZF is denoted simply by 9. All those models associated with any e are
denoted M.; i.e., M. = {(M,..) | (M,...) Edlay,...a,), where ¢(a,,...a,)
is the sentence in the g-diagram expressing e}. Not required is that every
observation be true of the ‘real world’’, Mg. For a true observation e,
however, we have Mg & M.. The class of all models of a scientific theory
T is denoted My, all models of a sentence ¥ by My. The notion of the ex-
pressibility and delimitability of observations e by K-sentences # is im-
portant. e is said to be expressible by a K-sentence % if M, = M;. e is
said to be delimitable by the K-sentence % if M, c M;.

An example may be illuminating here. The observation, ¢“That book is
on the table’’, is expressed by e = {(x,,%,) € X3,a,,a3,a;} where a, is the
element of M associated with the book a, is the element associated with the
table, and a; the element associated with the relation ‘“on’’. I, is the class
of all models in which the book and the table stand in the binary relation
“On’,.

Now we can answer the questions we posed ourselves at the beginning
of this paper.

1) What sorts of things are %2 and e? & is any sentence in the language K
and e is an observation (or set of observations).

2) What o-algebra of sets (classes) shall we use to define our probability
measure? The o-algebra is defined on M, the class of all models of ZF.

3) How do we define a probability measure of M, the class of all models of
the ‘“world’’? We assign any countably additive set function which satisfies
the usual Kolmogorov axioms for probability.

Naturally for the assignment to be reasonable further restrictions are
necessary and we may interpret probability as a frequency, subjective, or
logical relation (or some combination thereof). In any case we refine our
tentative definition as follows.
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Definition 5 Given hypothesis &, observation e, and some probability
measure P on the o-algebra M, e confirms % iff P(k/e) > P(n).

What does all this say about Hempel’s original axioms and the para-
doxes they engender? Before we answer this fully let’s first develop a
pictorial representation of the notions just introduced. M, the class of all
models of ZF is denoted pictorially by a rectangle. Sentences vy in any K;
partition M into 2 regions, the models of ZF in which v is true and those in
which it is false (Figure 1). An observation e is represented pictorially by
M., the class of models in which the observation holds. (Figure 2)

m Y
v true v false
Figure 1
m m m
(a) (b) (c)
Figure 2

Consider Figure 3. If those models of

n

Figure 3

M in which v, and y, are true are to the left of the lines marked v, and v,,
respectively, then y, is true of e, while ¥, is true of some models of zm-el
and false of others. Moreover ¥y, is false of e, while v, is true of some
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models of M., and false of others. Given observations e, and e,, i.e.,
M. N M., we can conclude that v, is true and ¥, is false. As a second il-
lustration consider Figure 4 where an observation e, is delimited

Ya Y1

€,
(3
Ya

Y3

Figure 4

by sentences 7, v;, and ;. 7, is true of some models of M. and false of
others. e, taken together with e, resolves y,. Stated differently e, deter-
mines the truth or falsity of v,, v,, and ¥, but not that of y,. If the scientist
can devise an experiment in which e, is a possible outcome, then the ob-
servation of e, determines the truth of y,. Hence e, and e, taken together
decide ¥y, Y2y Y35 Va-

To illustrate pictorially properties of the notion of confirmation we
will assume that the area of a region, M, or M. say, is proportional to its
probability. Thus in Figure 5, a through d, we have that e verifies %, con-
firms &, disconfirms %, and falsifies %, respectively.

NI 9

(a) (b) (c) (d)
Figure 5

Getting back to Hempel, we see that Figure 6, a and b, shows that
neither Hempel’s axiom 1 nor his axiom 2 holds on our definition of confir-
mation.
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Figure 6

Now for the raven paradox. Let # = Vx(R(x) —B(x)), where R and B are
predicates in some language K. Then My is depicted in Figure 7a. Obser-
vation of a black raven, (e, = {x, €x, A X, € x5,a,,0a,,a,} where q, is the ele-
ment in M associated with the observed raven, a, is the element associated
with the property of being black, and a; is the element associated with the
property of being a raven), would confirm this hypothesis (Figure Tb).

M m

ny,

(a) (b)
Figure 7

Observation of a non-black non-raven (e, = {x, & x, A X, & X3,a,,a,, a3}
where g, is the element in M associated with some non-black non-raven, a
green table say, and a,,a, are as before) would also confirm % but not as
much (assuming a “reasonable’’ assignment of probabilities). See Figure 8.

€y ez.

(a) (b)
Figure 8
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This makes more precise the comment going back to Hossiasson that
the raven paradox is due to the fact that non-black non-ravens are much
more numerous than black ravens.

Figure 9a shows that e can confirm #%, and %, individually yet discon-
firm %, A h,. That two observations e; and e, can individually confirm a
hypothesis # even though e, A ¢, disconfirms % is shown by Figure 9b.

m

e, €

W

(a) (b)
Figure 9

In a similar manner one can find hypothesis #,, %, such that e confirms
each, yet disconfirms #;v &, as well as many other oddities. What of
Hempel’s axioms four of which we listed at the beginning of this paper? All
(except for the purely deductive) fail as even Hempel began to anticipate in
his 1964 paper. See [1]. There remain two problems with the notion of con-
firmation of course. One is that there may be a qualitative sense to the
term, distinct and irreducible to our quantitative sense of the term, which
does satisfy Hempel-like axioms. The other problem is that our explication
of the quantitative sense of confirmation leaves unanswered the question of
how to assign probabilities to the subclasses of M.

REFERENCES

[1] Hempel, C. G., “Studies in the logic of confirmation,” in Aspects of Scientific Explanation,
The Free Press, New York (1965).

[2] Paulos, J. A., “A model-theoretic explication of the theses of Kuhn and Whorf,” Abstracted
in Notices of the American Mathematical Society (1976); To appear in Notre Dame Journal
of Formal Logic.

Temple University
Philadelphia, Pennsylvania





