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Classification Theory Over a Predicate I

ANAND PILLAY and SAHARON SHELAH

Introduction In this paper, the scene is set for the study of classification over
a predicate. Let T be a complete first-order theory with among other things a
unary predicate P. Instead of studying the structure and number of models of
T we are now interested in the structure and number of models M of T over
Mp (where Mp is the substructure of M with universe PM). So for example we
let /Hλ, μ) be the greatest K such that there are TV of power μ and K models
M |= T, with Mp — TV and \M\ — λ, which are pairwise non-TV-isomorphic.

In Section 2 it is pointed out that, given TV, those M Y T with Mp = TV
can be to some extent coded by L2-reducts of expansions of TV to Γ* where
L(T*) 2 L2 2 L(T), for suitable L2, T*. So in Section 1 the following is
examined: given Lx <Ξ L2 ^ L3 and Γ* a theory in L3, what are the possible
numbers of expansions of TV to L2-reducts of models of T* as TV ranges over
L rstructures? This generalizes the context of the Chang-Makkai theorem (see
[1]) and results in [6]. Some finer results are also obtained.

Such results are used to show that if IriK λ) is not too big then for every
MtT,a<ΞMf tp(a/PM) is definable.

In Section 3 some stability-type notions are introduced. The general con-
text here is: given M ^ T A <^ M, A ^ PM one should study the space of those
types p over A which can be realized in some TV (= T with PN = PA (= PM). In
future work fairly complete answers to spectrum problems (e.g., analogues of
Morley's theorem) will be given by studying the space of such types for
successively more "complicated" such A, using the techniques similar to [9].
Here we essentially consider only the case A = M |= T and prove some non-
structure theorems.1

/ Let us first establish notation for this section. L{ <^L2Q L3 are first-order
languages (with equality), L2 — Lx — {P,: / < κ}9 and Γis a theory in L3 such
that T N 3x3^ {xΦ y).
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For TV an Lx-structure:

D{ (TV) = I {M: M is the Z2-reduct of an expansion of TV to an L3-structure
which is a model of T}\.

For TV an L3-structure which is a model of T:

D2(N) = \{M: M an L2-structure, M\Lλ =N\L{ and M = TVfL2}|.

Now we define (for μ an infinite cardinal):

Dx{μ) =max{Dι{N)\ \N\ = μ, TV an Lrstructure} ( = A ( μ , T,L2,LX)).
D2(μ) = max {D2(N): TV |= Γ, |TV| = μ} (= D2{μ, Γ, L2L{)).

Remark: In case the maximum is not obtained we still use notation A(μ) as
follows: Di (μ) > λ means there is (suitable) TV of cardinality μ with Dj(N) > λ.

Note that (if N |= T) D2(N) < Dι(N\Lι) and thus D2(μ) < Dx{μ) for all μ.
For λ an infinite cardinal define:

Ded* λ = max {μ: there is a tree with λ nodes and μ branches of the same
height δ (for some δ)} (where use of "max" is as above).

The following essentially appears in [6] (Theorem 1).

Theorem 1.1 Let K = 1, Po = P, λ > \T\. The following are equivalent:
(1) For no φGL does T \- 3xVy (Py++φ(y, x))
(2) A(λ)>λ
(3) A(λ) >Ded*λ
(4) D2(λ) > λ
(5) D2(λ) >Ded* λ.

Let us continue for now with the case K = 1, Po = P and assume
that Dι{λ) < λ (Vλ > \T\). So we have a formula φ(y, x) such that Γ h
3xvy (Py~φ(y,x)).

Let ^(^i, x2) be the formula

(VJ)(φ(J, Xi)-Φ(J?, x2) .

In βe<7 (see [7]) the equivalence classes of E become elements satisfying a
predicate Q, and thus the choice of P is equivalent to the choice of a suitable
element of Q.

It follows that if for some L rstructure M(\M\ > \T\) Dι(M) is infinite
then for every μ> (Γ), Dt(μ) > μ.

On the other hand, if for every L rstructure M, D/(M) is finite then by
compactness this reduces to T proving a certain sentence which by abuse of
notation we express by T \- "Q is finite".

The following is then clear:

Theorem 1.2 The following are equivalent (I = 1, 2) K = 1, Po = P
(1) TV "Q is finite"
(2) Vλ Df(\) is finite
(3) for some λ > |Γ | , A(λ) < λ
(4) Dι(λ)(λ > |Γ |) /s constant.
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Corollary 1.3 (K = 1, Po = P) Exactly one of the following holds
(1) D/(λ) >Ded* λ, Vλ> |Γ |
(2)D/(λ) = λ, Vλ> \T\
(3) Di(λ) is constant (and finite) Vλ > \T\.

The case in which K is finite can be reduced to the case K = 1 by consider-
ing the predicate

Q(M\- Λ-i) = ^ O ( ^ O ) Λ . . . Λ P H I Λ - I )

We now wish to describe the function D{( — ) when K > Xo So let us now
assume that K > Ko

For / < K let Li = Lx U P, .
We clearly have Dfo, T, Li Lx) < D/(μ9 T, L2, Lx) for all / < K, where by

the above we have:

Fact 1.4 If for some / < K there is no Φ(J/, x,) such that T \- IXjVy^Pjiy,) ++

ΦiPh Xi))> then

v λ > |Γ | , Dι(λ) >Ded*{\) .

So we now assume:

Assumption 1.5 V/ < K there is φt{yh *,) such that

T h sχiVMPi(yi) ~ Φι(y» xi)

As in Theorem 1.2 and with the same notation.

Theorem 1.6 The following are equivalent
(1) v/, Γh "Qi is finite"
(2) Vλ, A(λ) <2 ' Γ I + K °
O) for some \ > |Γ | , Z>/(λ) < λ
(4) A(λ) (λ > |Γ |) w constant.

Remark 1.7: By Assumption 1.5, D{(λ) < \κ for all λ > \T .

Let M (= T and for each / < K, let c/^ be the element of M (actually of
Meq) which is ct/Eh where M V Pt(yί) ^ Φι(yn Cι)- N o t e t r iat if Mu M2 are
distinct L2-structures which are expansions of the same Lx-structure M, and are
both reducts of models of T, then

(c,Ml: i<κ) Φ ( c ^ 2 : i < K) .

Definition 1.8 Let S = {μ: μ an infinite cardinal and 3δ(c/δ = μ v δ = μ),
3M (= T 3/(γ), 7 < δ such that C/fτ) is not algebraic in M\LX over {c%β): β <
7} but every c,M is algebraic in M\LX over {c/f7): 7 < δ}, and whenever A <Ξ
{c/(7): 7 < δ}, \A\ < μ then some c / ( 7 ) is not algebraic in M\LX over ^4}. Note
that 5 is a (maybe empty) set of infinite cardinals <κ.

Theorem 1.9
(1) / / A ( λ ) > λ < μ + 2!ΓI then there isχ>μ with χ e 5.
(2) Le/ λ > | Γ | , A ( λ ) > λ α«rf (Vχ < λ)(χκ < λ). Γ/zeπ c/λ E 5.
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(3) Let μ > λ + \T\\ μ regular, A(λ) > μ. Then
(a) if\ is regular then 3λ* < λ, A ( λ * ) ̂  μ
(b) ifL3 = L2 then 3λ* < λ A ( λ * ) > μ or c/λ E S.

Proof: (1) Let Mbe an Lrstructure of cardinality λ with A W ) > λ< μ + 2 | Γ | .
Let X = the set of sequences c = <C/. / < K) in M corresponding to L2-reducts
of expansions of Mto models of T. So \X\ > λ<μ + 2 | r | . For each c G l , let
,4C C c be a set of minimal cardinality such that each c, E c is algebraic (in M)
over v4c. Note that (as \ΛC\ < |c| < |Γ |) for each Λc there are at most 2'Γ '
c' G X with ylC' = Λc. So clearly there is c such that |>4C| = χ > μ. By the
minimality of |^4C| (with respect to c) we can find (cJ: j < χ> ^ ^4C such that cy

is not algebraic over {cι: i <j) and every c E Λc is algebraic over {cy: y < x}.
Clearly χ E S.

(2) Let A ( λ ) > λ, λ > |Γ | , and (Vχ < λ)(χκ < λ).
Let M b e as in (1) and put M = | J M, where <M/: / < c/λ> is an

/<c/λ

elementary chain, |Λfz | < λ v/ < c/λ. Clearly for each / there are <λ different
CELXcontained in Λf, . Thus for some c G ^ , for unboundedly many / < c/λ,
c Π (M - Mi) Φ 0 . Easily c/λ E 5.

(3) Again let Nbe an Lrstructure of cardinality λ with D{(N) > μ (where
μ > λ + |Γ | K ) . Note λ > |Γ | .

(a) Let λ be regular and let N = JJ N/, where the TV, are a continuous
/<λ

increasing elementary chain of models of power <λ. Let Ma(a < μ) be expan-
sions of TV to models of T which are pairwise L2-distinct.

For / < λ let N * be the L3-structure whose universe is that of Nj and whose
structure is induced from Ma.

By regularity of λ, for each a < μ there is ia < λ such that Nfa < Ma.
By regularity of μ there is / such that Y = {a < μ: ia = /*} has cardi-

nality μ. It is then clear that {TV ^ \L2: α E Y} are distinct, and so A (TV,*) > μ.
(b) Suppose L2 = L3. We may (by (a)) assume that λ is singular. Let

N — (J Nh \Nj\ < λ, the Nj a continuous increasing elementary chain.
i<cfλ

If for some expansion N' of N to a model of T, for all / < c/λ there is j
with cf £ Nj then as in the proof of (2) cfλeS.

If not then for every expansion N' of N to a model of 71 there is / < c/λ
such that all cf E Λ/}.

As there are >μ such expansions N' and μ is regular μ > c/λ, it follows
that there are TV", a < μ, distinct expansions of N to models of Γ, and /* < c/λ
such that for all a < μ V/ < K, c"a E N/+.

Remembering that L2 — L3 and that for each / < /c, Na h P,O/) <-• Φ/O/,
cJ we see that A/"ζ < A "̂ and the Λf£ are pairwise distinct (α < μ).

As |N/J < λ* we see that 3λ* < λ, A(λ*) > μ, proving (3).

Lemma 1.10 Let L2 = L3, \ E 5, λ > |Γ | . Suppose there is a tree with λ
nodes and μ branches of height δ, where χ = c/δ. Γ/zc/7 ,Di(λ), Z)2(λ) > μ.

Proof: Like [6].

Lemma 1.11 Suppose Vμ < λ, μc^λ > λ. Then there is a tree with λ nodes
and μ branches of height c/λ, with μ > λ.
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Proof: Our assumptions imply that λ < c / λ = λ. So put μ = λcfλ and look at the
tree c / λ > λ .

Now, with no assumptions:

Theorem 1.12 Let L2 = L3. Then exactly one of the following holds
(1) Vλ> \T\,D/(\) >Ded*λl = 1, 2
(2) Vλ > | r j , Di(\) > λ and there is S g {χ: Ko < χ < |Γ|} swc/z ίλίtf:

(A) if there is a tree with λ nodes and μ branches of height δ, cfb G S //zetf
D;(λ) > μ , / = 1,2

(B) //vμ < λ (μ* < λ) flfΛd λ > 2 | 7 Ί fAew D/(λ) >λiffcfλ<ES
(3) A ( λ ) , λ > | Γ | , /s constant.

Proof: If for some λ > | Γ | , £>/(λ) < Dβrf* λ then we can work with Assump-
tion 1.5.

By Theorem 1.6, if D/(λ) is not constant, then D/(λ) > λ Vλ > | Γ | .
Let S be as in Definition 1.8:

(2A) is Lemma 1.10.
(2B) Suppose μ < λ, μ* < λ and λ > 2 | 7 λ If c/λ G S then c/λ < K.

So the hypothesis of Lemma 1.11 holds, and thus by Lemma 1.10,
A(λ) > λ.

If D\(\) > λ then by Remark 1.7, λ Φ \κ and thus using our assumptions,
Vμ < λ μκ < λ. By Theorem 1.9(2) c/λ G S.

Let us reassume Assumption 1.5 and seek some finer control over Df(λ).

Definition 1.13 Si = {δ: δ ordinal, 3M N T and {c^y): y < δ} such that:
(1) c#J) is not definable (in M\LX) over {c^) . β < y} and (2) every cf4 is
definable (in M\LX) over {c/(7): γ < δ}}.

Lemma 1.14 If b G S{ then Vλ > | Γ | , £>,(λ) > min {2^, λ}.

Proof: Let δ G Sp Clearly there is a |Γ|+-saturated model TV of T of cardi-
nality >λ, 2 | δ | , such that <c,^7): y < δ) witness δ G 5^

We will drop the superscript N from cf*.
As for each y > δ, c / ( 7 ) is not /^-definable over {c/(/3): ]8 < 7}, we can

find, inductively, in N elements dτ for r G δ > 2 such that:

(1) for each r G ό^2, tpLι((dτh: y < /A(r)>) = ^ L l « c / ( τ ) : 7 < /Λ(τ)>)
(2) ί/r^<0> ^ d r Λ < 1 > (when /(r - <0>) < δ).

So there is an elementary extension N* of N and for each η G δ2 an
automorphism /^ of TV* f Lj taking c / ( 7 ) to 0^7 for all 7 < δ.

By adding predicates for these automorphisms and choosing an elementary
substructure of power λ, we can obtain a model M of T of power λ with
D2(M) > m m ( λ , 2(<5)).

Lemma 1.15 Let T \- "Q, is finite" for all i < K, T complete. Then
(1) δu δ2eSι^ \δ{\ = |δ 2 | and δeS{ => |δ| E Sx

(2) ifL2 = L 3 and δ G Si /Λe« D ^ λ ) > 2 | δ | , Vλ > \T .

Proof: (1) First note that by the completeness of Γif some δ{ G S\ is finite then
Vδ G Si δ = δ{.
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So suppose that δu δ2E:Sι with Ko < |δi| < |δ 2 | . As Γis complete there is
a saturated model M of T witnessing both δ{ G Sx and δ2 G Si. Let ( c / l ( 7 ) :
γ < δί> witness δi G Si and (cj^y): y < δ2) witness δ2 G S{.

We can find an infinite U C δ2 and finite w C δ{ such that V7 E (7, c / l ( γ )

is definable (in M\LX) over c = <c, l ( α ) : α G w>.
As Γ h "Qi is finite" V/, there are only finitely many cf in M with

tPL\(c') = ΦLX(C). SO there are only finitely many possible sequences (cJ:
j G U) with the same Lptype as <c / 2 ( τ ) : 7 G C/>. This contradicts the fact that
for all 7 < δ ci2(y) is not (Z^)-definable over {ci2(βy β < 7}.

S o | δ 1 | = | δ 2 | .
It now easily follows that δ G Sj => |δ| G S l β

(2) Working in a big model TV of T as in the proof of Lemma 1.14 we find
{dτ: T G δ >2} satisfying (1) and (2) of that proof.

Note that, as T h "Q, is finite", V/ < K \{dτ: r G δ > 2} | = |δ| < K < | Γ | <
λ.

Let N<M be of cardinality λ containing dr Vr G δ > 2 .
As L2~ L 3 , for each 77 G δ2 (ί/^rγ' 7 < δ) gives rise to a different expan-

sion Â 77 of N\LX to a model of T.
So A ( M >2|δL
We now give some examples.

Example 1.16: Let a be a countable ordinal and Ta = Th(HC2a), G).
Let Lo - {G} (= L ( Γ J ) , L{=L0U {cn: n < ω}, L2 = L,U {F} where F

is a unary predicate.
T= Ta U {"Z7 is a function with domain ω, Wί < ω(F(n) is a sequence of

ordinals of length n), Vn < m < ω(F(m) \n = F(n))"} U {F(n) = cn\ n < ω}.
Let Â  1= Ta. Then if ωN is standard, clearly Dγ(N) = the cardinality of

the set of (really) countable sequences of ordinals in N.
On the other hand, if ω ^ is nonstandai d then let nx be a nonstandard

member of ωN and then for every expansion TV' to a model of T

Vn <ω TV' N cn = F{n') \n .

Thus A (TV) < |TV|.
Noting that if M V Ta \M\ > Q α then ωM is nonstandard we see that

A ( λ ) > λ iff λ < Q α and λ*° > λ.

Example 1.17: Let for each / < ω, Z7/ be an /-place function from ωx to ω such
that for any countably infinite A ^ ω,

(*) {F/(*i,. . .,X/): Xi , . . . , X / G / 1 , / < ω } = ω.

Let L o = {G/: / < ω}, Lx = Lo U {cΛ: /? < ω}, L2 = L{U {d,: i < ω j , where G/
is an /-place function symbol.

Let T = {G/(rf/ p. . . , du) = cn: I < ω, /Ί, . . . , / / < ω l 5 Λ < ω F / ί / Ί , . . .,

Let TV be an L 0 -structure and suppose TV1? TV2 are expansions of TV to
models of T such that {d?1: i < ωx} Π {d?2: i < ωx} is infinite. Then by (*)
NX\L2=N2\L2.

Thus, if A ( λ ) > λ then there is a family of λ + subsets of λ each of
power Kl5 the intersection of any two of which is finite.
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2 Here we begin the study of classification over a predicate. T will be a
complete theory in a relational language L (with equality) containing, among
other things, a unary predicate P with T h "P is infinite".

If M is an L-structure then by Mp we mean the L-structure whose universe
is PM and whose structure is that induced by M. We are interested in the
number and structure of models M of T over their P-part, So the strongest
categoricity property is: for any MY T, Mis determined, up to isomorphism
over M p , by Mp. (Note that if T V Vχ-^Px then Γhas this property iff Γis the
theory of a. finite structure.) Nonstructure theorems will say, for example, that
for some Mo there are "many" M V T (maybe of a given cardinality) up to
Mo-isomorphism, with Mp = Mo.

Definition Let TV be an L-structure.

Iτ (λ, TV) = the number of models M of T of cardinality λ with Mp = TV, up to
isomorphism over TV.

IAN) =ΣlAKN).
λ

/r(λ, μ) = max /^(λ, N).

IAμ) = max IAN).
\N\=μ

When Γis clear from the context it will be omitted.

Lemma 2.1 There is a theory T' in a language L' Ξ2 L with \T'\ = |Γ | and
such that any L-structure N can be expanded to a model of T if and only if
N = Mp for some M |= T.

Proof: Let U = L U {/} U {R*: R a relation symbol of L} where/is a unary
function symbol.

Let N' be an L'-structure. T will say the following of N'\

(i) / is a 1 - 1 function from TV into TV
(iϊ)P* = Imf

(iii) Vx(R(x)++R*(f(x)) for every symbol R of L
(iv) the structure TV" = N' \ {R*: R G L] is a model of T*, where Γ* is T with

R* replacing R.

Clearly T works.

So note that {TV: 3M |= T, Mp = TV} is a PCΔ-class.
We will be interested in the following possible properties of T.

Property (I) For every L-formula φ{x) there is an L-formula ψ(x) such that
for every M (= T and a G M p ,

MN φ(ά) iff M p N ψ(ά) .

Property (II) For any M N Γ and a e M, tp(ά/PM) is definable over
P M (i.e., for any φ(χ, y) there is ψφ(y, c) c E PM such that vJ e PM

M)rφ(a,d)~ψφ(d,c)).
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Remark 2.2: Note that if T satisfies (/) then for the purposes of our study we
can assume that Γis Morleyized; i.e., that for each φ(x) G L there is Rφ(x) a
relation symbol of L with

TYφ{x)~Rφ{x) .

Also note that if T satisfies (II) then by compactness, for every φ(x, y) there is
Ψφ(y, z) such that for any ά G M Y T l(ά) = /(*), there is c G PM such that
tpφ{a/PM) is definable by φφ(y9 c).

In this section we show, using material from Section 1, how we can assume
Γto satisfy Properties (I) and (II) above.

Lemma 2.3 If for some λ > \T\, 7Γ(λ, λ) = 1 then T satisfies (I).

Proof: If T does not satisfy (I) then we can easily obtain Mx, M2 1= T of car-
dinality λ with M\ — M2 = TV, TV of cardinality λ, and a G N such that
(Mu a) Φ (M2, a), contradicting our hypothesis.

Lemma 2.4 Let T* be TU {Vx{Rφ(x) ~ φ{x): φeL} where the Rφ are new
relation symbols. Let T+ = (T*)' (from Lemma 2.1). Then

(i)for any L-structure TV, /Γ(λ, N) = Σ { / r ( λ , N*): N* is an L(T*)-
expansion of N)
(ii) Iτ(\, λ) > A ( λ , Γ+, L(Γ*), L), / r ( λ , λ)

(iii) /Γ(λ, μ) < A(μ, T+, L(Γ*), L) / r ( λ , μ).

Proof: Immediate.

Corollary 2.5 IfΊτ{\, λ) > Ko then

M λ , λ) = A ( λ , Γ+, L(Γ*), L) / r ( λ , λ) .

Bearing in mind what we know from Section 1 of the function Dx and also
2.2, 2.3, 2.4, and 2.5 we now make:

Assumption 2.6 T = T* (and thus Γ satisfies (/)).

Definition 2.7 Let M (= Γ, «z G M.

Let L2 = LU {Rφ(^a): Φ(x9 y) E L}_and we expand M to an L2-structure
M^ by putting M-a V Rφ{^-a)b iff M f= φ(b, a).

Let Γ^ = Th(Mδ) and let Γ/ be (Ts)' from Lemma 2.1. Let Dδ(\) =
A ί λ , 77, L2> ̂ ) and similarly for Sδ.

Thus an L-structure TV has an expansion to a model of T£ iff there is
MY Γ a n d ά E M such that Mp = N and Mj N Γ .̂

Note that if TV (L-structure) has two different expansions TV1, TV2 to
L2-reducts of models of T£ then there are Mu M2 N T ax G Mx α2 G M2 with
Mf = M2

P = TV and tp{άx/N) Φ tp (#2/TV). (Moreover we can get \MX\ =
|M 2 | = |TV|.)

Lemma 2.8 Let M N Γ, α G M.
(i) Iftp(a/PM) is not definable over PM then Vλ > |Γ | , Dδ(λ) > Ded\\).

(ii) If tp(a/PM) is definable over PM but not definable almost over some finite
c in PM, then Sδ Φ 0 .
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(iii) If tp{a/PM) is definable over PM but not definable over some finite c in
PM, then (SX)SΦ0.

Proof: (i) Note that tp(a/PM) being definable over PM means for each RΦiχtά)
there is an L-formula ψ(x9 z) such that

Tt h (*zHVxRφ(x,a)(x) ~Ψ(X, Z)) .

Now use Fact 1.4.
(ii) and (iii) are similar.

Theorem 2.9
(i) If for some aandλ>\T\, Dδ(λ) > λ then Iτ(λ, λ) > D5(λ).

(ii) If\T\ < μ < λ, Dά(λ) > λ for some a, then Iτ(μ, μ) ^ μ

Proof: (i) Our hypotheses and the remarks following 2.7 give us M, f= T and
άi E Mi for / < Da(\) such that v/ Mf = N, | Af/| = |7V| = λ, and the tp(Ui/N)
are all different.

Clearly we can choose X<^ Du(\), \X\ = Dδ(λ) such that for all /, jeX
with / <y, tp{Ui/N) is omitted in Mj.

So the M/, / E ̂  are pairwise nonisomorphic, whereby /^(λ, λ) > Dά(λ).
(ii) Let, by (i), Mf(i < μ) and 5, E Mz be such that Mf = Nvi < μ and

tp{ai/N) is omitted in Mj forj < i (also |M,| = |iV| = λ, V/).
Now we can easily define, for a < μ and / < μ, models Nfί<Mi such that:

(a) άi E N? and iNfl = μ V/, α

(b) U PNJ ciV /?Vα<μ
)3<α

(c) γ/ < /, /ϊ < a if ά E Nf then tp{a/PN* Π PN^) ^ tpWP"? Π P N O .

If we put N* = U Nf for / < μ we see that (JV1')p = (NJ)p for /, 7 < μ

and tp{ai/{Ni)p) is omitted in 7Vy fory < /.
So I(μ, μ) > μ.

Corollary 2.10 If for some M N T and ά E M tp{a/PM) is not definable
over PM then

Vλ> \T\ Iτ(\9 λ) >Ded*{\) .

Proof: By Lemma 2.8 and Theorem 2.9.

Thus we can now make

Assumption 2.11 For every M V T, a E M tp(a/PM) is definable over PM.

For each φ(x, y) E L we let ψφ(y, z) be as in Remark 2.2.

3 We continue with Assumptions 2.6 and 2.11, introduce some suitable
stability-theoretic notions, and prove essentially some "nonstructure" theorems.

We work inside a big saturated model 6 of T.
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Fact 3.1: Given φ(x9 y) G L let θφ(x, z) be the formula Vy G P (φ(x9 y) <->
φφ(y, z)). Then for each M |= T, a G M there is c G PM such that V θφ(ά9 c)
and θφ(x9 c) h tpφ(a/PM). Moreover, for every TV >M, θφ(x9 c) h tpφ(a/PN).

Proof: Easy.

Theorem 3.2 IfM is saturated and of power λ > | T\, then M is λ-primary
over PM (i.e., M = {#,: / < a} where for each j < a tp(aj/PM U {#/: / < j}) is
λ-isolated).

Proof: Let ΛΓ = {̂ : i < λ}. By Fact 3.1, for anyy < λ tp((af. i<j)/PM) is
isolated over a set of power <λ. Thus tp(aj/PM U {#,: / < j}) is λ-isolated.

For v4 any subset of β we let PA denote the set of elements of A satisfy-
ing P(x) and A p the corresponding substructure of β.

Definition 3.3 A C 6 is said to be complete if whenever N 3x(0(x, £) Λ
Px)9 aeA then for some b e PΛ V Φ(b, ά).

Note that by virtue of Assumption 2.6, the completeness of some A C ©
is a function of the theory of A (as a structure in its own right).

Remark 3.4:
(1) If A C 6 is complete then Ap < 6 P .
(2) If M V T9 A C M, A D PM then A is complete.
(3) If A9 T are countable then A is complete iff there is M N Γ, M D A with

pM = pΛ ( b y o m i t t i n g types).

(4) If Ap< β p then yl is complete if and only if for every a €ΞM and φ(x9y) G
L there is c G PA such that N θφ(a9 c).

Theorem 3.5 Let λ = λ < λ > |Γ | . Let \A\ = λ9 A complete and Ap λ-
compact. Then there is a λ-compact M Ξ> A (M h Γ) w/YΛ Mp — Ap.
(Similarly if we replace \-compact by λ-saturated.)

Proof: We first make the following claim:

Claim Let p(y) be a consistent type over A, p(y) h y G P, \p\ < λ. 7%e/7
p is realized by some c G A.

Proof of claim: For each φ(a9 y) G p(y) choose (by 3.4(4)) cφ^ G Ap such
that ϊθφ(a9cφ,u).

It is clear that p(y) is equivalent to

^(J) = {ΨΦ(y> cΦ,a): Φ<ΞL9aeA9 φ(a9 y) Gp(y)} .

By the λ-compactness of Ap (and Assumption 2.6), # is realized in Ap. So
the claim is proved.

The theorem now follows by a standard Henkin construction.

So the property of A being complete "formalizes" the property that there
is MΞ> A MP = Ap (and, as above, corresponds to it for suitable A). Similarly
we wish to "formalize" the notion of a type/? over a complete A being realized
in such an M, and stability comes in as the study of the space of such types for
suitable A.
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Definition 3.6 Let A be complete. S*(A) = {p(x) E S(A): p(x) h
f\ -ιP(Xi) and for some (any) realization a of p, A U a is complete}.

i

We develop the stable/unstable dichotomy. In fact for complete A we will
define the notion "A is stable" and define suitable ranks on types over A. This
will be done in a context rather more general than that exploited in this paper.

Definition 3.7 Let A be complete, m < ω, x a fixed ra-tuple of variables, A\
a set of L-formulas of the form φ(x, y) (any y), Δ2 a set of L-formulas of the
form φ(x, y, z) (any y, z), and p(x) an ra-type (not necessarily complete)
over A.

We define RA(P, AU Δ2, 2) (which we shall call here RA(P) as Au Δ2, m
are fixed).

So by induction RA(P) ^ α is defined as follows:

m

(i) RA(p) ^ 0 if p(x) U Λ "'ΛCf is consistent.

(ii) For δ limit, RA(p) > δ if ^ ( / ? ) > α Vα < δ.
(iii) For α ^ye«, RA(P) > α + 1 if for every finite q Cp there are ro(x), rχ(x)
explicitly contradictory A{-types over A such that

RA(Q^Π) > α for /< 2 .

(iv) For a odd, RA(P) > α + 1 if for every finite q c= p, φ(x, y, z) E. A2 and
b G A there is d G PA such that

/^(tf U {Vz G P(φ(jc, 5, z) - ^φ(2, J)}) > a .

Explanation: We will be interested in S* (̂ 4) for complete A. In particular we
want the existence of p E S(A) with R(p) = oo to give rise to many members
of 5*04). This is where clause (iv) above comes in.

The following are trivial (for 3.9 keep in mind Assumption 2.6).

Lemma 3.8
(i) Let A be complete, p(x), q(x) E S(A) p(x) c q(x), A{ 3 A(, Δ2 Q Δ2 then

RA(p, Δ l f Δ2, 2) > RΛ(q, Au Δ2, 2)
(ii) any p(x) over (complete) A has a finite subtype q with i?^(g, Δ1? Δ2, 2) =
RA(P,AU Δ2, 2).

Lemma 3.9 For finite Au Δ2, « α«ύf φ(Jc, J ) G l there is θ(y) such that for
any complete A9 a<EA, RA(φ(xf ά), Au Δ2, 2) > Λ ///^ N β(α).

Lemma 3.10 Let A be complete, p(x) G S+(A)9 Δ2, Δ2 arbitrary, then

RA(P, ΔI, Δ2, 2) /5 βf̂ λ? or oo .

Proof: Suppose RΛ{p, Au Δ2, 2) = α < oo and α is odd. Choose φ(x, y, z) G
Δ2, 5 G ̂ . As p(x) E S^iA) there is J G P^4 such that Vz G P(</>(Jc, 5, z) ^
Ψφiz, d))ep(x). But then, by (iv) of Definition 3.7, clearly RA(p, Au Δ2, 2) >
α + 1, a contradiction. So α is even.

Lemma 3.11 Let A be complete, p(x) E 5*04), A{ = {φ(x, j?)} ^ ^
^ ( P 5 Δ l s Δ2, 2) < ω for some finite Δ2. Then p \φ is definable over A in the
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sense that there is χ(j>, c), c E A such that for any 5 G A, φ(x, b) G p iff
A ϊχ{b,c).

Proof: Let RA(p, Au A2, 2) = n < ω (so n is even). Let poc pbe finite such
that

RA(p0,AuA2, 2)=n

Let be A. Clearly φ(x, b) G p iff RA(p0U Φ(x, b)9 Al9 Δ2, 2) > n.
Now use Lemma 3.9.

Definition 3.12
(i) Letp(x) be over A, A complete, p is Arbigfor A if RA(p, Δ1} Δ2, 2) > ω

for all finite Δ2.
(ii) Let A be complete. A is unstable if for some finite Δi {Jc = x} is Δ rbig
for^l.

Remark: For a fixed complete ̂ 4, the interesting property is rather —A' is stable
for every A' = A.

Lemma 3.13 Let A be complete and stable. Then

|S*(Λ) |< | .4 | l r l .

Proof: Let p(x) e S*(A). For each φ(x, y) G L, let Δ2 be finite such that
RA(P, {Φ(x,y)},A2,2)<ω.

By 3.11, p \ φ is "definable over A". As φ is arbitrary/? is "definable over
A". Clearly the proposition follows.

Lemma 3.14 Let A be complete, λ-compact and unstable with \A\ = λ >
|Γ| . Then \S*(A)\ = 2\ Moreover there are 2 λ types in S*(A) which are
Arcontradictory for some finite Ax.

Proof: Let Δ! be finite such that x = x is Δ rbig for A. So RA(x = x9 Au

Δ2, 2) > ω for all finite Δ2. Without loss of generality Δ! is one formula
Φ(χ,y).

List all pairs (φ(x, y\ zf), b), φ' G L, b G A as

We define, for o: < λ and η G a2 types pη(x) over A, as follows:

(1)/><> = "* = *"
(2) for α limit, η G α2, p,, = \Jpη\β

β<a

(3) given/?,, ry G *2, then/?,° = pη U {0(x, c)}/7,1 =/?,, U {^φ{x9 c)} for some
c G ^ l ^ a n d ^ ^ / ) =AJU {Vz G P(Φa(x, ba, za) ++ ΦΦa(za9 4 ) ) } / < 2, for
some rfί EPA i = 0, 1; andRA(pv~<i)9 {φ(x9 y}9 Δ2, 2) > ω for / = 0, 1, all
finite Δ2.

Clearly if this can be done, then for each η G λ2 let pη = {Jpη\a, and complete

each pη to some p* G S(A). By (3) each p* G 5 * ^ ) and, r/! Φ η2 implies
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So we must just check that (3) can be accomplished. So let pη(η E U2) be
given. By induction, \pη\ < Ko + |/(τ?)|+ < λ and RA(pη, {Φ(x, y)}, Δ2, 2) > ω
for all finite Δ2.

By λ-compactness of A and Lemmas 3.8 and 3.9 we can find c such that

RA(PV U {φ(x, C)}, {φ(x, y)}, Δ2) > ω for all finite Δ2

and

/^(A, U {-.φ(jc, c)}, {φ(x, J)}, Δ2) > ω for all finite Δ2.

Similarly, by considering those Δ2 containing φa(x, ya, za) we can find
/V<o>,/V<i> as required.

Corollary 3.15 Suppose λ = λ< λ > |Γ | α r̂f / t o some mo*/ o/ Γ is
unstable. Then there are Af ι= T, M<N with PM = PN, \M\ = | P M | = λ,
|7V|=λ+ .

Proof: Clearly if some model is unstable, then so is every model (by Lemma
3.9). As λ = λ< λ let M t= T be λ-compact of power λ. Clearly Mp is also
λ-compact of power λ. By 3.14 \S^(M)| = 2λ so there is p(x) E S^ίM) not
realized in M. Let ά realize /?(x). So M U ά is complete and (MU ά)p = Mp is
λ-compact. So by Theorem 3.5 there i s M p M U ά , Mp = M p , Mj λ-compact
of cardinality λ. By continuing this way and using Theorem 3.5 (also at limit
stages) we get N > M as required. (Note TV will also be λ-compact by our
construction.)

Theorem 3.16 Suppose some model of T is unstable, and that λ = λ< λ >
I T\. Then there is M |= Γ, M λ-compact, \M\ = λ+, \PM\ = λ such that one of
the following holds:

(1) there is N <M, \N\ = λ, PM c N and finite A{ such that M realizes λ+

pairwise distinct Artypes over N.
(2) M can be written as M = | J Ma where Mp = Mp, Vα.

α<λ+

Ma is a strictly increasing elementary chain, for cfa = λ Ma = \jMi9

and there is a formula φ(x, y) GL and for a < β < λ+ a set ig of sequences of
the form a~b~ c(l(a) = l(x), 1(5) = l(c) = l(y)), l£^Mβ- Ma such that for
every a < λ+ with cfa = λ, and d E /«+ 1 there are ft / < λ with \J /?,- = a

and for each i < λ there are di = ά7 ^ 5/ Λ c, E /^/+1 5wcΛ that for each i, j < λ

i<jiff¥t(3h3j)

where ψ(xx, yu zu *i> Pi> z2) is "^(Φfe Ji)-Φ(Jc 2, fi)).

Proo/ Let us suppose that there is no suitable M satisfying (1) and we show that
(2) holds.

Let us fix φ(x, y) E L such that Δi = {φ(x, y)} witnesses the instability of
some (every) model.

Let θ(y, x) be φ(x, y) and we shall say that p(x) (φ, θ) splits over B if
there are dodu with tpθ(d0/B) = tpθ(dx/B) but φ(x, d0) Gp, ~>φ(x, dx) Gp.



374 ANAND PILLAY and SAHARON SHELAH

As in Corollary 3.15 we start with λ-compact M o of power λ and define
inductively Ma a < λ+, aa E M α + 1 — Ma with Mζ = M<f, each Ma λ-compact
of power λ, and also satisfying

(i) if cfa = λ then Ma = \J M,

(ii) for ally < λ+, if PM c Afj+i < Mthen every φ-type or 0-type over My real-
ized in M is realized in M y + 1 .

(iii) If cfa = λ then tp{aa/Ma) (φ, (?)-splits over Mj, Vy < a.

We should just check that (ii) and (iii) are obtainable. So we start with (ii).
Suppose Mj is given. If My+1 as in (ii) cannot be found then we can clearly
define λ-compact Mjtξ of cardinality λ for £ < λ + and a$. E A//,ξ+i such that
PMJΛ = pMJ vξ, the Λfy fξ are increasing with ξ and either tpφ(ά^/Mj) or
tpΘ{a^/Mj) is not realized in M y ^. Then clearly ( J Λfy f ξ satisfies (1) of the
theorem. So My+1 can be found. ^ < λ

Now for (iii). Let in fact a < λ+ be limit and let j < α, and p(x) E
S^ίMα) not (0, 9)-split over M y.

As, by (ii), every 0-type over Mj realized in Ma is realized in Mj+\ it fol-
lows that/? \φ is determined by {p \φ) \Mj+Ϊ9 which in turn is by (ii) realized
in Mj+2. Thus, there are at most λ φ-types of such p. On the other hand, by
3.14 there are 2 λ p(x) e S^(Ma) which are 0-distinct. Thus we can find
p(x) E S#(Afα) which (φ, 0)-splits over My y/ < α. Let αα realize/?.

Now, for α < β < λ+ let /f = {a ~ 5 ~ c: a,b,c<EMβ- Ma, tp(ά/Ma)
(φ, θ) splits over My y/ < α and tpθ{b/Ma) = tpe(c/Ma)}. Note that if c/α = λ
then /^ + 1 ̂  0 (aa

 Λ 6 Λ c E /^ + 1 for suitable 5, c).
Now we show that the conclusion of (2) holds for the /£. Let c/α = λ. Put

dλ = aa~ 5 ~ ce 7£ + 1 . Now tp(aa/Ma) (φ, 0)-splits over M, Vy < α. Thus

(as M α = (JMy) we can define inductively β, < α, V/ < λ, and J, = ά/ Λ 5/ Λ

V Λ y<α / _
C/ E /g+ 1 such that bh ct witness the (φ, 0)-splitting of tp(aa/Ma) over Mβι and
tpφia /Mβ. U {5, , c/}) = tpφ(aa/Mβi U {5f , cf }) (*). Now note that if / < y < λ
then

f= ->(φ(α, , 5/) ̂  Φ(^y, C/)) (by (*) and induction)

and if y < / < λ then N φ(αy, 6f ) ^ 0(άy, c,), as tpθ(bi/Mβj+ι) = tpθ(Ci/Mβj+ι).
So the theorem is proved.

Theorem 3.17 Suppose that (2) of Theorem 3.16 holds. Let μ > | Γ | ,
μ< K« = μ flr/ίrf 3λ > μ(λ = λ < λ > | Γ | ) . ΓΛβΛ /(μ, μ) > |αf|.

Proof: For the given λ let M and Mα/, α < λ+ be as in (2) of Theorem 3.16. Let
us fix a < λ + with cfa = λ and fix β, / < λ as in Theorem 3.16.

Let K̂  < Kα be regular, and let Mβ = \J Mβ..
i<Xβ

Claim I Mβ is not Xβ-saturated, but is $β-saturated.

Proof: Note that Mβ omits the (consistent) set {ψ(dί9 w): i < K^}, so is not
K^-saturated.

On the other hand, each Mβι i < Xβ is λ-saturated, so K^-saturated, so as
K̂  is regular Mβ is K^-saturated.
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Claim II For each regular K̂  < Kα there is Nβ < Mβ such that \Nβ\ =
\PNβ\ = μ. Nβ is Xβ-saturated, but not X^-saturated.

Proof: For any / < Kβ and X C Mβι with \X\ < μ there is Nβi < M α / , Nβ. Ώ X

with \Nβ[\ = \PNβ'\ = μ and Nβ. is X^-saturated. This is because Mβi is λ-

saturated, K̂  < λ and μ*β = μ.
Now we can obtain an increasing chain Nβi i < Kβ and put Nβ = [J Nβi

/ < K / 3

and we can also specify that dt G Nβ Vz < X .̂ Nβ clearly satisfies Claim II.
Finally, we can easily choose the Nβ, β < a such that |Λ^| = |7V7| Vj8, 7.
Clearly then I(μ, μ) > \a .

Theorem 3.18 Suppose (1) of Theorem 3.16 holds for λ = Xo> (so T is
countable), and also 2K° < 2 K l . Then T has 2 K l models of power Xx with the
same P-part.

Proof: Add constants for TV to get a language U. Let φ be the L^ιω sentence

saying /\Th(M, a)a(ENΛ (Vx)[Px++ V x = a). So ψ has a model realizing
V aGPM I

uncountably many types (namely M). By Keisler [4], ψ has 2 ω i nonisomorphic
models of power ωi. These models clearly have the same P-part. As 2*° < 2*1,
2 X l of their L-reducts are not isomorphic.

The methods of [8] can be adapted to prove

Theorem 3.19 Suppose (1) of Theorem 3.16 holds for λ = λ < λ > | T\ and
assume 0 λ , 2 λ < 2 λ . Then there are 2 λ nonisomorphic models of power λ +

of T with the same P-part.

NOTE

1. Some remarks are in order concerning the history of this paper. In late 1975 the
second author sent, on request, to the first author handwritten notes on the subject-
matter of this paper. In 1979 the second author had these notes typed up into a paper
which was circulated and also submitted to this Journal. In 1983 this paper found its
way back into the hands of the first author who then rewrote the paper into its
present form.

Some earlier work on the same general topic was done by Gaifman (e.g., [2])
who characterized the property that every model of T is unique and rigid over its
P-part. Other work was done by Hodges [3] who studied categoricity over a predicate
in the case of Abelian groups with a distinguished subgroup, and Pillay [5] who
characterized syntactically K0-categoricity over a predicate.
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