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Classitication Theory Over a Predicate |

ANAND PILLAY and SAHARON SHELAH

Introduction In this paper, the scene is set for the study of classification over
a predicate. Let 7 be a complete first-order theory with among other things a
unary predicate P. Instead of studying the structure and number of models of
T we are now interested in the structure and number of models M of T over
MP (where M? is the substructure of M with universe PM). So for example we
let I7(N, n) be the greatest x such that there are N of power u and x models
Mk T, with M = N and |M| = \, which are pairwise non-N-isomorphic.

In Section 2 it is pointed out that, given N, those M k T with M* = N
can be to some extent coded by L,-reducts of expansions of N to T* where
L(T*) 2 L, 2 L(T), for suitable L,, T*. So in Section 1 the following is
examined: given L, € L, € L and T* a theory in L3, what are the possible
numbers of expansions of N to L,-reducts of models of 7" as N ranges over
L-structures? This generalizes the context of the Chang-Makkai theorem (see
[1]) and results in [6]. Some finer results are also obtained.

Such results are used to show that if I\, A\) is not too big then for every
Mk T, a € M, tp(a/PM) is definable.

In Section 3 some stability-type notions are introduced. The general con-
text here is: given M F T A € M, A 2 P™ one should study the space of those
types p over A which can be realized in some N k T with P = P4 (= PM). In
future work fairly complete answers to spectrum problems (e.g., analogues of
Morley’s theorem) will be given by studying the space of such types for
successively more “complicated” such A, using the techniques similar to [9].
Here we essentially consider only the case A = M k T and prove some non-
structure theorems.'

1 Let us first establish notation for this section. L; S L, € L are first-order
languages (with equality), L, — L; = {P;: i <k}, and T is a theory in L; such
that 7 F 3x3y (x #y).
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For N an L,-structure:

Dy{(N) = |[{M: M is the L,-reduct of an expansion of N to an Lj-structure
which is a model of T}|.

For N an Lj-structure which is a model of T
Dy(N) = |{M: M an Ly-structure, ML, = N'L, and M = N1L,}|.
Now we define (for p an infinite cardinal):

D,(un) = max{D,;(N): |N| = u, N an L,-structure} (= D(u, T, Ly, Ly)).
Dy(p) = max {Dy(N): Nk T, [N| = p} (= Dy, T, LrLy)).

Remark: In case the maximum is not obtained we still use notation D;(u) as
follows: D; (n) = N\ means there is (suitable) N of cardinality p with D;(N) = \.

Note that (if N £ T) D,(N) = D{(NIL,;) and thus D,(n) < D;(u) for all pu.
For A an infinite cardinal define:

Ded* N = max {u: there is a tree with N\ nodes and p branches of the same
height 6 (for some 6)} (where use of “max” is as above).

The following essentially appears in [6] (Theorem 1).

Theorem 1.1 Let k =1, Py= P, N\ = |T|. The following are equivalent:
(1) For no ¢ € L does T } axvy (Py < ¢(J, X))

(2) Dy(N) > A

(3) Dy(N) = Ded* \

(4) D2(N) > A

(5) Dy(\) = Ded* .

Let us continue for now with the case x = 1, P, = P and assume
that D)(A\) < N (VA = |T|). So we have a formula ¢(y, %) such that T |}
IxXvy (Py < ¢(J, X)).

Let E(X, X,) be the formula

(V.)_))(d)(.)_)’ xl) « ¢()7, 22) .

In §¢? (see [7]) the equivalence classes of E become elements satisfying a
predicate Q, and thus the choice of P is equivalent to the choice of a suitable
element of Q.

It follows that if for some L,-structure M(|M| = |T|) D/(M) is infinite
then for every u = (T'), D)(u) = p.

On the other hand, if for every L,-structure M, D,(M) is finite then by
compactness this reduces to 7 proving a certain sentence which by abuse of
notation we express by 7 | “Q is finite”.

The following is then clear:

Theorem 1.2 The following are equivalent (I =1,2) k=1, Py=P
(1) T} “Q is finite”

(2) Y\ Dy(\) is finite

(3) for some N = |T|, D;(\) <\

(4) DN (N = |T)|) is constant.
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Corollary 1.3 (k =1, Py = P) Exactly one of the following holds
(1) Dy(N\) = Ded* \, YA = |T|

(2) Di(N) =N\, YA = |T|

(3) Di(N\) is constant (and finite) v\ = |T|.

The case in which « is finite can be reduced to the case k = 1 by consider-
ing the predicate

QoJ1- - Fe=1) = Po(Fo) Ao AP (Fiet) -

We now wish to describe the function D,(—) when « = Rj. So let us now
assume that x = K.

Fori<klet Li=L, U P,

We clearly have D)(u, T, L5, L) < D)(u, T, L, L,) for all i < k, where by
the above we have:

Fact 1.4 If for some i < « there is no ¢(j;, x;) such that 7 | 3Ixvy,(P:(J,) <
¢(,}7i’ )?[)), then

VYA = |T|, D)(N\) = Ded*(\) .
So we now assume:
Assumption 1.5 Vi < « there is ¢,(¥;, X;) such that
T b 3xvy(Pi(y) < 6D Xi) -
As in Theorem 1.2 and with the same notation.

Theorem 1.6 The following are equivalent
(1) vi, T} “Q, is finite”

(2) Y\, Dy(\) < 2!T1+%0

(3) for some N = |T|, Di(N\) <\

(4) Di(N\) (A= |T|) is constant.

Remark 1.7: By Assumption 1.5, D;(\) < \* for all A = |T|.

Let M E T and for each i < «, let cM be the element of M (actually of
M*?) which is ¢;/E;, where M E P,(J;) < ¢,(J,, ¢,). Note that if M,, M, are
distinct L,-structures which are expansions of the same L;-structure M, and are
both reducts of models of 7, then

eMii<ky # (M i<k .

Definition 1.8 Let S = {u: u an infinite cardinal and 36(¢f 6 = uvé = pu),
IM k T 3i(y), v < & such that ¢}{,, is not algebraic in M1 L, over {ci{s: B <
v} but every ¢ is algebraic in ML, over {c}{,: v < 8}, and whenever A
{ci(yy: ¥ <8}, |A] < p then some ¢, is not algebraic in ML, over A}. Note
that S is a (maybe empty) set of infinite cardinals <.

Theorem 1.9
(1) If Dy(N\) > \<* 4 2!T| then there is x = p with x € S.
(2) Let N> |T|, D;(N) > Nand (Yx < N)(x*<N). Then ¢cf A€ S.
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(3) Let p> N+ |T|*, u regular, D;(\) = p. Then
(a) if N is regular then IN* <\, D;(\*) = u
(b) if Ly =L, then IN* < XD (\*) = porcfNES.

Proof: (1) Let M be an L,-structure of cardinality N with D;(M;) > A\<* + 2I71,
Let X = the set of sequences ¢ = {c¢;: i < k) in M corresponding to L,-reducts
of expansions of M to models of 7. So | X| > N<* + 2171 For each ¢ € X, let
A, C ¢ be a set of minimal cardinality such that each ¢; € ¢ is algebraic (in M)
over A,. Note that (as |4, < |¢| = |T|) for each A, there are at most 2!7!
¢’ € X with A, = A,. So clearly there is ¢ such that |4, = x = pu. By the
minimality of |A,| (with respect to ¢) we can find {¢’: j < x) S A, such that ¢/
is not algebraic over {c’: i < j} and every c € A, is algebraic over {¢’/: j < x}.
Clearly x € S.

(2) Let D;(N\) > N\, N> | T, and (Vx < N)(x* < \).

Let M be as in (1) and put M = U M; where (M;: i < ¢f\) is an

i<cf N

elementary chain, |M;| < \ Vi < ¢f\. Clearlfy for each i there are <A different
¢ € X contained in M;. Thus for some ¢ € X, for unboundedly many i < ¢f A,
cN (M- M) + . Easily ¢fN € S.

(3) Again let N be an L;-structure of cardinality A with D;(N) = p (where
w>N+|T|%). Note A > |T|.

(a) Let N be regular and let N = UNi, where the N; are a continuous

i<\
increasing elementary chain of models of power <\. Let M“(a < u) be expan-
sions of N to models of T which are pairwise L,-distinct.

For i < A let N be the L;-structure whose universe is that of N; and whose
structure is induced from M<,

By regularity of A, for each o < u there is i, < A such that N¥ <M*,

By regularity of p there is i, such that ¥ = {a < p: i, = i*} has cardi-
nality u. It is then clear that {N® [ L,: « € Y} are distinct, and so D|(N;*) = p.

(b) Suppose L, = L;. We may (by (a)) assume that X\ is singular. Let
N= U N, |[Nj| <\, the N; a continuous increasing elementary chain.

i<cf\

If jt:or some expansion N’ of N to a model of T, for all i < ¢f \ there is j
with ¢/ & N; then as in the proof of (2) ¢f\ € S.

If not then for every expansion N’ of N to a model of 7 thereis i < cfA
such that all ¢/ € N,.

As there are =u such expansions N’ and p is regular u > ¢f\, it follows
that there are N, a < u, distinct expansions of N to models of 7, and iy, < ¢f\
such that for all @ < p Vi<, /" €N,,.

Remembering that L, = L; and that for each i < x, N® k Pi(;) < ()i,
¢,) we see that N < N* and the N7 are pairwise distinct (o < ).

As [N | <\, we see that IN* <\, D{(\*) = p, proving (3).

Lemma 1.10 Let Ly =L;, x €S, N = |T|. Suppose there is a tree with \
nodes and p branches of height &, where x = ¢f 6. Then D\(\), Dy(\) = p.

Proof: Like [6].

Lemma 1.11 Suppose Vu < N\, ¥ = \. Then there is a tree with \ nodes
and p branches of height cf \, with u > \.
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Proof: Our assumptions imply that AS¢* = \. So put u = AY* and look at the
tree YA,

Now, with no assumptions:

Theorem 1.12 Let L, = Ly. Then exactly one of the following holds
(1) YN\= |T|, D/\) = Ded*\N[=1,2
(2) YA = |T|, Di{N\) = \ and there is S S {x: Ro < x =< |T|} such that:
(A) if there is a tree with \ nodes and p. branches of height 6, cf 5 € S then
DN =u,l=1,2
B) if v < N (u* < \) and N = 2! then D(N\) > N iff ofNE S
(3) Di(N), N=|T|, is constant.

Proof: If for some N\ = |T|, D;(\) < Ded* \ then we can work with Assump-
tion 1.5.

By Theorem 1.6, if D,(\) is not constant, then D/(\) = X\ YA = |T|.

Let S be as in Definition 1.8:

(2A) is Lemma 1.10.

(2B) Suppose u < A\, p* < N and A\ = 2I7l, If ¢f\ € S then ¢f\ < «.
So the hypothesis of Lemma 1.11 holds, and thus by Lemma 1.10,
D,(\) > A\

If D;(N) > A\ then by Remark 1.7, N\ # \* and thus using our assumptions,
Vi < A u* < \. By Theorem 1.9(2) ¢cf\ € S.
Let us reassume Assumption 1.5 and seek some finer control over D,(\).

Definition 1.13 Sy = {6: 6 ordinal, aM F T and {ci!,: v < &} such that:
(1) ¢f%, is not definable (in ML) over {cihy: B < v} and (2) every ¢ is
definable (in M IL,) over {c;.,y: v < 8}}.

Lemma 1.14  [f§ € S| then VA = |T|, D,(\) = min {21®, \}.

Proof: Let 6 € S,. Clearly there is a |T|*-saturated model N of T of cardi-
nality =\, 2%, such that (cf,,: v < 8) witness § € S,.

We will drop the superscript N from c}.

As for each vy > §, ¢, is not L,-definable over {c;5): 8 < v}, we can
find, inductively, in N elements d, for 7 € ®>2 such that:

(1) for each 7 € °22, tp;,({d;1y: v < Ih(7))) = tp1,({City): ¥ < (7))
(2) d;n0y # drncry (When I(7 ~0)) < 9).

So there is an elementary extension N* of N and for each y € °2 an
automorphism F, of N*IL, taking ¢, to d,, for all v < 6.

By adding predicates for these automorphisms and choosing an elementary
substructure of power N\, we can obtain a model M of T of power N with
D>(M) = min(\, 29).

Lemma 1.15 Let T } “Q, is finite” for all i < k, T complete. Then
(1) 61,6, €S, =161] =1|6;] and 6 € S| = |6] € S|
(2) if L, = Ly and 6 € S, then D,(\) =21, w\ = |T|.

Proof: (1) First note that by the completeness of 7 if some 8, € S, is finite then
Vo € Sl 6= 5[.
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So suppose that §;, 6, € S; with 8y < |6, < |8,]. As T is complete there is
a saturated model M of T witnessing both §; € S, and 6, € S;. Let {c; (,):
v < &;) witness 8; € S; and (c}{,): v < 8,) witness &, € S;.

We can find an infinite U C 6, and finite w C §, such that vy € U, ¢; ()
is definable (in ML) over € = (¢ ;(a): @ € W).

As T | “Q; is finite” Vi, there are only finitely many ¢’ in M with
tp; (') = tp;,(T). So there are only finitely many possible sequences (c’:
J € U) with the same L;-type as {c;,(,): ¥ € U). This contradicts the fact that
for all y < 6 ¢;,(7) is not (L;)-definable over {c;,g): B < 7v}.

So [81] = [6,].

It now easily follows that 6 € S| = |§]| € S,;.

(2) Working in a big model N of T as in the proof of Lemma 1.14 we find
{d,: 7 € ®>2} satisfying (1) and (2) of that proof.

Note that, as T } “Q; is finite”, Vi < « [{d,;: 7€ *2}| = 8| =k =|T| =<
A

Let N <M be of cardinality \ containing d, V= € >2.

As L, = L5, for each 5 € %2 (d,1,: v < 6) gives rise to a different expan-
sion N" of NIL, to a model of T.

So Dy(\) =2,

We now give some examples.

Example 1.16: Let « be a countable ordinal and 7, = Th(H(3,), €).

Let Ly={€} (= L(T,)), Ly = Lo U {c,: n < w}, Ly = L U {F} where F
is a unary predicate.

T=T,VU {“Fis a function with domain w, Vn < w(F(n) is a sequence of
ordinals of length n), Vi < m < w(F(m) 'n = F(n))”} U {F(n) =c,: n < w}.

Let N k T,. Then if w? is standard, clearly D,;(N) = the cardinality of
the set of (really) countable sequences of ordinals in N.

On the other hand, if w” is nonstandard then let n, be a nonstandard
member of w” and then for every expansion N’ to a model of T

vi<wN Ec,=F(n')in .

Thus D;(N) < |N]|.
Noting that if M F T, |[M| > 1, then w™ is nonstandard we see that
D;(N\) > Niff A< 3, and A¥0> A,

Example 1.17: Let for each / < w, F; be an /-place function from w; to w such
that for any countably infinite A € w,

(*) {Fi(xi,...,x): x,..., €A, I<w} =w.

Let Lo={G;l<w}, Ly =LyU{c,: n<w}, Ly=L, U {d;: i < w}, where G,
is an /-place function symbol.

Let T = {G[(dil""’dil) = Cp: | < w, il,...,i[ <w, h<w F[(i],...,
i/) = n}.

Let N be an Ly-structure and suppose N;, N, are expansions of N to
models of 7T such that {d: i < w;} N {d}?: i < w,} is infinite. Then by (*)
Nl ILZ = Nz rLz

Thus, if D;(\) > \ then there is a family of \* subsets of N each of
power R, the intersection of any two of which is finite.
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2 Here we begin the study of classification over a predicate. 7 will be a
complete theory in a relational language L (with equality) containing, among
other things, a unary predicate P with T } “P is infinite”.

If M is an L-structure then by M* we mean the L-structure whose universe
is PM and whose structure is that induced by M. We are interested in the
number and structure of models M of T over their P-part. So the strongest
categoricity property is: for any M k T, M is determined, up to isomorphism
over M?, by MP. (Note that if T } vx—Px then T has this property iff 7 is the
theory of a finite structure.) Nonstructure theorems will say, for example, that
for some M, there are “many” M k T (maybe of a given cardinality) up to
My-isomorphism, with M? = M,,.

Definition Let N be an L-structure.

I7(\, N) = the number of models M of T of cardinality A\ with M* = N, up to
isomorphism over N.

Ir(N) =X Ir(\ N).

Ir(\, p) = max Ir(\, N).
[N|=p

Ir() = max Ip(N).
[N|=p

When T is clear from the context it will be omitted.

Lemma 2.1 There is a theory T' in a language L' 2 L with |T'| = |T| and
such that any L-structure N can be expanded to a model of T’ if and only if
N = MP for some Mk T.

Proof: Let L’ =L U {f} U {R™: R a relation symbol of L} where fis a unary
function symbol.
Let N’ be an L’-structure. 7" will say the following of N’:

(i) fis a1 — 1 function from N into N
(i) P* = Im f
(iii) VX(R(X) < R*(f (%)) for every symbol R of L
(iv) the structure N” = N’ 1 {R*: R € L} is a model of T*, where T is T with
R* replacing R.

Clearly T’ works.

So note that {N: 3M k T, M” = N} is a PC,-class.
We will be interested in the following possible properties of T.

Property (I) For every L-formula ¢(X) there is an L-formula y(X) such that
for every M k T and @ € MP,

M k ¢(a) iff MP E y(a) .
Property (I For any M F T and @ € M, tp(a/PM) is definable over

PM (.e., for any ¢(%, y) there is y4(y, ¢) ¢ € P such that vd € PV
Mk ¢(a, d) < y4(d, 0)).
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Remark 2.2: Note that if T satisfies (/) then for the purposes of our study we
can assume that 7T is Morleyized; i.e., that for each ¢(X) € L there is R4(X) a
relation symbol of L with

T+ $(%)  Ry(%) .

Also note that if T satisfies (II) then by compactness, for every ¢(X, ¥) there is
Ve (7, Z) such that for any @ € M k T I(a) = I(X), thereis C € PM such that
tp,(a/PM) is definable by y4( 7, ).

In this section we show, using material from Section 1, how we can assume
T to satisfy Properties (I) and (IT) above.

Lemma 2.3 If for some N = |T|, I+(\, N\) = 1 then T satisfies (I).

Proof: If T does not satisfy (I) then we can easily obtain M,, M, k T of car-
dinality X with M¥ = M¥ = N, N of cardinality \, and @ € N such that
(M,, a) #= (M,, a), contradicting our hypothesis.

Lemma 2.4 Let T* be TU {VX(R4(X) < ¢(X): ¢ € L} where the R, are new
relation symbols. Let T* = (T*)’ (from Lemma 2.1). Then

() for any L-structure N, Ir(\, N) = Y {Ir«(\, N*): N* is an L(T*)-
expansion of N}

i) I+(N\, N) = Dy(\, T, L(T*), L), Ir=(\, N)
(lll) I (N, /’L) =< Di(p, T+s L(T*)3 L) Ir+(N, ®).

Proof: Immediate.
Corollary 2.5 If IT(\, N\) = R, then
IO\, N) =D\, T, L(T*), L) I=(\, N) .

Bearing in mind what we know from Section 1 of the function D, and also
2.2,2.3, 2.4, and 2.5 we now make:

Assumption 2.6 T = T* (and thus T satisfies (I)).
Definition 2.7 Let MET, ae M.

Let L, = LU {Ryz2): ¢(%, ) € L} and we expand M to an L,-structure
M; by putting M; k Ryz.5)0 iff M k ¢(b, a).

Let T; = Th(M;) and let TF be (T;)’ from Lemma 2.1. Let Dz(\) =
D,(\, T#, L,, L) and similarly for Sj;.

Thus an L-structure N has an expansion to a model of T3 iff there is
M k T and @ € M such that MY = N and M; k T;.

Note that if N (L-structure) has two different expansions N', N? to
L,-reducts of models of TF then there are M|, M, k T a, € M, @, € M, with
MFP = Mf = N and p(a,/N) # tp (@,/N). (Moreover we can get |M;| =
|My] = |NJ.)

Lemma 2.8 Let MET,ae M.

() If tp(a/PM) is not definable over PM then v\ = |T|, Dz(\) = Ded*(\).
(i) If tp(a/PM) is definable over PM but not definable almost over some finite
Cin PM, then S; + O.
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(iii) If tp(a/P™) is definable over P™ but not definable over some finite € in
PM, then (Sl)ﬁ + J.

Proof: (i) Note that tp(a/P™) being definable over P™ means for each Ryza)
there is an L-formula (X, Z) such that

TF b (32) (VXRy(5,5) (%) < ¥(X, 2)) .

Now use Fact 1.4.
(ii) and (iii) are similar.

Theorem 2.9
@) If for some @ and \ = |T|, Dz(\) > \ then I+ (N, \) = Dz(\).
() If |T) = p = N, Dz(N) > X\ for some a, then Ir(u, u) = p.

Proof: (i) Our hypotheses and the remarks following 2.7 give us M; F T and
@; € M; for i < Dz(\) such that vi MF = N, |M;| = |[N| = \, and the tp(a;/N)
are all different.
Clearly we can choose X € Dz(\), | X| = Dz(\) such that for all i, j€ X
with i < j, tp(a;/N) is omitted in M;.
So the M;, i € X are pairwise nonisomorphic, whereby I(\, \) = Dz(\).
(i) Let, by (i), M;(i < p) and a@; € M; be such that MY = N vi < p and
tp(a;/N) is omitted in M; for j < i (also |M;| = |N| =\, Vi).
Now we can easily define, for o < p and i < u, models N < M; such that:
(a) ;€ Nf and |[NP| = u Vi, o
® UPN S NEva <
B<a
j<p

(c) Vj <i, B<aif a€ NP then tp(@a/PN’ N PN') % tp(a,/PNi 0 PN).

If we put N' = (JN¢ for i < u we see that (N')? = (N)F fori, j< p

a<py
and tp(a@;/(N;)F) is omitted in N’ for j < i.
So I(u, ) = p.

Corollary 2.10 If for some M k£ T and @ € M tp(a/P™) is not definable
over PM then

VA = |T| I+ (N, N) = Ded*(\) .
Proof: By Lemma 2.8 and Theorem 2.9.
Thus we can now make
Assumption 2.11 For every M k T, @ € M tp(a/PM) is definable over PM.
For each ¢(X, y) € L we let y4(J, Z) be as in Remark 2.2.

3 We continue with Assumptions 2.6 and 2.11, introduce some suitable
stability-theoretic notions, and prove essentially some “nonstructure” theorems.
We work inside a big saturated model € of 7.
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Fact 3.1: Given ¢(X, y) € L let 64(X, Z) be the formula vy € P (¢(X, 7) <
Ys(F, z)). Then for each M k T, @ € M there is ¢ € PM such that F 04(a, ¢)
and 0,(x, C) + tp¢(d/PM). Moreover, for every N >M, 0,(X%, ) + tp¢((7/PN).

Proof: Easy.

Theorem 3.2 If M is saturated and of power \ > |T|, then M is N\-primary
over PM (i.e., M = {a;: i < o} where for each j < o tp(a;/PM U {a;: i < j}) is
N-isolated) .

Proof: Let M’' = {a;: i < \}. By Fact 3.1, for any j < \ tp({a;: i < j)/PM) is
isolated over a set of power <\. Thus tp(a;/PM U {a;: i < j}) is N-isolated.

For A any subset of € we let P denote the set of elements of A satisfy-
ing P(x) and A” the corresponding substructure of G.

Definition 3.3 A C € is said to be complete if whenever E ax(¢(x, @) A
Px), @ € A then for some b € P4 k ¢(b, a).

Note that by virtue of Assumption 2.6, the completeness of some A C §
is a function of the theory of A (as a structure in its own right).

Remark 3.4:

(1) If A C € is complete then AP <E”.

QIfMET,ACM,ADPMthen A is complete.

(3) If A, T are countable then A4 is complete iff there is M T, M D A with
PM = p4 (by omitting types).

(4) If A” <GP then A is complete if and only if for every @ € M and ¢(%, §) €
L there is ¢ € P such that F 0,(a, ).

Theorem 3.5  Let A\ = \<* = |T|. Let |A| = N\, A complete and A* \-
compact. Then there is a A-compact M 2 A (M £ T) with M¥ = AP,
(Similarly if we replace \-compact by \-saturated.)

Proof: We first make the following claim:

Claim Let p(y) be a consistent type over A, p(y) + y € P, |p| < \. Then
D is realized by some ¢ € A.

Proof of claim: For each ¢(a, y) € p(y) choose (by 3.4(4)) ¢, 7 € AP such
that F 04(a, C; 7).
It is clear that p(¥) is equivalent to

a(¥) =We(3, Cs2): 9 EL, A€ A, ¢(a, y) €Ep(y)} .

By the A-compactness of A” (and Assumption 2.6), q is realized in A”. So
the claim is proved.
The theorem now follows by a standard Henkin construction.

So the property of A being complete “formalizes” the property that there
is M 2 A MP = AP (and, as above, corresponds to it for suitable 4). Similarly
we wish to “formalize” the notion of a type p over a complete A being realized
in such an M, and stability comes in as the study of the space of such types for
suitable A4.
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Definition 3.6 Let A be complete. S,(A) = {p(X¥) € S(A): p(X) F
/\ —P(x;) and for some (any) realization @ of p, A U @ is complete}.
i
We develop the stable/unstable dichotomy. In fact for complete A we will
define the notion “A is stable” and define suitable ranks on types over A. This
will be done in a context rather more general than that exploited in this paper.

Definition 3.7 Let A be complete, m < w, X a fixed m-tuple of variables, A;
a set of L-formulas of the form ¢ (X, ¥) (any 7), A, a set of L-formulas of the
form ¢(x, ¥, Z) (any 7, Z), and p(X) an m-type (not necessarily complete)
over A.

We define R4 (p, A, Ay, 2) (which we shall call here R4(p) as A, A,, m
are fixed).

So by induction R4(p) = « is defined as follows:

() R4(p) = 0if p(x) U /\ = Px; is consistent.

(ii) For 6 limit, R,(p) = 6 1f R4 (p) = o Va < 6.
(iii) For « even, R4(p) = a + 1 if for every finite ¢ C p there are ro(X), r (X)
explicitly contradictory A;-types over A such that

Ry(qUr)zafori<2.

(iv) For o odd, R4(p) = a + 1 if for every finite ¢ < p, ¢(X, 7, Z) € A, and
b € A there is d € P* such that

RA(qU {VZE P(¢(X, b, Z) o Yy(Z, D)}) = a .

Explanation: We will be interested in S, (A) for complete A. In particular we
want the existence of p € S(A) with R(p) = o to give rise to many members
of S, (A). This is where clause (iv) above comes in.

The following are trivial (for 3.9 keep in mind Assumption 2.6).

Lemma 3.8

(i) Let A be complete, p(%), q(x) € S(A) p(X) C q(%X), A 2 A{, A, S A; then
RA(p’ Al’ AZ’ 2) = RA(qy Als AZ’ 2)

(ii) any p(X) over (complete) A has a finite subtype q with R 4(q, A, Ay, 2) =
RA(pt Ah A29 2)

Lemma 3.9 For finite Ay, A,, n and ¢(X, ¥) € L there is (¥) such that for
any complete A, a € A, R (¢(X, @), A, Ay, 2) = n iff A k 0(a).

Lemma 3.10 Let A be complete, p(X) € S, (A), A, A, arbitrary, then
R (p, Ay, Ay, 2) is even or o .

Proo_f: Suppose R4(p, Ay, Ay, 2) = a <  and « is odd. Choose ¢(X, 7, ) €
Ay, b€ A. As p(%) € S, (A) there is d € P” such that vz € P(¢(%, b, 7) <
¥s(Z, d)) € p(X). But then, by (iv) of Definition 3.7, clearly R, (p, A;, Ay, 2) =
a + 1, a contradiction. So « is even.

Lemma 3.11 Let A be complete, p(X) € S,(A), A = {¢(X, 7)} and
R4(p, Ay, Ay, 2) < w for some finite A,. Then p ¢ is definable over A in the
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sense that there is x(J, €), ¢ € A such that for any be A, ¢(x, b) €piff
A F x(b, 0).

Proof: Let R4(p, Ay, Ay, 2) = n < w (so n is even). Let p, C p be finite such
that

R4(po, A1, Ay, 2) =n

Let b € A. Clearly ¢(%, ) € p iff R4(po U ¢(X, b), A, Ay, 2) > n.
Now use Lemma 3.9.

Definition 3.12

(i) Let p(x) be over A, A complete. p is A-big for A if R4(p, A, Ay, 2) = w
for all finite A,.

(ii) Let A be complete. A is unstable if for some finite A, {¥ = x} is A,-big
for A.

Remark: For a fixed complete A4, the interesting property is rather —A’ is stable
for every A’ = A.

Lemma 3.13 Let A be complete and stable. Then
|Su(A)| < |4

Proof: Let p(x) € S,(A). For each ¢(x, y) € L, let A, be finite such that
RA(pa {d)()?’ )7)}, AZ’ 2) < w.

By 3.11, pl¢ is “definable over A”. As ¢ is arbitrary p is “definable over
A”. Clearly the proposition follows.

Lemma 3.14 Let A be complete, \-compact and unstable with |A| = \ =
|T|. Then |S,(A)| = 2*. Moreover there are 2 types in S,(A) which are
Ay-contradictory for some finite A;.

Proof: Let A; be finite such that ¥ = x is A;-big for A. So R4(X = X, A,
A,, 2) = w for all finite A,. Without loss of generality A; is one formula
o(x, ).

List all pairs {(¢(%, 7', z’), b), o' €L, b€ A as

{{Da(F, Fos Za)s Dod: a <N} .
We define, for o < A and n € *2 types p,(Xx) over A, as follows:

M) py=“x=%x7
(2) for « limit, n € *2, p, = Upf,rﬁ

(3) given p,, n € “2, then p,, —p,7 U {¢o(%, c)} p,7 =p, U {—1¢(x, ¢)} for some
€A, and Dy =plU{VZ € P(¢o(X, by, Zo) © Vs (e dL))} i < 2, for
some d., € P?i=0, 1; and R4 (py~iys {0(%, 7}, Ay, 2) = w for i =0, 1, all
finite A,.

Clearly if this can be done, then for each n € ™2 let Dy = U p,,ra, and complete

each p, to some p; € S(A). By (3) each p; € Si(A) and 1 # 7, implies
Py, # Pry-
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So we must just check that (3) can be accomplished. So let p,(n € *2) be
given. By induction, |p,| < 8o + |[/(n)|" < Nand R4(p,, {¢(X, )}, A3, 2) 2w
for all finite A,.

By N\-compactness of 4 and Lemmas 3.8 and 3.9 we can find ¢ such that

R4(p, U {¢(%, 0)}, {¢(X, 7)}, A2) = w for all finite A,
and

R4(p, U {~¢(x, O)}, {¢(X, 7)}, Az) = w for all finite A,.

Similarly, by considering those A, containing ¢,(X%, 7., Z,) we can find
Dy~q0ys Poa¢iy s required.

Corollary 3.15 Suppose N\ = N\ = |T| and that some model of T is
unstable. Then there are M = T, M < N with PM = PN, |[M| = |PM| = ),
[N| =\

Proof: Clearly if some model is unstable, then so is every model (by Lemma
3.9). As A = A<} let M = T be A\-compact of power A. Clearly M7 is also
N\-compact of power \. By 3.14 |S, (M)| = 2 so there is p(X) € S, (M) not
realized in M. Let @ realize p(X). So M U @ is complete and (M U @)* = M” is
A-compact. So by Theorem 3.5 there is M; D MU a, Mf = M?, M, \-compact
of cardinality A. By continuing this way and using Theorem 3.5 (also at limit
stages) we get N > M as required. (Note N will also be A-compact by our
construction.)

Theorem 3.16 Suppose some model of T is unstable, and that A\ = \<* =
|T|. Then there is M k T, M \-compact, |M| = \*, |PM| = \ such that one of
the following holds:

(1) there is N <M, |[N| =\, PM C N and finite A, such that M realizes \*
pairwise distinct A;-types over N.
(2) M can be written as M = \J M, where ME = M?, va.

a<i\t
M, is a strictly increasing elementary chain, for ¢foa = N M, = \JM,,
i<a
and there is a _formula ¢(x, y) € L and for a < < \* a set 1P of sequences of
the form a ~ b ~ ¢(l(a) = (%), I(b) = I(T) = I()), I8 © Mg — M, such that for

every a < N* with ¢cfo = N\, and d € IS there are 8; i < \ with UB; =«
- _ i

and for each i < \ there are d;=a; ™ b; " ¢, € Igf“ such that for each i, j < \
i<jiff E¥(d;, d)

Where lp(xl) }_)l’ Z1’ )?2’ )72’ 22) iS "(‘f’(fz, }71) 9¢(5€2! z1))

Proof: Let us suppose that there is no suitable M satisfying (1) and we show that

(2) holds.

Let us fix ¢(%, ¥) € L such that A, = {#(%, y)} witnesses the instability of
some (every) model.

Let (7, X) be ¢(¥, ¥) and we shall say that p()’c_) (¢, ) splits over B if
there are dyd,, with tpy(dy/B) = tpy(d,/B) but ¢(x, dy) € p, "é(x, d}) € p.
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As in Corollary 3.15 we start with A-compact M, of power \ and define
inductively M, o < \*, @, € M, — M, with MY = M{, each M, A\-compact
of power \, and also satisfying

(i) if ¢fo = N then M, = U M;
i<a
(i) for all j < \*, if PM M; < M then every ¢-type or 6-type over M real-
ized in M is realized in M, ;.
(iii) If ¢f o = N then tp(a,/M,) (¢, 0)-splits over M;, Vj < a.

We should just check that (ii) and (iii) are obtainable. So we start with (ii).
Suppose M; is given. If M., as in (ii) cannot be found then we can clearly
define A-compact M, ; of cardinality N for £ < A\* and @ € M, ;,, such that
PMit = PMj v§, the M; ;. are increasing with ¢ and either #p,(a;/M;) or
tpe(az/M;) is not realized in M; ;. Then clearly U M; ;. satisfies (1) of the
theorem. So M, can be found. N

Now for (iii). Let in fact @« < A" be limit and let j < «, and p(¥) €
S.(M,) not (¢, 6)-split over M.

As, by (ii), every 6-type over M; realized in M, is realized in M;,, it fol-
lows that p ¢ is determined by (p [ ¢) ' M;,,, which in turn is by (ii) realized
in Mj,,. Thus, there are at most \ ¢-types of such p. On the other hand, by
3.14 there are 2* p(X) € S,(M,) which are ¢-distinct. Thus we can find
p(%) € S,(M,) which (¢, 0)-splits over M; Vj < «. Let a, realize p.

Now, fora< B <A letIf={a~b"¢c: a, b,c€ My — M,, tp(a/M,,)
(¢, 0) splits over M; Vj < « and tpy(b/M,,) = tps(¢/M,,)}. Note that if ¢f e = N
then I¢*! # & (a, ~ b ~ ¢ € IZ*! for suitable b, ¢).

Now we show that the conclusion of (2) holds for the I5. Let ¢f o = \. Put
d=a,~b"ce Iy Now wp(a,/M,) (¢, 6)-splits over M; ¥j < a. Thus
(as M, = UJVI,) we can define inductively 8; < «, Vi <\, and d; = a; ~ b; ©

j<a
G E Ig;‘”‘ sjuch that b;, ¢; witness the (¢, 8)-splitting of tp(a,/M,) over Mg and
tpy(a;/ Mg, U {b;, ¢}) = tpy(a,/Mpg, U {b;, ¢;}) (*). Now note that if i <j <\
then
E - (¢(a), b)) < o(a;, ¢;)) (by (¥) and induction)

and if j <i < \ then F ¢(a), b))~ o(a;, ¢;), as tpg(b_,-/MBjH) = tpe(Ei/MBjH).
So the theorem is proved.

Theorem 3.17 Suppose that (2) of Theorem 3.16 holds. Let p = |T|,
p<Re =y and IN= pu(A = N2> |T|). Then I(u, ) = |af.

Proof: For the given A\ let M and M,,, o < A" be as in (2) of Theorem 3.16. Let
us fix @ < A" with ¢f o = N and fix 8; i < \ as in Theorem 3.16.
Let 84 < R, be regular, and let M# = |J M;,
i<Rg
Claim I MP¥ is not R -saturated, but is Rg-saturated.

Proof: Note that M? omits the (consistent) set {y(d;, W): i < Rg}, so is not
R4 -saturated.

On the other hand, each My i < R is A-saturated, so Xg-saturated, so as
R is regular M? is Rg-saturated.
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Claim Il For each regular 85 < R, there is NB < MP such that |NP| =
|PN?| = p. NP is Rg-saturated, but not X 3 -saturated.

Proof: For any i < 85 and X C Mj with | X| < p there is Ng, <M,, Ng,2 X
with |Ng| = |PNsi| = p and Np, is Rg-saturated. This is because Mg, is -
saturated, Xz < \ and 8 = p.

Now we can obtain an increasing chain Nj, i < 8 and put N® = |J N,
I<Rg
and we can also specify that d; € N? vi < 8. NP clearly satisfies Claim II.

Finally, we can easily choose the N?, 8 < « such that |N®| = |[N7| v, v
Clearly then I(u, p) = |af.

Theorem 3.18 Suppose (1) of Theorem 3.16 holds for N = Ry, (so T is
countable), and also 2%¥0 < 2%\, Then T has 2%\ models of power K, with the
same P-part.

Proof: Add constants for N to get a language L’. Let ¥ be the L, , sentence
saying A\ Th(M, a),en A (¥VX) (Px«» V X = a) So ¢ has a model realizing

acpPM
uncountably many types (namely M ). By Keisler [4], ¥ has 2! nonisomorphic

models of power w,. These models clearly have the same P-part. As 280 < 2%1,
21 of their L-reducts are not isomorphic.
The methods of [8] can be adapted to prove

Theorem 3.19 S+uppose (1) of Theorem 3.16 holds for N = \** > |T| and
assume Oy, 2> < 22", Then there are 2" nonisomorphic models of power \*
of T with the same P-part.

NOTE

1. Some remarks are in order concerning the history of this paper. In late 1975 the
second author sent, on request, to the first author handwritten notes on the subject-
matter of this paper. In 1979 the second author had these notes typed up into a paper
which was circulated and also submitted to this Journal. In 1983 this paper found its
way back into the hands of the first author who then rewrote the paper into its
present form.

Some earlier work on the same general topic was done by Gaifman (e.g., [2])
who characterized the property that every model of 7T is unique and rigid over its
P-part. Other work was done by Hodges [3] who studied categoricity over a predicate
in the case of Abelian groups with a distinguished subgroup, and Pillay [5] who
characterized syntactically Xo-categoricity over a predicate.
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