Recursively Saturated Models Generated by Indiscernibles

JAMES H. SCHMERL*

The theorem which is proved here has its origins in a question raised by A. Macintyre: Is there a recursively saturated model of Peano Arithmetic which is generated by a set of indiscernibles? To give this question respectability, we understand PA to be formalized so as to include terms for all definable functions. Since recursively saturated models are in some sense large whereas models generated by indiscernibles are small, the positive answer to Macintyre's question obtained by Abramson and Knight [3] was unexpected. Their proof showed that every consistent extension of PA has a countable, recursively saturated model which is generated by a set of indiscernibles. The countability comes as no surprise, for by stretching and shrinking the indiscernibles generating a recursively saturated model, one can obtain indiscernible generators for a recursively saturated model of arbitrary infinite cardinality.

This answer to Macintyre's question suggests the following moditication of his question: Is every countable, recursively saturated model of PA generated by a set of indiscernibles? We demonstrate here that this question also has a positive answer. It is natural to consider variations of this question with PA replaced by some other theory, such as an extension of $Z F C$ which has definable Skolem functions (e.g., $Z F C+V=L$). The answer to the question for such theories is also positive. What is unusual is that not all Skolem functions need be definable, but in order to carry out the proof, the existence of what may be called a β-function, which is a binary function encoding all finite sequences, is required.
*Research was supported in part by NSF Grant MCS 79-05028.

Theorem Suppose T is a theory in a recursive language which includes the binary function symbol β such that for each $n<\omega$ the sentence

$$
\forall x_{0}, \ldots, x_{n-1} \forall y_{0}, \ldots, y_{n-1} \exists x\left[\bigwedge_{i<j<n} x_{i} \neq x_{j} \rightarrow \bigwedge_{i<n} \beta\left(x_{i}, x\right)=y_{i}\right]
$$

is a consequence of T. Then every countable, recursively saturated model of T is generated by a set of indiscernibles.

Notice that T need not be a Skolem theory. An example of a theory satisfying the hypothesis of the theorem is $Z F$ if included in the formalization is a symbol β for function evaluation: if f is a function and x an element in its domain, then $\beta(x, f)=f(x)$.

For introductory information about recursive saturation see BarwiseSchlipf [2]. Two important properties that result from a structure \mathbb{B} being both countable and recursively saturated are the following:
(i) $ß$ is resplendent. Thus, whenever T_{0} is a recursive theory consistent with $\operatorname{Th}(\mathfrak{B})$, then \mathfrak{B} has an expansion to a recursively saturated model of T_{0}.
(ii) B is homogeneous. Consequently, if $B^{\prime} \equiv B$ is countable, recursively saturated and realizes the same types as \mathfrak{B}, then $B^{\prime} \cong \mathfrak{B}$.

To begin the proof of the theorem, let $\xlongequal{2}$ be a countable, recursively saturated model of T. We can assume that $<$ is a binary relation symbol of the language, that $<$ linearly orders A, and that for each $n<\omega$ the sentence

$$
\begin{equation*}
\forall x_{0}, \ldots, x_{n-1} \forall y_{0}, \ldots, y_{n-1} \forall z \exists x>z\left[\bigwedge_{i<j<n} x_{i} \neq x_{j} \rightarrow \bigwedge_{i<n} \beta\left(x_{i}, x\right)=y_{i}\right] \tag{*}
\end{equation*}
$$

is true in \mathfrak{A}. To see why, notice that if $<$ linearly orders A with order type ω then the above sentences $\left(^{*}\right.$) hold in ($\because,<$), so by (i) we can also assume that ($\mathfrak{A},<$) is recursively saturated.

If we were working just with $P A$ we would have available the standard integers for coding purposes. To make up for their unavailability in our general setting, we employ the following lemma.

Lemma There are distinct $a_{0}, a_{1}, a_{2}, \ldots \epsilon A$ such that whenever $1 \leqslant n<\omega$, then $\beta\left(a_{n}, a_{0}\right)=a_{n+1}$.

Proof: We are looking for elements $a_{0}, a_{1} \in A$ which satisfy a certain recursive set of sentences, so by recursive saturation it suffices to show that for each $n<\omega$ there are distinct $a_{0}, a_{1}, a_{2}, \ldots, a_{n+2} \in A$ such that $\beta\left(a_{i+1}, a_{0}\right)=a_{i+2}$ for $i \leqslant n$. For any distinct $a_{1}, a_{2}, \ldots, a_{n+2}$ there are by (*) infinitely many x for which $\beta\left(a_{i+1}, x\right)=a_{i+2}$ for $i \leqslant n$. Choose a_{0} to be such an x not in $\left\{a_{1}, a_{2}, \ldots, a_{n+2}\right\}$.

Fix a_{0} and a_{1} (and consequently $a_{2}, a_{3}, a_{4}, \ldots$) as in the lemma.
We now fix some notation. For any ordered set X (usually $X \subseteq \omega$ or $X \subseteq A$) and $n<\omega$ let $[X]^{n}$ be the set of increasing n-tuples from X. Let $[X]^{\geqslant n}=\bigcup_{n \leqslant i<\omega}[X]^{i}$.

For $n \geqslant 2$, set $\beta\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\beta\left(\beta\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), x_{n}\right)$.

We will make use of a pairing function which maps $\omega \times \omega$ onto the set of odd natural numbers; for example, let $\langle i, s\rangle=(i+s)(i+s+1)+(2 i+1)$.

Let $\left\langle\gamma_{j}^{i}(\bar{x}, x): i, j<\omega\right\rangle$ be an effective listing of all formulas such that $\gamma_{j}^{i}(\bar{x}, x)$ is $\left(n_{i}+1\right)$-ary, and if

$$
\Gamma_{i}(\bar{x}, x)=\left\{\gamma_{j}^{i}(\bar{x}, x): j<\omega\right\},
$$

then all recursive types are included among $\left\{\Gamma_{i}(\bar{x}, x): i<\omega\right\}$.
Our first main goal will be to obtain a subset $X \subseteq A$ which has properties (0)-(5) stated below.
(0) ($2, X$) is recursively saturated.
(1) $X \neq \phi$ and X has no last element.
(2) If $\left(b, b^{\prime}\right) \in[X]^{2}$, then $\beta\left(b, b^{\prime}\right)=a_{0}$ and $\beta\left(a_{0}, b\right)=a_{1}$.
(3) For any $i, j<\omega$ and $\left(b_{0}, b_{1}, \ldots, b_{n_{i}}\right) \in[X]^{n_{i}+1}$,

$$
\exists x \bigwedge_{k \leqslant j} \gamma_{k}^{i}\left(b_{0}, b_{1}, \ldots, b_{n_{i-1}}, x\right) \rightarrow \bigwedge_{k \leqslant j} \gamma_{k}^{i}\left(b_{0}, b_{1}, \ldots, b_{n_{i-1}}, \beta\left(a_{2 i+2}, b_{0}, b_{1}, \ldots, b_{n_{i}}\right)\right)
$$

Before stating the other two properties that X must have, we make the following

Observation: If X satisfies just (1)-(3) above, then X generates a recursively saturated, elementary substructure of $\mathfrak{\Omega}$. Moreover, if $Y \subseteq X$ is nonempty with no last element, then Y also generates a recursively saturated, elementary substructure of 2 . (Thus, showing the existence of X satisfying (1)-(3) will suffice for affirmatively answering Macintyre's question.)
(4) Whenever $i, s<\omega$ and $\left(b_{0}, b_{1}, \ldots, b_{s}\right) \in[X]^{s+1}$, then

$$
\beta\left(a_{(i, s)}, b_{0}, b_{1}, \ldots, b_{s}\right) \in\left\{a_{0}, a_{1}\right\}
$$

For the last property that X must have, we will need a notion of freeness.
Definition For any $r<\omega$ a subset $Y \subseteq A$ is r-free iff whenever $N<\omega$, $r \leqslant s<\omega, f: N \times[s]^{\geqslant r} \rightarrow 2$ and $\left(c_{0}, c_{1}, \ldots, c_{s-1}\right) \in[Y]^{s}$, then there is $c_{s}>c_{s-1}$, with $c_{s} \in Y$, such that: if $i<N, r \leqslant m<s$ and $\left(j_{0}, j_{1}, \ldots, j_{m-1}\right) \in[s]^{m}$, then

$$
\beta\left(a_{(i, m)}, c_{j_{0}}, c_{j_{1}}, \ldots, c_{j_{m-1}}, c_{s}\right)=a_{0} \operatorname{iff} f\left(i, j_{0}, \ldots, j_{m-1}\right)=0
$$

The last property is
(5) X is 0 -free.

Lemma There is $X \subseteq$ A possessing properties (0)-(5) above.
Proof: Since conditions (1)-(5) just require that ($2, a_{0}, a_{1}, X$) satisfy some recursive set of first-order sentences, it will suffice by (i) to get such an X and then appeal to the resplendency of \mathfrak{A} to guarantee that (0) also holds.

Let $g: \omega \times[\omega]^{\geqslant 0} \rightarrow 2$ be a recursive function with the following property: whenever $N<\omega, s<\omega, f: N \times[s]^{\geqslant 0} \rightarrow 2$, and $\left(k_{0}, k_{1}, \ldots, k_{s-1}\right) \in[\omega]^{s}$, then there is some $k_{s}>k_{s-1}$ such that if $i<N, m \leqslant s$ and $\left(j_{0}, j_{1}, \ldots, j_{m-1}\right) \in[s]^{m}$, then

$$
g\left(i, k_{j_{0}}, k_{j_{1}}, \ldots, k_{j_{m-1}}, k_{s}\right)=f\left(i, j_{0}, j_{1}, \ldots, j_{m-1}\right)
$$

It is very easy to construct such a function g. (We will use this g again in the proof.)

We are now going to find elements $b_{0}, b_{1}, b_{2}, b_{3}, \ldots \epsilon A$ with the following properties:
(7) If $i<j<\omega$, then $\beta\left(b_{i}, b_{j}\right)=a_{0}$ and $\beta\left(a_{0}, b_{i}\right)=a_{1}$.
(8) For any $i, j<\omega$ and $\left(m_{0}, m_{1}, \ldots, m_{n_{i}}\right) \in[\omega]^{n_{i}+1}$,
$\exists x \bigwedge_{k \leqslant j} \gamma_{k}^{i}\left(b_{m_{0}}, \ldots, b_{m_{n_{i}-1}}, x\right) \rightarrow \bigwedge_{k \leqslant j} \gamma_{k}^{i}\left(b_{m_{0}}, \ldots, b_{m_{n_{i}-1}}, \beta\left(a_{2 i+2}, b_{m_{0}}, \ldots, b_{m_{n_{i}}}\right)\right)$.
(9) Whenever $i, s<\omega$ and $\left(m_{0}, m_{1}, \ldots, m_{s}\right) \in[\omega]^{s+1}$, then

$$
\beta\left(a_{\langle i, s\rangle}, b_{m_{0}}, b_{m_{1}}, \ldots, b_{m_{s}}\right)=a_{0} \text { iff } g\left(i, m_{0}, m_{1}, \ldots, m_{s}\right)=0
$$

At this point notice that if $b_{0}, b_{1}, b_{2}, \ldots$ satisfy (6)-(9), then $X=$ $\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ satisfies (1)-(5). To get the b_{m} 's we require of them one more property.
(10) No two of the following are equal:

$$
\begin{array}{ll}
a_{n} & (n<\omega), \\
b_{i} & (i<\omega), \\
\beta\left(a_{2 i+2}, b_{m_{0}}, \ldots, b_{m_{k}}\right) & \left(i<\omega, k<n_{i},\left(m_{0}, \ldots, m_{k}\right) \in[\omega]^{k+1}\right), \\
\beta\left(a_{i(i, s)}, b_{m_{0}}, \ldots, b_{m_{k}}\right) & \left(i<\omega, k<s,\left(m_{0}, \ldots, m_{k}\right) \in[\omega]^{k+1}\right) .
\end{array}
$$

Now, if we have $b_{0}, b_{1}, \ldots, b_{m}$ which satisfy all of those parts of (6)-(10) which refer only to $b_{0}, b_{1}, \ldots, b_{m}$, then b_{m+1} can be found by appealing to $\left(^{*}\right)$ and the recursive saturation of $\mathfrak{\imath}$.

Fix X as in the lemma.
The next step in the proof is to take the set X and, by carefully thinning it, construct a subset $Y \subseteq X$ which will be a set of indiscernibles generating a recursively saturated elementary substructure of $\mathfrak{\imath}$ which is isomorphic to \mathfrak{d}. This thinning process will produce sets which are more and more indiscernible in a sense made precise in the following definition.
Definition A subset $Y \subseteq A$ is n-indiscernible if whenever $\phi\left(x_{0}, x_{1}, \bar{y}\right)$ is an $(n+2)$-ary formula and $\left.(b), b_{1}, \ldots, b_{n-1}\right),\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in[Y]^{n}$, then $(\mathfrak{A}, X) \vDash \phi\left(a_{0}, a_{1}, \bar{b}\right) \leftrightarrow \phi\left(a_{0}, a_{1}, \bar{c}\right)$.

Let $B_{0}, B_{1}, B_{2}, \ldots$ be a list of all those subsets of ω which are recursive in some type realized in 2 .

We will form a decreasing sequence $X \supseteq X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \ldots$ such that for each $r<\omega$:
(11) (थ, X, X_{r}) is recursively saturated.
(12) $X_{r} \neq \phi$ and has no last element.
(13) X_{r} is r-indiscernible.
(14) X_{r} is r-free.
(15) (If $r>0$ then) whenever $i<\omega$ and $\left(b_{0}, b_{1}, \ldots, b_{r-1}\right) \in\left[X_{r}\right]^{r}$, then $\beta\left(a_{(i, r-1)}, b_{0}, b_{1}, \ldots, b_{r-1}\right)=a_{0}$ iff $i \in B_{r-1}$.
Assuming that such a sequence has been found, we can complete the proof of the theorem as follows. Let $Y=\left\{y_{r}: r<\omega\right\} \subseteq X$ be a sequence such that for
any $r<\omega$, the r-tuple $\left(y_{0}, y_{1}, \ldots, y_{r-1}\right)$ realizes the same type in (\mathfrak{X}, a_{0}, a_{1}) as does some (or, equivalently: every) r-tuple in the set $\left[X_{r}\right]^{r}$. The set Y is easily constructed by utilizing the homogeneity (see (ii)) of (\mathfrak{H}, X). Clearly such a Y is a set of indiscernibles with no last element. By the observation following (3), the set Y generates a recursively saturated, elementary substructure \mathscr{B} of \mathfrak{A}. It follows from (2) that $a_{0}, a_{1} \in B$ (and thus also $a_{2}, a_{3}, a_{4}, \ldots \epsilon B$). By condition (15), each B_{r} is recursive in the type of ($a_{0}, a_{1}, y_{0}, y_{1}, \ldots, y_{r}$), so that each type realized in \mathscr{N} is recursive in some type realized in \mathfrak{B}. Thus, \mathscr{A} and \mathfrak{B} are countable, recursively saturated structures which are elementarily equivalent and realize the same types; therefore, as noted in (ii), they are isomorphic.

To construct the sequence $\left\langle X_{r}: r<\omega\right\rangle$, first notice that we can set $X_{0}=X$. Now, proceeding by induction, suppose that X_{r} has already been constructed and that we wish to construct X_{r+1}. To do so we first construct an intermediate subset $Z \subseteq X_{r}$ such that:

$$
\begin{align*}
& \text { (16) }(2 d, X, Z) \text { is recursively saturated; } \tag{16}\\
& \text { (17) } Z \neq \phi \text { and has no last element; } \\
& \text { (18) } Z \text { is }(r+1) \text {-free; } \\
& \text { (19) whenever } i<\omega \text { and }\left(b_{0}, b_{1}, \ldots, b_{r}\right) \in[Z]^{r+1} \text {, then }
\end{align*}
$$

$$
\beta\left(a_{\langle i, r}, b_{0}, b_{1}, \ldots, b_{r}\right)=a_{0} \text { iff } i \in B_{r}
$$

If we can get $Z \subseteq X_{r}$ satisfying only (17)-(19), then by the resplendency of ($2, X, X_{r}$), we will be able to get such a Z which satisfies (16) as well. We will proceed similarly to the manner we used to obtain X, utilizing the function $g: \omega \times[\omega]^{\geqslant 0} \rightarrow 2$ obtained then.

We are going to find elements $c_{0}, c_{1}, c_{2}, \ldots \epsilon X_{r}$ with the following properties:

$$
\begin{equation*}
c_{0}<c_{1}<c_{2}<\ldots . \tag{20}
\end{equation*}
$$

(21) Whenever $i<\omega, r<s<\omega$ and $\left(m_{0}, m_{1}, \ldots, m_{s}\right) \in[\omega]^{s+1}$, then

$$
\beta\left(a_{\langle i, s,}, c_{m_{0}}, c_{m_{1}}, \ldots, c_{m_{s}}\right)=a_{0} \text { iff } g\left(i, m_{0}, m_{1}, \ldots, m_{s}\right)=0
$$

Whenever $i<\omega$ and $\left(m_{0}, m_{1}, \ldots, m_{r}\right) \in[\omega]^{r+1}$, then

$$
\begin{equation*}
\beta\left(a_{(i, r)}, c_{m_{0}}, c_{m_{1}}, \ldots, c_{m_{r}}\right)=a_{0} \text { iff } i \in B_{r} \tag{22}
\end{equation*}
$$

Since X_{r} is r-free we can find $c_{0}, c_{1}, c_{2}, \ldots$.. Let $Z=\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$; then Z satisfies (17)-(19), so we can assume that Z satisfies (16) also.

For the final step of the proof we will find $X_{r+1} \subseteq Z$ which is nonempty, has no last element, and is $(r+1)$-indiscernible and $(r+1)$-free. (Property (15) X_{r+1} will inherit from Z and (11) can be handled as before.) Here we use the key combinatorial fact of this proof: the Nešetril-Rödl generalization of Ramsey's Theorem (see [4]). Actually, we need only that special instance of this theorem for which an independently discovered proof can be found in Appendix B of Abramson-Harrington [1]. Curiously, the use made in [1] of this combinatorial theorem is for the construction of large models of $P A$ which have only very short sets of indiscernibles.

For each $N<\omega$ we can find $\left(d_{0}, d_{1}, \ldots, d_{N-1}\right) \in[Z]^{N}$ with the following two properties:
$\left\{d_{0}, d_{1}, \ldots, d_{N-1}\right\}$ is ($r+1$)-indiscernible.
Whenever $i<N, r<s<N$ and $\left(m_{0}, m_{1}, \ldots, m_{s}\right) \in[N]^{s+1}$, then

$$
\begin{equation*}
\beta\left(a_{\langle i, s\rangle}, d_{m_{0}}, d_{m_{1}}, \ldots, d_{m_{s}}\right)=a_{0} \text { iff } g\left(i, m_{0}, m_{1}, \ldots, m_{s}\right)=0 \tag{24}
\end{equation*}
$$

The existence of $d_{0}, d_{1}, \ldots, d_{N-1}$ satisfying (23) and (24) follows easily from the Nešetril-Rödl Theorem, the ($r+1$)-freeness of Z, and the recursive saturation of (\mathcal{H}, X, Z). Now using the resplendency of (\{, X, Z), there are $d_{0}, d_{1}, d_{2}, \ldots \epsilon Z$ such that (23) and (24) are satisfied for each $N<\omega$. Then the set $X_{r+1}=\left\{d_{0}, d_{1}, d_{2}, \ldots\right\}$ has the required properties, thus completing the proof of the theorem.

It turns out that the Nešetril-Rödl Theorem is rather heavy machinery for what is actually needed. A much weaker generalization of Ramsey's Theorem will suffice; the proof of this generalization is a nearly direct transcription of one of the standard proofs of Ramsey's Theorem. (The reason we can say that the theorem is much weaker than the Nesetril-Rödl Theorem is that this theorem has an "infinite version", whereas the Nešetril-Rödl Theorem does not (see Scholium 2.1 of [1]).)

To state the needed theorem, we borrow some terminology from the preceding proof. Consider a structure $\mathfrak{Q}=\left(A,<, R_{0}, \ldots, R_{N}\right)$, where $<$ linearly orders A and for each $i \leqslant N$ there is n_{i} such that $R_{i} \subseteq[A]^{n_{i}}$. We will say that \mathfrak{Q} is r-free iff whenever $X \in[A]^{\geqslant 0}$ and $F_{i}:[X]^{n_{i}-1} \rightarrow 2$ for each $i \leqslant N$ for which $n_{i}>r$, then there is $c \in A$ such that the following: if $i \leqslant N$ and $n_{i}>r$ and $\left\langle x_{0}, \ldots, x_{n_{i}-2}\right\rangle \in[X]^{n_{i}-1}$, then $\left\langle x_{0}, \ldots, x_{n_{i}-2}, c\right\rangle \in R_{i}$ iff $F_{i}\left(x_{0}, \ldots, x_{n_{i}-2}\right)=0$.

Theorem Suppose $2=\left(A,<, R_{0}, \ldots, R_{N}\right)$ is r-free and that $G:[A]^{r} \rightarrow$ $s \in \omega$. Then there is $B \subseteq A$ such that B is homogeneous for G and $\geqslant \mid B$ is r-free.

Proof: We can assume without loss of generality that each $n_{i} \geqslant r+1$. For if some $n_{i} \leqslant r$, then that R_{i} can be disregarded by appropriately modifying G so that if $G\left(a_{0}, \ldots, a_{r-1}\right)=G\left(b_{0}, \ldots, b_{r-1}\right)$, then $\mathfrak{d}\left|\left\{a_{0}, \ldots, a_{r-1}\right\} \cong \mathfrak{d}\right|\left\{b_{0}, \ldots\right.$, $\left.b_{r-1}\right\}$. Also, we can assume that $A=\omega$. With these assumptions we will find a homogeneous B such that $\mathfrak{N |} \mid B \cong$.

The proof proceeds by induction on r.
$r=1$. We can assume $s=2$. Suppose there is no such B for which $G(b)=0$ for each $b \in B$. Let $\left\langle a_{0}, a_{1}, \ldots, a_{p-1}\right\rangle \in[A]^{p}$ so that $G\left(a_{i}\right)=0$ for $i<p$, $\mathfrak{x} \mid\left\{a_{0}, \ldots\right.$, $\left.a_{p-1}\right\} \cong थ \mid p$, and for no $a_{p} \in A$ with $G\left(a_{p}\right)=0$ is $\mathfrak{Q}\left|\left\{a_{0}, \ldots, a_{p}\right\} \cong 2\right|(p+1)$. Now construct $b_{0}<b_{1}<b_{2}<\ldots$ such that $2 \mid\left\{b_{0}, \ldots, b_{i-1}\right\} \cong\{2 \mid i$ and $\mathfrak{2}\left|\left\{a_{0}, \ldots, a_{p-1}, b_{i}\right\} \cong \mathfrak{d}\right|(p+1)$ for each $i<\omega$. Then $G\left(b_{i}\right)=1$ for each $i<\omega$, so that $B=\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ is as required.
$r=t+1$. Inductively define $a_{0}<a_{1}<a_{2}<\ldots$ and $\omega=X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \ldots$ so that for each $i<\omega$,

$$
\begin{aligned}
& a_{i}=\min X_{i}<a_{i+1} ; \\
& \mathfrak{2} \mid\left(\left\{a_{0}, a_{1}, \ldots, a_{i-1}\right\} \cup X_{i}\right) \cong 2\{\text { and }
\end{aligned}
$$

whenever $x, y \in X_{i}$ and $\left\langle j_{0}, j_{1}, \ldots, j_{t-1}\right\rangle \in[i]^{t}$, then

$$
G\left(a_{j_{0}}, a_{j_{1}}, \ldots, a_{i_{t-1}}, x\right)=G\left(a_{j_{0}}, a_{j_{1}}, \ldots, a_{j_{t-1}}, y\right)
$$

Let $X=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$, so that $\mathfrak{N} \mid X \cong$. Let $H:[X]^{t} \rightarrow 2$ be such that if
$\left\langle x_{0}, x_{1}, \ldots, x_{t-1}\right\rangle \in[X]^{t}$ then for every (or some) $x \in X$ with $x>x_{t-1}, H\left(x_{0}\right.$, $\left.x_{1}, \ldots, x_{t-1}\right)=G\left(x_{0}, x_{1}, \ldots, x_{t-1}, x\right)$. Apply inductive hypothesis to $\mathfrak{2} \mid X$ and H to get B, which will be as required.

We close with a remark about the order type of the generating set of indiscernibles. The proof yielded a set of indiscernibles Y of order type ω which generated a structure isomorphic to \because. If Y_{0} is any countable ordered set of indiscernibles with no last element whose n-types are the same as those of Y, then the structure $थ_{0}$ generated by Y_{0} must also be countable, recursively saturated, and realize the same types as $\mathfrak{\Omega}$, so that by (ii) $\varkappa_{0} \equiv \mathfrak{A}$. Thus, not only is \mathfrak{U} generated by a set of indiscernibles, but the order type of these indiscernibles can be that of any countable linearly ordered set with no last element, assuming that $<$ is part of the language and satisfies (*), as is the case with $P A$.

REFERENCES

[1] Abramson, F. G. and L. A. Harrington, "Models without indiscernibles," The Journal of Symbolic Logic, vol. 43 (1978), pp. 572-600.
[2] Barwise, J. and J. Schlipf, "An introduction to recursively saturated and resplendent models," The Journal of Symbolic Logic, vol. 41 (1976), pp. 531-536.
[3] Knight, Julia, personal letter to A. Macintyre, 1981.
[4] Nešetrill, J. and V. Rödl, "Partitions of finite relational and set systems," Journal of Combinatorial Theory, Series A, vol. 22 (1977), pp. 289-312.

