
241
Notre Dame Journal of Formal Logic
Volume XX, Number 2, April 1979
NDJFAM

α-NAMING AND α-SPEEDUP THEOREMS

BARRY E. JACOBS

Introduction* The study of computation over infinite ordinals has its
roots evolving from various areas of investigation. Takeuti [33] was
concerned with the problem of reducing consistency of set theory to a
theory of computation on ordinal numbers. Machover [21] sought to
generalize model and recursion theoretic notions to the study of infinitary
languages. Jensen and Karp [11] developed a theory of primitive recursive
set and ordinal functions to investigate questions of a set theoretic vein.
The first author's motivation was the need of a tool for considering various
levels of G'όdel's constructible hierarchy [5]; the second, from lines closely
related to those of Machover. From the study of definability theory and its
relation to high order logics and languages evolved the work of Kreisel [14].
Later, in collaboration with Sacks (in [15]), this work blossomed into
metarecursion theory, the study of computation of Church-Kleene's ω^K It
was Kripke [16] (and independently Platek [24]) who first isolated the key
notion of admissible ordinal. The study of computation over such ordinals
(unifying those aforementioned cases) became known as α-recursion theory.
Kripke was able to develop enough α-recursion theory to yield an infinite
analogue to the Kleene T-predicate. From this he then asserted that the
major results of unrelativized recursion theory (as found in Kleene [13])
held in α-recursion theory. Sacks and Simpson [27] developed relativiza-
tion and consequently the priority argument in α-recursion theory. They
blended recursion and model theoretic ideas in showing that the Friedberg-
Muchnik solution to Post's problem generalized to α. Following this,
several of Sack's students and coworkers succeeded in proving that the
major results of relativized recursion theory also lift. Particularly,
interesting are the works of Lerman [19], Shore [29], [30], Lerman and
Simpson [20], Leggett and Shore [18]. A rather well written survey of
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α-recursion theory (from this point of view) may be found in Shore [31],
Another subarea of ordinary recursion theory, abstract computational
complexity theory, has a flavor similar to that of relativized recursion
theory. Founded by Blum [1] (after inspiration by Rabin [25]), the study is
based on several axioms common to most interesting measures of
computation. The parallel, however, exists in the way deeper results are
proven; namely, via development of a generally complex construction
followed by a rather detailed verification.

In [8], the author initiated the study of a-computational complexity by
setting down infinite analogues to Blum's axioms. The motivation was
(i) an investigation of set, model and recursion theoretic characterizations
of complexity oriented notions, and (ii) the isolation of a proper domain for
implementation of a generic forcing type (Cf. [32]) approach to complexity-
theoretic proof constructions.

A first step in the above program, however, is the verification that
little or nothing is lost upon generalization to a. An extensive survey of
key results of abstract complexity theory (at the ω-level) can be found in
[7]. It is shown in [8], [9] and [10] as well as this paper, that all of these
results generalize, in one form or another, to α-recursion theory.

An outline of the paper is as follows. In section 0, we review the
fundamental notions of α-recursion theory and a-complexity theory neces-
sary for understanding the paper. This is followed, in section 1, by a
discussion of the differences existing between ordinary (a = ω) and α-
recursion theory. We observe how these distinctions alter a study of
computation and, in particular, the various constructions used in com-
plexity proofs. In section 2 we lift to a the well known Naming or Honesty
result of McCreight and Meyer [22]. Namely, that for any α-complexity
measure there exists α-measured sets of functions which name every
αf-complexity class. In section 3 we prove a generalization to Blum's
famous Speedup [l] phenomenon. That is, given an α-recursive r9 there
exists a 0-1 value α-recursive / such that for any means (index) for
computing /, a faster one, having speedup determined by r, exists. We
conclude the paper in section 4 with a series of suggestions for further
research.

0 Preliminaries We employ standard set theoretic notion. Namely,
U ^ for union of A; A Π B for intersection of A and B; A-B for set differ-
ence of A and B; f/B for mapping / restricted to B; f[B] for the range of
f/B; δ e B for δ an element ot B A Q B tor A & subset of B; φ for the empty
set; dom(/), rng(/) for domain and range of /; A x B for Cartesian product of
A and B; f: A —> B for / a map from A to B.

A von Neumann ordinal, or simply an ordinal, is identified with the set
of all smaller ordinals. We use lower case Greek letters to denote ordinals
(α, β, γ, . . .), lower case Latin letters for functions on the ordinals
(f,g, h, . . .) and upper case Latin letters for sets of ordinals (A, B, C,. . .).
Let La be the collection of sets obtained from GδdeΓs transfinite hierarchy
of constructible sets before a. a is ΣL admissible if La satisfies the
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replacement axiom schema of ZF for Σx formula of set theory (Cf. [5]).
From this point on a is some fixed Σx admissible ordinal.

A set A c a is α-recursively enumerable (α-r.e.) if it has a Σx defini-
tion over La (with parameters in La). A partial function f:a—*a is
α-partial recursive if its graph is α-r.e. Such a map is α-recursive if its
domain is a, while subsets of a are α-recursive if their characteristic
functions are. (Since there exists a well-known one-one α-recursive map
of a into La, it suffices to consider only functions on a and subsets of a
instead of those on La).

We call a set A c a α-bounded (or bounded since a is fixed) if there
exists a β < a so that σe A —> σ < β. Sets which are both α-recursive and
bounded are α-finite. Kripke [17] shows that the α-finite sets are precisely
the sets of ordinals in La. An immediate consequence is

0.1 Fact Let f be a-partial recursive and K an a-finite subset of the

domain of f. Thenf[K] is a-finite.

Following Sacks [26] we have a standard enumeration {Kη\η < a} of all
the α-finite subsets of α. A set B c α is an α-finite function if (i) B is an
α-finite set, (ii) B is the (a-recursive) encoding of the graph of an α-partial
recursive /, (iii) dom(/) is a proper initial segment of a. From Sacks7

enumeration one immediately obtains a canonical enumeration {Gε| ε < a} of
all a-finite functions.

The key fact about admissible ordinals a is that one can do Δx (a-
recursive) recursions in La. In particular, one may G'όdel number the
α-r.e., subsets of a, {Rε\ε < a] and consequently the α-partial recursive
functions {0 ε | ε<α}. In fact, Kripke [17] develops an equation calculus
(analogous to Kleene [13]) and establishes enough α-recursion theory to
formulate an a analogue to the Kleene T-predicate. (It can be shown that
the T-predicate can be built from Jensen-Karp [11] primitive recursive
ordinal functions and thus independent of a). From this, Kripke was able to
assert that all the major results of unrelativized recursion theory hold in
α-recursion theory. Included among these are the a-Universal Function (or
Enumeration) Theorem, α-S^-Theorem and the α-Recursion Theorem. We
make use of α-recursive pairing functions, πx and π2 and <, > obtaining a
one-one correspondence between a and ax a (Cf. [5]). These possess the
typical properties: for βu β2, γ < α, (i) (irjίγ), π2(y)> = y; π ^ β ^ β2)) = β, and
^(^βu £2)) = &5 a n d ^/(y) = β for i = 1, 2, β < a for an unbounded set of γ.

A generalization to Blum's [1] notion of abstract computational com-
putational complexity measure is given by,

Definition: An a-complexity measure Φ is an enumeration (in a) of the
α-partial recursive function {φε\ε < α}to which are associated the α-partial
recursive a-step counting functions {Φεl ε < a} for which the following
axioms hold:

(1) Φε(β) is defined iff Φε(β) is defined.
(2) The predicate M(ε,/3,y) <-> Φε(β) = γ is α-recursive.
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(3) The α-recursive versions of the Universal, S% and Recursion Theorems
hold for the enumerations {φε} and {Φε}.

Implicit in (3) is the capability to retrieve, given any index ε, both the
function 0ε, in the form of an 'algorithm', and the α-step counter, Φε.
Clearly, when a = ω, the notion of α-complexity measure reduces to Blum's
notion. Several examples of α-complexity measures are found in [8].

A sequence of functions { / ε | ε<α} is said to be of-recursively
enumerable if the function m(ε,/3) = fε(β) is α-partial recursive; alterna-
tively, if there is an α-recursively enumerable set of 'algorithms' so that
for each fε at most one algorithm appears in the listing. A sequence of
functions {/ε|ε < α} which is α-recursively enumerable and for which it can
be α-recursively determined for all ε, β, δ < α whether fε(β) = δ is called
an a-measured set. The usual example is the set of α-step-counting
functions of an α-complexity measure.

For a fixed α-complexity measure Φ and α-recursive function s, the
α-complexity class bounded by s is the set cf = {φσ\φσ is total and
Φσ(β) ̂  s(β) for all but an α-finite set of β}. Thus, Cf, or simply Cs, when Φ
is understood, is the set of all α-recursive functions whose α-complexity is
bounded by 5 on all but an α-finite subset of α. The projectum of α, denoted
α*, is the least ordinal β ̂  a such that there is a one-one α-recursive
mapping from α into β (not necessarily onto). Throughout this paper t will
serve as the corresponding α-recursive projection map. Since t is one-one
α-recursive, we let .t"1: α* —> α be its α-partial recursive inverse. For
some α-complexity measure Φ, let ε0 < # be such that φtQ = t"1. Then t^1 is
the approximation to t" 1 through stage σ < α defined by

rΛβ)--\ΦΛiiΦεo{β)"σ

( t otherwise
Clearly, lim t^x = I*""1 and for σ, β < a the predicate N{σ,β)<-+ϊσl(β)\ is
α-recursive. Unlike the situation at ω, for many admissibles α > ω, sets
which are bounded and α-r.e. are not necessarily α-finite. However,
α-finiteness occurs if the bound is taken small enough.
0.2 Fact If η < α* and A is an a-recursively enumerable subset of η, then
A is a-finite.

In this paper complexity constructions are developed in which pri-
orities are based, not upon natural order (<α), but rather on ΐ[α] c α*. The
above will, therefore, enable us to generate priorities as well as confirm
various convergence results about our constructions.

1 A comparison To grossly capsulize the situation, one may say that
α-recursion theory serves as a magnification device for studying funda-
mental concepts of computation. As a result, the generalization to α
permits us to carefully analyze and scrutinize notions that would otherwise
be bypassed. In this section we highlight several of these and point out
their consequences in the study of α-computational complexity. A first
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source of interest concerns the divergence of concepts on the α-level which
at the co-level are coexistent. For instance, in ordinary recursion theory,
the notions of finite, bounded and less than ω all coincide, while in
α-recursion theory their analogues split. Furthermore, sets which are
automatically computable, just because they are bounded, do not neces-
sarily enjoy this property in the generalized setting.

This phenomenon was observed in the lift to α (in [9]) of the Blum-
Rabin complex partial recursive function theorem. At ω the result tells us
that for partial recursive g, a partial recursive/ can be constructed where
(i) dom / = dom g, and (ii) any program for / has complexity exceeding g on
all but a finite set of input. The generalization to α lifts in the natural way
except that finite becomes bounded (instead of α-finite). The difficulty is
that the excluded set {β\ Φε(j3) >g(β)} is not α-recursive for non-total g.

In this paper we almost exclusively employ the analogue α-finite for
finite. For example, an α-complexity class, Ct, is a set of α-recursive
functions with complexity below t on all but an α-finite subset (of α). In the
α-Speedup Theorem, the set where speedup fails for the constructed
function is α-finite. The reason for this is that in both situations we deal
with α-recursive functions; hence, any excluded set turns out α-recursive.

A second facet is inherited from the fact that we deal with infinite
ordinals; namely, the possibility of mapping all of α one-one into a proper
initial segment. As a result, constructions used to prove recursion or
complexity theoretic results which are founded upon priority schemes
require, upon generalization to α, extensive overhaul. For example,
consider the typical complexity cancellation construction where at stage
β < ω , cancellation occurs to the object with highest priority (smallest
value) eligible for concellation. In the subsequent verification, one would
then argue that any algorithm (index) which unboundedly qualifies for
cancellation, will ultimately be cancelled.

In an α-recursion theoretic construction, an index ε < α may be
cancellable at each of an α-unbounded set of stages. However, there is no
reason why, at each of these stages, an index with higher priority (smaller
value) beats it out. That is, the set of stages at which an index ε' < ε
intercedes in the cancellation of ε, is cofinal with α. The way this problem
is handled in α-recursion theory is to base priorities upon the order
induced by the Σ2 projection map t, instead of natural order. Namely, index
εί has higher priority than index ε2 (ε1?ε2 < α) iff t(εj < t(ε2) < α*. By the
α-effective nature of the construction the collection 2£f(ε) of "pseudo"
indices below t(ε) which are ultimately cancelled is α-r.e., and bounded
below α*, hence by Fact 0.2, α-finite. Further, a Σ : (in La) map may be
constructed mapping a cancelled pseudo index into its stage of cancellation.
It then follows from admissibility (Fact 0.1) that a stage σ < a bounds all
stages at which indices of higher priority than ε are cancelled. This last
part assures the ultimate cancellation of ε.

A third aspect derives from the fact that ω is Σw-admissible for all
n < ω while α is just Σi-admissible. One of the consequences is that a
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simple and often taken for granted property may not hold; namely, that a
finite union of finite subsets is finite. An easy counterexample, provided by
Shore [31], is where α is Nω, the ωth infinite cardinal. Although Nω is
admissible (Kriple [16]) and ω and Nn, n < ω are α-finite, the union U tfω

blows up toK ω (=α). n<ω

This problem occurs frequently in α-recursion theory, in particular, in
the lifting of injury arguments of ordinary recursion theory. It also
appears in the generalization to α of the McCreight-Meyer Union Theorem
in [10] (which entails a no-injury atop a finite injury priority construction)
and is touched upon in the proof of the α-Speedup Theorem in this paper.

In any multiple priority argument, the mapping ψ of an index ε to the
stage σε which bounds its injury set (set of stages at which the index is
injured) is at best a Σ2 mapping. Hence, although a set E of pseudo indices
below a t(ε) < α* is α-finite, the set ψ[E] may not be since α is only
Σi-admissible. A solution to this is to make the priority listing even
smaller than α* with an additional implementation of a blocking strategy
(Cf. Shore [29]). The idea is that constructions have to work harder to
make up for non-Σ2 admissibility. A similar consideration arises in the
proof of α-Speedup appearing in this paper. Namely, at stage σ a search is
made through an α-finite set of indices where at each index a subcomputa-
tion is performed. The question arises as to whether or not an α-finite
union of α-finite subcomputations, each of which converges (we know this by
induction), will ultimately converge. Shore's illustration again provides us
with a counterexample. Specifically, for a = Nω, perform ω subcomputations
where the nth (<ω) takes #n steps.

However a very subtle and interesting distinction exists between ours
and the tfω counterexample. In our construction, the α-finite set of indices
E representing the subcomputations, together with the ordinals bounding
each subcomputation is Σλ in La (hence, can be effectively obtained within
the model La). Consequently, an α-partial recursive map can be defined
from εf e E to the ordinal encoding the totality of the subcomputations
obtained through ε f. Thus, we employ admissibility of α to ensure a bound
on the sum of these subcomputations. The reason the Nω example fails is
that although ω is α-finite, the map n -» $n is not Σl9 hence, cannot be
computed in La.

2 The a-Namίng Theorem The α-Naming or α-Honesty Theorem tells
us that for arbitrary α-computational complexity measures, there exists
α-measured sets of functions naming all α-complexity classes. The
construction in the proof provides a means of finding, for each α-partial
recursive function, an α-partial recursive function so that the new
collection is α-measured. Further, for α-recursive functions of the first
list, the constructed functions are α-recursive bounding the same α-
complexity classes.

2.1 Theorem Let Φ be an a-computational complexity measure. Then
there exists an a-measured set naming every a-complexity class.
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Our proof is a lift of Moll and Meyer's [23a] simplification of the
original McCreight [22] proof. Here, for any α-partial recursive φτ we
produce an α-partial recursive φg(τ) such that

M(τ,β,y)<-x/)g(Γ)(β) = y is α-recursive.

Consequently, the set {φg(τ) \τ < a} is α-measured. However, the resultant
φg(τ) may not necessarily be total even for φτ total. Therefore, we show
how to obtain an α-recursiveg' from g such that

(1) φτ total =Φφg,(r) total,

(2) M(τ,β,y)φ#>φg/(r) (β) = y is an α-recursive predicate,

and

(3) CΦτ = CΦιgf{τ) (β) for all total φτ.

The construction described below for computing φg{τ) (K) makes use of
several auxiliary sets. The set Qσ, at stage σ of the construction repre-
sents a "queue" on which elements are popped out and moved further along
the queue. The elements of Qσ are encodings of triples having the form
(i/,ε,p). The v < α* represent the priority of index ε < a; that is, ε's
relative position on the queue. An index ε < a is made poppable when it is
discovered that for some β < a, Φε(β) > φτ(β). The value of p is either 1 or
0 depending on whether or not ε is poppable. If index ε is later popped then
an assignment of value to φg(τ) (β) is made making Φε(β) > φg(τ) (β) for some
β. At that point index ε once again becomes unpoppable.

The set TOσ, at stage σ, acts as a collection of triples from Q f, r ^ σ,
which have been discarded. Whenever a triple of the form (ι>,ε,p) is ejected
from Qσ, it is done so by placing it into TO*7. This is done so that all sets
being accumulated are increasing rather than pulsating (as σ —* a). The set
GTσ, at stage σ, represents the function φg(τ) being constructed. A pair (β,y)
is placed into GTσ at some stage σ if and only if φg(τ) (β) = γ. QK σ is Q σ just
prior to stage σ, that is, Q< σ = \J QΓ. Similarly, for TO<σ and GT<σ.

τ<σ

2.2 The construction The construction that computes φg{τ)(κ) is defined,
by induction on stages σ < a.

Stagei 0. Set Q° = TO0 = GT° = p.

Stage σ. Set β = π^σ), μ = π2(σ) and Qσ= Q<σU {(t(σ),σ,0)}.

We are placing index σ into the queue with priority t(σ) in an unpoppable
state. If ΦΓ(β) = μ then set

TO'σ= TO < σ u{( r ,ε,0) |( r ,ε,0)eQ σ - TO<σ& Φε(β) > φτ(β)}

and

Q'σ=Qσu{<y,ε,l)|<y,ε,0)€Qσ- TOI<<7& Φε(β) > φr(β)}.

Only if it is discovered that Φ7(β)i, do we make poppable all those indices ε
which take more than φτ(β) steps to compute on input β.

If (β,θ) e GTl<σ for some θ < a we set GΊμ = GTKσ and proceed to stage
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σ+ 1. Thus we discover that φg{τ) (β) has already been defined. If (β,0)/GT<<7

for all θ < α, then

v= mίn{3ε<α(<Xε,l>eQ σ - TOσ& Φε(/3) > μ)

βΓvλ^ i;[«λ,ε',0>eQσ- TOσ) - Φε,(j3) ^ μ]}

That is, ε is the poppable index of highest priority, (i) taking more than μ
steps on input β, and
(ii) all unpoppable indices of higher priority take no more than μ steps on
input β.

If v = 0 then set GTσ= GT< σ and proceed to stage σ + 1 Thus, no such
index exists at this point. Otherwise, set

ε = min{<ί,,ε,l)eQσ- TOσ& Φε(/3) > μ
&εVε'Vλ< ^«λ,ε f ,0)eQ σ - TO< σ-> Φε,(β) < μ)}

Here ε is taken as the smallest candidate having priority v. Next, set
GΊσ= GT<σU {<j3,μ», TOσ = TOίσU {<i/,ε,l» and Q σ = QσU {(t(σ),ε,0)}. Thus,
we are defining φ^ή (β) = μ and popping index ε to an unpoppable state into
the t(σ)-th position of the queue. If K = β then halt the procedure and output
μ. Otherwise, proceed to stage σ + 1. This concludes the construction.

Q.E.D.

2.3 The verification It is clear that the function created is an α-partial
recursive function of two arguments, 0(τ,κ). By the a-S%-Theorem (Cf.
[16]) we acquire an α-recursive g such that φg{τ)(κ) = θ(τ,κ). From the
details of the construction if φg(τ) (β) is defined at stage σ, then σ =
(βyφg{τ)(β)) Hence, to decide if φg(τ)(β) = γ, we simply run the α-effective
construction through stage (β,γ). It follows that {φg{r)} forms an α-measured
set. We next take our construction one step further by defining,

φg>(τ) (β) = min {φg{τ) (|3), φτ(β) + Φr(β)}

Again, since the right side of the above is α-partial recursive in β and r,
the oί-Sn~Theorem justifies our notation.

Since {φg(ή } is α-measured, it can be α-recursively decided whether or
not φg(r) (β) = y. Further {Φε} is also α-measured and since φτ(β)i <-> Φf(j3)l,
it can be similarly determined if φτ(β) + Φτ(β) - γ> Thus, if either should
equal y, we can test to see if the other is ^y. It follows that {φgι(τ) } is an
α-measured set. It is clear from its definition that φτ total implies φgl(r)
total. The remainder of the proof is concerned with showing that for φτ

total, Cφr = Cφ t^ή . Since both φτ and φgι{τ) are total this reduces to

2.3 Lemma For φτ total and ε < α

{β\Φε(β)>Φr(β)}

is bounded if and only if

{β|Φε(β) >Φg>(r)(β)}

is bounded.
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Before proceeding we define some useful terminology regarding the
construction of φg(τ). An index ε is said to be stable if there exists a stage
σ0 in the construction of φg{τ) such that for some y<α*, p € {0,1}, (1) (y,ε,p) e
Qσ° - TCf°, and (2) σ' > σ0 — (γ,ε,ρ) e Qσ' - TOσ'. Index ε is stable at 0 if
the p above is 0; otherwise, ε is stable at 1. In either case, we say that
index ε becomes stabilized after σ0.

An index is said to be unstable if it is not stable. Precisely, ε is
unstable if for any stage σ < α, there exists a stage σ' > σ such that for
γ,γ'<a*, p, p'e {0,1} (1) <r,ε,p> e Qσ - TOσ and (2) </,ε,p'> e Qσ' - TOσ'
where either γ Φ γf or p Φ p ' . For a fixed ε < α, an ε-triple is a triple of
the form (y,ε,p> with γ < α* and p e {0,1}.

The proof of Lemma 2.3 divides into three subcases; namely, if ε is
unstable, stable at 0 and stable at 1.

2.3.1 Lemma Let φτ be total. Then for all indices ε < α, if ε is unstable
then

A = {β| Φε<j8) > φr(j8)}

and

A' = {β\Φε(β)>φg>{τ)(β)}

are unbounded.

Proof: Since ε is unstable, an easy induction on σ shows that

(1) l? = {σ| an ε-triple goes from an unpoppable to a poppable state at
stage σ},

and

(2) B' = {σ| and ε-triple gets popped at stage σ},

are both unbounded.

Suppose that A were bounded and consider the set C = {β\ σ = (β, ΦΓ(β)) e
B}. First, C Q A since for any βe C, σ = (β,Φτ(β)) is a stage at which an
ε-triple goes from an unpoppable to a poppable state. By the construction,
this occurs only if Φε(β) > φτ(β), and hence βe A.

From the above, since A is bounded C is bounded. Further, since the
construction is α-effective and ΦΓ is α-recursive, C is α-recursive, thus
α-finite. Consider the α-recursive map/(β) s <β,ΦΓ(/3)> to see that B c / [ C ] .
For if σeB then at stage σ an ε-triple goes from an unpoppable to a
poppable state. By the construction σ = (β,Φr(β)) for some β and hence
σ = f(β)ef[C]. Since C is α-finite, by Fact 0.1,/[C] is α-finite, and thus
bounded below a. However this implies B is bounded, contradicting (1).
Therefore, A must be unbounded.

For the second part assume A1 is bounded. Since A1 is α-recursive, it
is α-finite. Consider the map k(β) Ξ (β,φg{r) (β)> to see that B' c k[A']. For
if σ e # ; then at stage σ, an ε-triple is popped. By the construction,
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σ = (β,φg(τ) (β)) for some β. The above inclusion will be demonstrated upon
showing that βe A*. However, we know Φε(β) > φg{τ) (β) from the construction
and by the definition of φgt^ , φg{τ) > φg>{τ) (β). Hence, Φε(β) > φgl(ή (β). Since
A1 is α-finite, by Fact 0.1 so is k[A']. However, we know B' c k[Ar] which
implies Br is bounded contradicting (2). Hence, A' must be unbounded.

Q.E.D.

2.3.2 Lemma Let φτ be total. Then for all indices ε < α, if ε is stable at 0
then

A = {β\Φε(β)>φτ(β)}

and

A' = {β|Φε(β)></yω(β)}

are a-finite.

Proof: For the first part consider the set

C = {σ ^ ε I during stage σ, ε is poppable } U ε + 1.

Since ε is stable at 0, and the construction is α-effective, C is α-finite.
Thus, by Fact 0.1, π^C] is also α-finite. To see that A c TΓ^C], consider
βe A. Since φτ(β) is defined, there exists a stage σ0 = (β,ΦΓ(β)>. If σ0 < ε,
then β= 7Γi(cr0) e π[C]. If σ0 ^ ε then at stage σ0 of the construction it is
found that Φε(β) > φτ(β) and consequently ε must be poppable. Therefore,
β = πi(σo) € Ήj[C] also. Since A c πx[C], A is bounded and α-recursive, hence
α-finite.

In order to prove the second part we assert the following.

Claim: If ε is stable then there exists a stage σ0 such that after stage σ0,
(i) ε has already become stabilized, and (ii) all indices with higher priority
than ε which stabilize (either at 0 or 1) have done so already.

Assuming this proved, consider the set F = {β\{β,O) > σ0} where σ0 is
the stage of the claim. Since <, > is increasing in the second argument, all
β's in F appear in the construction of φg(Γ) for the first time after stage σ0.
Consider β e F to see

(*) Fc{β\Φε(β)^φgf{r)(β)}.

By definition of φgι{r), this divides into two cases, namely, when φg,(τ) (β) is
Φg{r)(β) or φτ(β) + ΦΓ(β). In the first case, by the construction, assignments
to φg(τ) (β) made after stage σ0 are done via indices of priority value higher
than ε. Further, these assignments are made such that φg(r) (β) ^ Φε(j3). For
the second, assume to the contrary that φτ(β) + Φr(β) < Φε(β). Then
φτ(β) < Φε(j3) and by stage σ= (β,Φτ(β)), ε would be poppable contradicting
our original assumption.

To see that D = {j3|(β,0) ^ σ0} is bounded, consider

jβif σ ^ σ o & σ = <β,O>
JK } 1 t otherwise
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and

i/ = { σ | σ < σ o & σ = <β,0>}

Since H = dom(/), is α-recursive and bounded, H is α-finite. Also f[H] = D
and by Fact 0.1, D is α-finite, hence bounded. From (*) it follows that

A' = {β\φg>{τ) (β) < Φε(β)} c {j3|<β,0> < σ0}.

The α-finiteness of A* follows from its α-recursiveness and the bounded-
ness of D.

All that remains is to verify the Claim. Before doing this we introduce
some useful notation. For v < α*, consider the sets

F°v"
1 = {p < α* Ip e range (t) & p < v and at some stage p is the

priority of a triple which goes from an unpoppable to a
poppable state}.

Fι

v~
p = {p < en* |p e range(t) & p < v at some stage p is the priority

of a triple which gets popped}.

S° - 1 = {p < α* |p e range (t) & p < v & p is the priority of iwo dif-
ferent triples which both go from unpoppable to poppable
states}.

SlΓp = {p < a* |p e range (t) & p < i/ & p is the priority of ίwo dif-
ferent triples which are popped}.

For δ < α*, σ < a and £ = 1, 2 consider the functions:

Jή~\δ) = σ<^>cr is the stage at which a triple with priority δ goes
from an unpoppable to a poppable state for the ith time.

k]~p(δ) = σ^Φσ is the stage at which a triple with priority δ gets
popped from the zth time.

The sets Fl~\ Fl~°, S°v~\ Sι

v~°, v < α* are α-recursively enumerable
and bounded below α*, hence by Fact 0.2, they are α-finite. The mappings
k°i~\ kl~° are α-partial recursive due to the α-effectiveness of the con-
struction. Thus by Fact 0.1, k\'\Fl'l\ k°2'\S°v'

1}, k\'p[Fι

v'
p] and kϊ*[SΪp]

are all α-finite. Let σ' bound all four sets.

We now proceed to verify the claim. Since ε is stable there must be a
stage σ" after which ε does stabilize. The σ0 required of Claim 2.3.4 is
simply mαχ{σ',σff}. By the details of the construction a priority <α* can
only be assigned to, at most, two triples having different second compo-
nents. Therefore, no action may occur following stage σ0 involving index ε
or any index with higher priority than ε. Q.E.D.

Finally, the last case.

2.3.3 Lemma Let φτ be total. Then if ε is stable at 1, then

A = {β\Φε(β)>φλβ)}
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and

A' = {β\Φε(β)>Φgι(τ)(β)}

are a-finite.

Proof: By the claim used in the proof of Lemma 2.3.2, if ε is stable at 1
then there exists a stage σ0 so that after stage σ0, (i) ε has already
stabilized at 1, and (ii) all indices with higher priority than ε which
stabilize, have done so already. Further, for any 0 such that (0,0) > σ0,
since <, > is increasing in the second argument, prior to stage σ0 no
mention of β occurs in the construction.

Claim: For ε, r as in Lemma 2.3.3, and for β such that (0,0) > σ0,
(i) Φε(j3) ^ φτ{β), and (ii) Φε(0) ^ φgl{r) (β).

From this claim it follows that Ac{0|(0,O) ^ σ0} and A' c {j3|<|3,0> < σ0}.
Hence, the previously established boundedness of {0|(0,O) ^ σ0} and the
α-recursiveness of A and A1 imply the result.

We conclude by verifying the claim. Let K be an unpoppable index with
smaller priority value than ε after stage σ0 and β be such that (β,0) > σ0.
We will see that Φκ(β) < min{0Γ(0), φg,(τ) (0)}. Since K has smaller priority
value than ε, K must be stable at 0. If follows by the proof of Lemma 2.3.2,
that since <β,0) > σ0 that Φκ(β) ̂  φg,(τ) (0). On the other hand, Φκ(j3) ^ φτ(β)
for otherwise, K would become poppable contrary to our assumption.

Regard β as fixed where (0,0) > σ0 and let μ = sυp{Φκ(0)|κ has smaller
priority value than ε & K is unpoppable after σ0}. We first observe that
σ = (βyβ) is the earliest stage at which φg(τ) (β) could be defined. Certainly,
it cannot occur prior to (0,0), since β never appears. If φg{τ)(β) is defined
at stage σ = (0,δ) for δ < μ, then since there exists a γ such that δ < γ < μ
and γ = Φκ(0), we have that Φκ(β) > δ = φg{τ) (0). But this could not occur by
the details of the construction. To see that Φε(0) ̂  μ assume to the con-
trary that Φε(0) > μ. By the definition of μ, Φε(0) < μ for all unpoppable K
with priority value smaller than ε. From the above, at stage σ = (0,μ)
index ε would qualify for popping and would be so, contradicting its
stability after stage σ0.

The claim now follows from the above two facts Φε(0) ^ μ and μ ^
min{0r(0), φg,(τ)(β)l Q.E.D.

Lemmas 2.3.1, 2.3.2 and 2.3.3 together imply that for total φτ{β\ Φε(0) <
φτ(β)} α-finite if and only if {0| Φε(0) ^ φgt(τ)(β)} α-finite. That is,

C\βΦr(\β)= Cλβφgl{τ)(\β). Q.E.D.

3 The a-Speedup Theorem We prove in this section the α-analogue to
Blum's speedup result. Namely, given any α-recursive function r of two
arguments, a 0-1 valued α-recursive function / can be constructed so that
for any way of computing /, a faster one (on almost all of a) exists.
Further, this new method takes fewer than r of the complexity of the
former method steps. Our proof is a 'lift' of a simplified proof due to
Young [34] of the ω-Speedup Theorem.
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3.1 Theorem For any a-recursive function r(β,γ) there exists a 0-1 value
a-recursive f such that for any index ε for f there exists another index r
for f where Φε(/3) > r(β,Φτ(β)) for all but an a-finite set of β.

An α-partial recursive function will be defined in terms of a construc-
tion given below. This construction will depend upon four parameters
μ, v, λ and K and will proceed in stages σ < a. As the construction pro-
ceeds, we shall be accumulating two sets A^v and Fλμv. The set Aσχμv at
stage σ, will serve as an α-finite collection of pseudo indices which have
been cancelled prior to or during stage σ. The collection A ^ denotes those
pseudo indices cancelled just prior to stage σ. That is, A\° = (J A^. The

τ'<σ

set FjLv at stage σ will consist of the graph of the desired function accumu-
lated by stage σ and F^v is this set just prior to σ. Let {Kjε|ε < a} and
{G,ε |ε<α}be enumerations of the α-finite subsets of a and α-finite func-
tions, respectively, as in section 0.

3.2 The construction The construction that computes a function value
for argument K is defined by transfinite induction on σ. The output will also
depend on three other parameters: λ, μ and v.

Stage 0. Set ^ = 2 ^ = 0 .

Stage σ. If σ e όom(Gπi(v)) then set

θ = min{l,G^l(v)(σ)}; F ^ F%,U {(σ,θ)};

A(LV= A^^Sinά go to check. We examine whether the π^i/J-th α-finite func-
tion will give us a value on σ.

(*) Otherwise, compute the set

V= {ε|εe[ιt(μ),t(σ)] & Γσ\ε)\ & \Z\ε) fίKπ2{v) & * t - i ( e > ) ^r(σ,Φλ(Ωε,i/,σ)),
where Ωε = min {t(Ω) > ε}}.

This is the set of all pseudo indices ε < α* which are eligible for cancella-
tion at stage σ.

Next, if A$VΦ Aiσ

μvU Γ1[V] then set

p = min {r e V & Γσ\τ) ίA%b ^ V = ̂ U ^~Λ^

and F^P= F<£vΌ{(σ,θ)}where

ί l i f0 t - H / 7 ) (σ) = O

and go to check.

Here we found pseudo indices which are eligible for cancellation and
which were never before cancelled. We cancel that index with highest
priority by placing its inverse image into Aχμv. We then assign to our
constructed function a value different from the function having pseudo index
just cancelled.
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UAζv=A%v\J\ϊι[V]thenset

A%»=A& θ = 0; F^= F<;V\J {<σ,θ»

and go to check. Since we cannot cancel any pseudo index, we arbitrarily
assign the value 0 to our function for argument σ.

Check: If σ = K then output 0; otherwise go to stage σ + 1. This
concludes the construction. Q.E.D.

3.3 The verification Let AλβV = U A% Fλ = U FLV and define the
p σ<a r ^ σ<a p

function fλ resulting from the construction by

fλμΛv) = δ <-><σ,δ) is placed into Fλμv at stage σ.

It follows from the a-effectiveness of the construction that for any λ, μ, v,
fλμv is a well-defined, 0-1 valued α-partial recursive function. Further,
since f\μV(κ) depends on the four arguments λ, μ, v and K, it may be
expressed as φεQ{λ,μ,v,κ) for some ε0 < α. By the a-S^ Theorem, there
exist α- recursive s and S2 such that

Since 5 is α-recursive, by the α-Recursion Theorem, there exists a λo < a

such that φ\0(μ,v,κ) = φs(\0)(μ,v,κ) The function required by the theorem is

precisely/λoOO(κ).
We first show f\oμpis α-recursive by arguing that every stage σ < a is

α-recursively completed. Since the calculation of /λooo(0)> requires the
running of the construction till stage β, α-recursiveness follows. By
examining the details of the construction, it is seen that at any stage σ, the
only step which may not necessarily be en-recursively performed is (*).
This is the search for ε in [ϊ(μ),t(σ)] where

Φt_1(ε)(σ) ^ r(σ,Φχo(Ωε,ι/,σ)), with Ωε = mm {t(Ω) > ε}.

3.3.1 Lemma For all μ, σ < a and ε in [Kμ),Kσ)L min{t(Ω) > ε} is defined.

Proof: The predicate t(Ω) > ε is a-recursive since t is; hence, the proof
reduces to showing that for each εe [t{μ),*(&)], there exists an Ω < a where
t(Ω) > ε. But this is a consequence of the facts t(σ) < a* and t is the
one-one projection map. Q.E.D.

3.3.2 Lemma Let σ, λ, μ, v < a and suppose \{μ) > t(σ). If for all σf < σ,
Λμv(tf') is defined, thenfλμι/(σ) is defined.

Proof: From the hypothesis all stages σf < σ have been performed. At
stage σ, since t(μ) > *(&), (*) of the construction is never considered.
Hence, f\^v{(j) must be defined. Q.E.D.

In particular,

3.3.3 Corollary Let σ, μ, v < a and suppose t(μ) > Ko*). If for all σf < σ,
Λoμ^(crf) is defined, thenfλoμ!v(σ) is defined.

3.3.4 Lemma φχQ(μyu,l) is defined for all μ, v < a.
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Proof: By induction on δ = mίn {t(μ) + δ ^ t(l)}.
δ

Case 1. t(μ) > t(l). By Corollary 3.3.3, it follows that φχo(μ,v,l) is defined
for all v.

Case 2. δ = 0. It follows that t(μ) = t(l). Convergence of φ\0(μ,v,l) occurs
if (*) of the computation is not performed. If it is, convergence depends on
that of </>λo(Ωε,zΛl) where Ωε = min {t(Ω) > ε} and t(μ) = t(l). Since t(Ωε) > t(l)
(= ε), again, by Corollary 3.3.3 0λo(Ωε,ι;,l) is defined. Hence, 0λo(μ,M) is
defined.

Case 3. Assume φ\0(μ,v,l) converges for μ, v where min{t(μ)+δ ^ t(l)}< δ,
to see 0λo(μ,ι^,l) is defined for μ, v where min{t(μ) + δ ^ t(l)} = δ. If in the
computation of 0λo(μ,zΛl), (*) is not performed, we are done; else the
convergence will depend on those of 0λo(Ωε,^,l) where f(μ) ^ ε ^ t(l) and Ωε =
min{t(Ω) > ε}. But for all of these, either t(Ωε) > t(l) or 0 ̂  min{t(Ωε) +
δ ^ t( l)}< δ. In the first case convergence is assured by Corollary 3.3.3;
in the second, by the induction hypothesis. By Fact 0.2 the set

£ = {ε|t(μ) *sε*st(l)}

is α-finite. Define an α-partial recursive mapping p: E —> a by p(ε) =
β + U P(ε') where εe [t(μ),t(l>] & ΰ\ε)\ & β is the length of the α-finite

ε/<:ε

computation of r(σ,Φλo(Ωε,i^,l)), Ωε = min t(Ω) > ε; 0, otherwise. By Fact
0.1, p[E] is α-finite, implying the union of the subcomputations (*) is
bounded. Hence, φλo(μ,v,l) will be defined. Q.E.D.

3.3.5 Lemma Let μ, v, σ < a. Suppose for all σf < σ 0λo(μ>ιΛCΓ') is defined.
Then 0λo(μ,^,or) is defined.

Proof: By induction on δ = m|n{t(μ) + δ ^ t(σ)}.
δ

Case 1. If t(μ) > t(σ) then by Corollary 3.3.3, φ\0(μ,v,σ) is defined for all v.

Case 2. If δ = 0 then t(μ) = t(σ). Thus convergence of φχo(μ,v,σ) occurs if
(*) is not performed; else convergence hinges on that of 0λo(Ωε,i^,σ) where
t(μ) = ε = t.(σ) and Ωε = m^n^ίΩ) > ε}. From the details of the construction,
it follows that ή>\0{μ,v,σ'), σr < σ defined implies 0χo(Ωε,y,σf) is also where
t (μ) ^ ^(Ωε) (since a possible shorter search is performed in the latter). By
Corollary 3.3.3, since t(Ωε) > t(σ) (= ε), 0λo(Ωε,^,cr) is defined.

Case 3. Suppose the result holds for all μ, v where min{t(μ) + δ = t(σ)} < δ,
to see that φ\0(μ,v,v) is defined for μ, v where min{t(μ) +δ =t(σ)}=δ.
Again, if (*) is not performed at stage σ, we are done; else the convergence
depends on those of 0λo(Ωε,i^,σ) where t(μ) ̂  ε ^ t(σ) and Ωε = min{t(ε) > ε}.
Again, since 0λo(μ>ι;>OΓ') is defined for σ' < σ, by the details of the construc-
tion 0χo(Ωε,^,σ') is defined. By either Corollary 3.3.3 or the induction
hypothesis, all of the computations 0λo(Ωε,^,σ) are defined. Just as in the
proof of Lemma 3.3.4, the union of all these subcomputations is bounded
below α, and convergence of φ\0(μ,v,v) follows. Q.E.D.

3.3.6 Lemma For all μ, v, σ < a, φ\Q{μ,v,σ) is defined.
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Proof: The result comes via a double induction on σ and μ using Lemmas

3.3.4 and 3.3.5. Q.E.D.

Recall that f\QQ0{β) = φλo(0,0,β). We can assume, without loss of gen-
erality that Dπι(0) = Gπι(0) - ψ and that t(0) = 0. Further, for any μ, v, β < α,
the main computation of φχo(μ,v,β) refers to the main body computation and
not to any recursive calls which may be produced. An immediate observa-
tion is

3.3.7 Lemma Let μ, v, β < α. Then in the main computation of φ\Q(μ,v, β),
no pseudo index ε is ever cancelled more than once.

For γ < a*, let

Ey° ={p < a*\pe range(t) & p < γ & p gets cancelled
in ΛχoOO during the construction of i^oo}-

Let kλo be a map from α* —» α defined as: k °(ε) = the stage of the construc-
tion of Fλooo at which pseudo index ε gets cancelled. By Lemma 3.3.7 and
the α-effectiveness of the construction, it follows that fe°isa well defined
α-partial recursive function.

3.3.8 Lemma For all γ< a*.

(i) E§> and kλ°[Eγ] are α-finite,

and

(ii) There is a stage σ0 such that following σ0 no pseudo index smaller than
γ will ever be cancelled by the construction of F\Q00.

Proof: (i) Clearly E^ is a-recursively enumerable and bounded below α?*;
hence, E^° is α-finite by Fact 0.2. From this and the observation that
E^° c dom &λ°, by Fact 0.1, kX°[zfy] is also α-finite.

(ii) By definition, kλ°[Eγ°] is the set of all stages at which pseudo indices
below γ are cancelled. By (i), this set is α-finite, hence, bounded by some
σ0 < α. Q.E.D.

3.3.9 Lemma For all μ < α there exist σμ, vμ < α (σμ > μ) such that

(i) no ε < t(μ) ever gets cancelled in computing φχo(0,0,σ) for all σ > σμ,

and

(ii) Gπi{μv)(β)=φko(0,0,β)/σμ,

and

κrr2{μv)
 = ΊV^te) I ε *s cancelled in computing φχQ{O,O,β) for some β < σμ}.

Proof: (i) By Lemma 3.3.8 there exists a stage σ0 such that no pseudo
index smaller than t(μ) will ever be cancelled after stage σ0. Choose σμ =
mαx{σo,μ} + 1.

(ii) Let σμ be as in (i). Then since φχo(0,0,β)/σμ is an α-finite function,
Gδ(β) = 0λo(O,O,/3)/σμ for some δ < α. Further, the set
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D = {ε| ε is cancelled in computing φσ(\o)(0,0,β) for some β ** σμ}

is α-recursive and bounded below α* ̂  a. From Fact 0.1, t"x[i)] is α-finite;
hence for some η < α,

Kη = {Γ^ε) | ε is cancelled in computing φ\o(0,0,β)
for some β < σμ}.

The result follows with vμ = (δ,η). Q.E.D.

An immediate consequence of the details of the construction and the
definitions of σμ and vμ is

3.3.10 Corollary For all β < a,

#λ o (μ,^ ,« = 0λo(O,O,β) = 0 si ( λ o,o > o )(β) = Aooo(β).

3.3.11 Lemma For any index ε/or/ λ o 0 0 , Φε(β) >r(|3,Φ s

a

1 ( λ Ω^Jβ)) for all
but an a-finite set of β, where Ω = min{t(Ω) > t(ε)}.

Proof: Suppose otherwise that

C={β |Φ ε (β) . r ( / 3,Φ 4 ( λ o > Ω ^(β))}

is not α-finite. Since it is α-recursive, it must be unbounded. Let ε' < en*,
where ε ; = t(ε), and σx < a be such that t ' ^ ε Ή By Lemma 3.3.8 there
exists a σ0 such that after stage σ0 no index of higher priority than t(ε) is
ever cancelled in the construction of i^oo- Since C is unbounded there must
be a βe C where β > mαxjσ^σj- and ε is eligible for cancellation at stage β.
It follows from the details of the construction of F\Q00 that either at stage β
or before, the pseudo index εf will be cancelled implying, φε Φf\oOo. Q.E.D.

The remainder of the theorem follows immediately from the identity
Φ if* o Pϊ =Aooo(β) of Corollary 3.3.10. Q.E.D.

4 Open problems The levelable recursively enumerable sets are those
which, for each badly behaved procedure (the resources required exceed a
recursive function on an infinite set of inputs), have a more economical
procedure (the resources are below a recursive function on the same
infinite set of inputs). The speedable r.e. sets are those sets of natural
numbers whose recognition procedures may be sped-up; those for which the
faster procedures may be effectively obtained are the effectively speedable
r.e. sets. It is known that levelable sets are speedable, and that speedable
sets properly contain the effectively speedable ones. In fact, Blum and
Marques [2] prove that the maximal r.e. sets of recursion theory (sets M
where either ω - M is finite or for all r.e. A either (ω - A) Π (ω - M) is
finite or A Π (ω - M) is finite) are levelable, hence speedable, but not
effectively speedable.

Lerman [19] considers a number of generalizations of maximal r.e.
sets in α-recursion theory by replacing r.e. by α-r.e. and employing
several analogues to finite (e.g., α-bounded, α-finite). He displays neces-
sary and sufficient conditions on admissible a for existence of maximal
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α-r.e. sets for some of the definitions. Maximal sets exist for some, but
not all, countable admissibles, and fail to exist for uncountable ones. For
these notations of maximal α-r.e.,

Q. Are there admissible α for which maximal effectively α-speedable sets
exist?

d. Are there admissible α for which speedable = effectively α-speedable?

Q. Are there admissible α for which α-levelable = α-speedable?

Q. Are there admissible α for which effectively α-levelable = effectively
α-speedable?

If any of these result in the affirmative, find necessary and sufficient
conditions characterizing such α?

Two of the classic results of abstract complexity theory, Blum's
Speedup Theorem and Borodin's Gap Theorem [3], have been successfully
generalized to effective operator versions. A map F[ ], of the unary partial
recursive functions into itself is an effective operator, if there is an
effective total algorithm taking any program for partial recursive φ into a
program for F[φ]. F is said to be a total effective operator if it maps the
recursive functions into itself. We ask,

Qι. Does Constable's [4] extension of Borodin's result lift to α?

Qι. Does Meyer and Fisher's [23] generalization of Blum's Speedup
Theorem further generalized to α-complexity theory?

If either of the above two questions is answered in the negative, we
would naturally be interested in necessary and sufficient conditions on
admissible α, α-complexity measure and total effective F characterizing
such situations.

The proofs of the α-Naming Theorem and α-Speedup exploited the facts
that the accompanying constructions were uniform in certain parameters.
Namely, the α-Naming construction depended upon T < α, while that of
α-Speedup hinged upon λ, μ and v. A very subtle point, in both cases, is
that the constructions were not entirely uniform in all its parameters.
Specifically, the two depended upon a particular infinite parameter, namely
α. For in both, priorities were founded upon the projectum α* and the
projection mapping t, each of which presupposes the existence of α. In
ordinary recursion theory, this problem would never enter one's mind,
since we always assume a fixed ω.

Q|. Does there exist a construction establishing the α-Naming Theorem
which is uniform in both τ and α?

Qι. Does there exist a construction uniform in λ, μ, v and r establishing the
α-Speedup Theorem?

The answers to these are probably both yes and the solutions should be
along the lines of Shore's [28] uniform solution to Post's problem. Namely,
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introduce approximations to α* together with a projection map by making
use of parameterless Σx Skolem functions throughout the construction.

Harrington [6] provides a technique for translating results in α-
recursion theory into analogous ones within the theory of higher type
objects (Cf. [12]). His basic stipulation is that constructions in α-recursion
theory be uniform; that is, they should mention no infinite parameters.
Therefore, uniform solutions to the above two questions would automatically
generate analogues to the Naming and Speedup Theorems in higher type
theory.
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