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Recursively Saturated Models

Generated by Indiscernibles

JAMES H. SCHMERL*

The theorem which is proved here has its origins in a question raised by
A. Macintyre: Is there a recursively saturated model of Peano Arithmetic which
is generated by a set of indiscernibles? To give this question respectability, we
understand PA to be formalized so as to include terms for all definable func-
tions. Since recursively saturated models are in some sense large whereas models
generated by indiscernibles are small, the positive answer to Macintyre's ques-
tion obtained by Abramson and Knight [3] was unexpected. Their proof
showed that every consistent extension of PA has a countable, recursively
saturated model which is generated by a set of indiscernibles. The countability
comes as no surprise, for by stretching and shrinking the indiscernibles generat-
ing a recursively saturated model, one can obtain indiscernible generators for
a recursively saturated model of arbitrary infinite cardinality.

This answer to Macintyre's question suggests the following moditication ot
his question: Is every countable, recursively saturated model of PA generated
by a set of indiscernibles? We demonstrate here that this question also has a
positive answer. It is natural to consider variations of this question with PA
replaced by some other theory, such as an extension of ZFC which has
definable Skolem functions (e.g., ZFC + V = L). The answer to the question for
such theories is also positive. What is unusual is that not all Skolem functions
need be definable, but in order to carry out the proof, the existence of what
may be called a β-function, which is a binary function encoding all finite
sequences, is required.
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Theorem Suppose T is a theory in a recursive language which includes the
binary function symbol β such that for each n<ω the sentence

Vx0, ., xn-i Vyo> •> yn-i 3 * A χi φ xf ~* A β(xi, x) = yλ
\J<j<n i<n J

is a consequence of T. Then every countable, recursively saturated model of T
is generated by a set of indiscernibles.

Notice that T need not be a Skolem theory. An example of a theory
satisfying the hypothesis of the theorem is ZF if included in the formalization
is a symbol β for function evaluation: if / is a function and JC an element in its
domain, then β(x, f) = f{x).

For introductory information about recursive saturation see Barwise-
Schlipf [2]. Two important properties that result from a structure δ being both
countable and recursively saturated are the following:

(i) δ is resplendent. Thus, whenever To is a recursive theory consistent
with Th($), then δ has an expansion to a recursively saturated model
ofΓ 0 .

(ii) δ is homogeneous. Consequently, if δ ' = δ is countable, recursively
saturated and realizes the same types as δ, then δ ' = 58.

To begin the proof of the theorem, let $1 be a countable, recursively
saturated model of T. We can assume that < is a binary relation symbol of the
language, that < linearly orders A, and that for each n<ω the sentence

(•) V*o, .,* Λ -i V^o,. ., JV-i Vz 3x >z\ A Xi ΦXJ -+ A β(xu x)=yλ
\J<j<n i<n J

is true in 21. To see why, notice that if < linearly orders A with order type ω
then the above sentences (*) hold in (21, <), so by (i) we can also assume that
(21, <) is recursively saturated.

If we were working just with PA we would have available the standard
integers for coding purposes. To make up for their unavailability in our general
setting, we employ the following lemma.

Lemma There are distinct a0, aίf a2,. . . e A such that whenever 1 < n < ω,
then β(an, a0) = an+1.

Proof: We are looking for elements a0, ax e A which satisfy a certain recursive
set of sentences, so by recursive saturation it suffices to show that for each
n < ω there are distinct a0, aif a2, . ., an+2 € A such that βiβi+i, aQ) = ai+2 for
/ < n. For any distinct aίf a2, . . ., an+2 there are by (*) infinitely many
x for which j3(<z/+1, x) = #/+2 for / < n. Choose a0 to be such an x not in
ίalta2, . . ,an+2\.

Fix a0 and ax (and consequently a2, a3, α4, . . .) as in the lemma.
We now fix some notation. For any ordered set X (usually X C ω or

X C A) and n < ω let [X]n be the set of increasing π-tuples from X. Let

ιx]>n = U [xv.
n<i<ω

For n > 2, set β(x0, xu . . ., xn) = β(β(x0, xu . . ., xn-ι\ xn\
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We will make use of a pairing function which maps ω X ω onto the set of
odd natural numbers; for example, let </, s) = (/ + s)(i + s + 1) + (2/ + 1).

Let (y](x, x): i, j<ω) be an effective listing of all formulas such that
yj(x, x) is (jii + l)-ary, and if

Γ, (ϊ, x) = lyj(x, x):j<ω\,

then all recursive types are included among {Γz (x, x): i < ωS.
Our first main goal will be to obtain a subset X C A which has properties

(0)-(5) stated below.

(0) (21, X) is recursively saturated.
(1) X Φ φ and X has no last element.
(2) If (b, bf) e [X]\ then β(b, b') = a0 and β(a0, b) = αj.

(3) For any /, / < ω and (ft0, * i , . . ., &„,-) e m " / + 1 ,

3x Λ 7((60. 6i, , ftiif-r x) -* Λ τi(^o> *i, ., ̂ /_ l 5 ^2/+2, b0, bu . . ., bni)).

Before stating the other two properties that X must have, we make the
following

Observation: If X satisfies just (l)-(3) above, then X generates a recursively
saturated, elementary substructure of 21. Moreover, if Y C Xis nonempty with
no last element, then Y also generates a recursively saturated, elementary
substructure of 21. (Thus, showing the existence of X satisfying (l)-(3) will
suffice for affirmatively answering Macintyre's question.)

(4) Whenever i, s < ω and (b0, bu . . ., bs) e [X]s+\ then

β(β{i,sh bo> bl9 . . .,bs)e{a0, ax\.

For the last property that X must have, we will need a notion of freeness.

Definition For any r < ω a subset Y C A is r-free iff whenever N < ω,
r <s < ω, f: N X [s]>r -* 2 and (c0, cu . . ., cs-{) e [Y]s, then there is cs > cs-l9

with cs e Y, such that: if i < N, r < m < s and (/0, Ί , . . ., jm-i) e ls]m> then

β(β<i,m> Cj0, cjv . . ., cjm_v cs) = a0 iff f(i, j 0 , . . .yjm.x) = 0.

The last property is

(5) *isθ-free.

Lemma There is X C ̂ 4 possessing properties (0)-(5) above.

Proof: Since conditions (l)-(5) just require that C&9a0> ax, X) satisfy some
recursive set of first-order sentences, it will suffice by (i) to get such an X and
then appeal to the resplendency of 21 to guarantee that (0) also holds.

Let g'. ωX [ωpo-> 2 be a recursive function with the following property:
whenever N < ω, s < ω, f: N X [s]>0 -> 2, and (k0, ku . . ., ks-{) e [ω]s, then
there is some ks > ks-x such that if / < N, m < s and (/0, j u . . ., /m-i) e [s]m,
then

g{i, Λ/o> k/v . . ., Λ/|fI-1> * , )=/(/ , JO, Ju .,/m-i).
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It is very easy to construct such a function g. (We will use this g again in the
proof.)

We are now going to find elements b0, blf b2> b3,. . . e A with the follow-
ing properties:

(6) bo<b1<b2<....
(7) If i<j< ω, thenβ(b i t 6 ; ) = a0and β(a0, 6, ) = av

(8) For any i, / < ω and (m0, m 1 ? . . ., mn.) e [ ω ] π ' + 1 ,

3X Λ γ((Z)mo, . . ., ̂ m r t . . r X)^ t\ΊkΦm0, , &»!„._!> 0(*2i+2, bm0, -, 6/«Λ.)).

(9) Whenever z, s < ω and (m 0, m l 5 . . ., m5) e [ ω ] s + 1 , then

0(fl<!\s>, 6mo> * m r •> ^ms) = ̂ o iff̂ O", m0, ml9 . . ., ms) = 0.

At this point notice that if b0, blf b2, . . - satisfy (6)-(9), then X =
\b0> bίf b2, . . .} satisfies (l)-(5). To get the Z?m's we require of them one more
property.

(10) No two of the following are equal:

an (n < ω),
bi (i < ω),
^(«2i+2, bmQ, . . ., bmk) (i < ω, k < nh (m0, . . ., mk) e [ω]^ + 1 ),
β(fl<i,s>, bmo, . . ., bmk) (i < ω, k<s9 (m0, . . ., mk) e [ω]^ + 1 ).

Now, if we have b0, bί9 . . .,bm which satisfy all of those parts of (6)-(10) which
refer only to b0, bίf . . ., bm, then bm+ί can be found by appealing to (*) and
the recursive saturation of 21.

Fix X as in the lemma.
The next step in the proof is to take the set X and, by carefully thinning

it, construct a subset Y C X which will be a set of indiscernibles generating a
recursively saturated elementary substructure of 51 which is isomorphic to 21.
This thinning process will produce sets which are more and more indiscernible
in a sense made precise in the following definition.

Definition A subset Y C A is n-indίscernible if whenever φ(x0, xίf y) is an

(w + 2)-ary formula and (6), bi9 . . ., δΛ-i), (c0, cu . . ., cn-χ) e [Y]n, then

(Ά,X)tΦ(ao,aι,b)*-»φ(ao,auc).

Let Bo, Blt B2, . . . be a list of all those subsets of ω which are recursive
in some type realized in 21.

We will form a decreasing sequence X D Xo D Xγ D X2 D . . . such that for
each r < ω:

(11) (21, X, Xr) is recursively saturated.
(12) Xr Φ φ and has no last element.
(13) Xr is r-indiscernible.
(14) X risr-free.

(15) (If r > 0 then) whenever i < ω and (60, 6 l 5 . . ., 6r_!) e [X r ]
r , then

0(α</,Γ-i>» ^o, 6i, , &r-i) = ̂ o iff ί e ^ - ^

Assuming that such a sequence has been found, we can complete the proof
of the theorem as follows. Let Y = \yr\ r < ω | C I b e a sequence such that for
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any r < ω, the r-tuple (y0, yu . . ., yr-\) realizes the same type in (21, a0, aλ)
as does some (or, equivalently: every) r-tuple in the set [Xr]

r. The set Y is
easily constructed by utilizing the homogeneity (see (ii)) of (21, X). Clearly such
a Y is a set of indiscernibles with no last element. By the observation following
(3), the set Y generates a recursively saturated, elementary substructure £ of 21.
It follows from (2) that a0, ax e B (and thus also a2, a3> α 4 , . . . e B). By condi-
tion (15), each Br is recursive in the type of (aQ, aίt y0, yh . . ., yr)9 so that each
type realized in 21 is recursive in some type realized in 33. Thus, 21 and 3B are
countable, recursively saturated structures which are elementarily equivalent
and realize the same types; therefore, as noted in (ii), they are isomorphic.

To construct the sequence (Xr\ r < cυ>, first notice that we can set Xo = X.
Now, proceeding by induction, suppose that Xr has already been constructed
and that we wish to construct Xr+i To do so we first construct an intermediate
subset Z C Xr such that:

(16) (21, X, Z) is recursively saturated;
(17) Z =£ $ and has no last element
(18) Z i s ( r + l)-free;
(19) whenever i < ω and (b0, bu . . ., br) e [Z]r+1, then

β(a<i,r)> b0, bu..., br) = a0 iff i e Br.

If we can get Z C Xr satisfying only (17)-(19), then by the resplendency of
(21, X, Xr), we will be able to get such a Z which satisfies (16) as well. We will
proceed similarly to the manner we used to obtain X, utilizing the function
g: ω X [ ω ] > 0 - » 2 obtained then.

We are going to find elements c0, clf c2, . . . e Xr with the following
properties:

(20) c o < c 1 < c 2 < . . . .
(21) Whenever i < ω, r <s <ω and (m0, mu . . ., ms) e [ ω ] s + 1 , then

β(flu,s)> cm# Cmv . , Cms) = <*o iff g(h m0> ml9. . ., ms) = 0.

(22) Whenever / < ω and (m0, mh . . ., mr) e [ ω ] r + 1 , then

βfai.rh CmQ, Cmv . . ., Cmr) = a0 iff / 6 Br.

Since Xr is r-free we can find c0, clf c2, . . .. Let Z = \c0, clt c2, . •}; then Z
satisfies (17)-(19), so we can assume that Z satisfies (16) also.

For the final step of the proof we will find Xr+ι C Z which is nonempty,
has no last element, and is (r + 1 )-indiscernible and (r + l)-free. (Property (15)
Xr+ί will inherit from Z and (11) can be handled as before.) Here we use the
key combinatorial fact of this proof: the Nesetril-Rodl generalization of
Ramsey's Theorem (see [4]). Actually, we need only that special instance of
this theorem for which an independently discovered proof can be found in
Appendix B of Abramson-Harrington [1]. Curiously, the use made in [1] of
this combinatorial theorem is for the construction of large models of PA which
have only very short sets of indiscernibles.

For each i V < ω w e can find (d0, dh . . ., ύ^y-i) e [ Z ] ^ with the following
two properties:
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(23) {d0, dl9 . . ., dfi[-ι\ is (r + l)-indiscernible.
(24) Whenever i < N, r < s < N and (m0, mu . . ., m s) e [ N ] ί + \ then

β(β<itsh dmv dmv - - ., dws) = ̂ o iff Sih mo> ml9 . . ., ms) = 0.

The existence of d0, du . . ., d^-\ satisfying (23) and (24) follows easily
from the Nesetril-Rodl Theorem, the ( r+ l)-freeness of Z, and the recursive
saturation of (21, X, Z). Now using the resplendency of (21, X, Z), there are
d0, dv d2, . . . e Z such that (23) and (24) are satisfied for each TV < ω. Then
the set Xr+i = \d0, dlt d2, . . .1 has the required properties, thus completing the
proof of the theorem.

It turns out that the Nesetril-Rodl Theorem is rather heavy machinery for
what is actually needed. A much weaker generalization of Ramsey's Theorem
will suffice; the proof of this generalization is a nearly direct transcription of
one of the standard proofs of Ramsey's Theorem. (The reason we can say that
the theorem is much weaker than the Nesetril-Rodl Theorem is that this
theorem has an "infinite version", whereas the Nesetril-Rodl Theorem does not
(see Scholium 2.1 of [1]).)

To state the needed theorem, we borrow some terminology from the
preceding proof. Consider a structure 21 = (A, < , R o , . . ., R^), where < linearly
orders A and for each i <TV there is nt such that Rt C [A ]nκ We will say that 21
is r-free iff whenever X e [A]>0 and Ft: [X]^'1 -* 2 for each / <TV for which
Πi > r, then there is c e A such that the following: if i < N and «, > r and
(x0,. . ., xnr2) e [X]ni~\ then (x0, . . ., xnr2, c) e Rt iff F/(xo> •> ^nri) = 0.

Theorem Suppose 21 = {A, <, Ro, . . ., RN) is r-free and that G\ [A]r -*
s e ω. Then there is B CA such that B is homogeneous for G and U\B is r-free.

Proof: We can assume without loss of generality that each «, > r + 1. For if
some nι < r, then that Rj can be disregarded by appropriately modifying G so
that if G(a0, . . ., ar-J = G(bOy . . ., &Γ-i), then 2ϊ|{α0, . . ., ar-x\ = 2llί60> ,
br-x}. Also, we can assume that A = ω. With these assumptions we will find a
homogeneous B such that 211B = 21.

The proof proceeds by induction on r.

r ~ 1. We can assume 5 = 2. Suppose there is no such B for which G(b) = 0 for
each b e B. Let (a0, au . . ., ap-J e [A]p so that G(at) = 0 for / < p , 2ll{α0, . . .,

flp-1} ^ a lp, and for no ap e A with G ( ^ ) = 0 is 2llίαo> -, aP\ - « K P + Π
Now construct bo< bί < b2 < . . . such that 2II{&0, 5 &i-il - Ml/ and
2Ilί<20, . . ., βp.i, ^z } s « l(p + 1) for each z < ω. Then G(fe, ) = 1 for each / < ω,
so that B - \b0, blf b2, . . .1 is as required.

r = t + 1. Inductively define a0 < ax < a2 < . . . and ω = Xo ^X\ 2 ^ 2 3
so that for each / < co,

α/ = min Xz < α, + 1 ;

21l(ίαo, fli, . . . ,β/-i ! U J f / ) a « ; and

whenever x, >> e X/ and </0, j u . . .,/V-i) e [/]f, then

G(α/o, fl/l, . . ., ait_v X) = G(aJQ, afv . . ., ah_v y).

Let X = ίfl0. *ι> a2) . . .1, so that 211X = 21. Let H: [XV -> 2 be such that if



RECURSIVELY SATURATED MODELS 105

(x0, xu . . ., xr_!> e [XY then for every (or some) x e X with x > xt-h H(xQ,
xu . . ., Xf-)) = G(x0, xh . . ., xt-h x). Apply inductive hypothesis to %\X and
H to get B, which will be as required.

We close with a remark about the order type of the generating set of
indiscernibles. The proof yielded a set of indiscernibles Y of order type ω
which generated a structure isomorphic to 21. If Yo is any countable ordered set
of indiscernibles with no last element whose 77-types are the same as those of Y,
then the structure 510 generated by Yo must also be countable, recursively
saturated, and realize the same types as El, so that by (ii) 810 = U. Thus, not
only is 21 generated by a set of indiscernibles, but the order type of these
indiscernibles can be that of any countable linearly ordered set with no last
element, assuming that < is part of the language and satisfies (*), as is the case
with PA.
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