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Individuals and Points

BOWMAN L. CLARK

The concept of a point has been of perpetual interest to philosophers and
mathematicians alike. Contemporary mathematicians and philosophers have
approached the subject in three ways: One is to take as basic individuals,
volumes [10], regions [18], lumps [8], or spheres [14], and to define points in
terms of sets of nested individuals by way of a relation, contained in the interior
of [10], nontangential part of [18], completely contained in [8], or concentric
with [14]. Another technique is to utilize algebraic operations, those of a Boolean
ring [13] or a distributive lattice [15], on a set of individuals, and to define points
in terms of certain subsets of this set that meet certain conditions. Presumably
a set of any of the above basic individuals would do, except spheres, provided
one allowed for disconnected volumes, regions, pieces or lumps. A third tech-
nique has been to take spheres [5], intervals [9], events [7], or any of the above
basic individuals would do, and to define points as the atomic parts of these
individuals; that is, as individuals which have only themselves, excluding the null
element, as parts. Although different programs within these three groups have
differed in detail, they are sufficiently similar to justify this three-way classifi-
cation, which we shall call the nesting definitions, the algebraic definitions, and
the atomic definitions. )

In a recent paper [4], I presented an axiomatized calculus of individuals
based on a primitive two-place predicate, ‘x is connected with y’. which was the
relation utilized by Whitehead [18] for his theory of Extensive Connection in
which he proposed a nesting definition for points. Whitehead’s theory of
Extensive Connection was his last formulation of what was to have been the
basis of the fourth volume of Principia Mathematica, a volume on geometry to
be written by Whitehead himself.! In my paper, with slight alteration, I used
Whitehead’s mereological definitions to construct a calculus of individuals with
pseudo-Boolean operators, pseudo-Boolean because of the absence of the null
element as in the traditional formulations of the calculus of individuals. With
the presence of the predicate, ‘x is a nontangential part of y’, I was also able
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to introduce the pseudo-topological operators, the interior of x and the closure
of x, pseudo-topological because of the absence of the null individual and
boundary elements. Just as the domain of the traditional calculus of individuals
is a Boolean algebra with the null element removed, the calculus of individuals
based on connection turned out to be a closure algebra with the null element and
the boundary elements removed. It is the purpose of this paper to utilize this new
calculus of individuals with its operators to define a point along the lines of the
algebraic definitions. I shall present only as many of the definitions, axioms, and
theorems of the calculus of individuals based on connection as are required for
this purpose.

Following Whitehead we shall take the basic individuals of the system to
be space-time regions, so that our points will be space-time points. We could just
as well take the basic individuals to be spatial regions, in which case our points
would be spatial points. Although the predicate, ‘x is connected with »’, is taken
as primitive and undefined, heuristically we would like it to be the case that two
spatio-temporal regions are connected if, and only if, they have a spatio-
temporal point in common. The proof of a theorem to this effect will be taken
to be a mark of the success of our definition of points. In what follows we shall
assume classical first-order quantification theory with identity? and some form
of set theory, although the use of set theory is minimal and, as I suggested in
the earlier paper, can be eliminated for the calculus of individuals. The lower
case letters, ‘..., x, y, 2’, with or without subscripts, will be taken as individual
variables ranging over spatio-temporal regions, and the upper case letters,
‘..., X, Y, Z’, will be taken as individual variables ranging over sets of spatio-
temporal regions. Points once constructed will have the upper case letters,
‘..., X, Y, Z’, ranging over them.

Definitions for the traditional mereological predicates, ‘x is part of y’, ‘x
is a proper part of y’, ‘x overlaps »’, and ‘x is discrete from y’, are as follows>:

DO0.2 Px,y =45 (2)(C2,x D Cz,y)
DO0.3 PPx,y =4¢ Px,y-~Py, x
D0.4 Ox, y =4er (32) (P2, x- P2, y)
DO0.5 DRx,y =g4er ~Ox, y.

From these definitions and the following two mereological axioms, the tradi-
tional mereological theorems of the calculus of individuals are provable;

A0.1 () [Cx,x-(¥)(Cx,y D Cy, x)]
A0.2 X)W [(2)(Cz,x=Cz,y) Dx=y].

The advantage of the present calculus of individuals is that we are able to
introduce, in addition to the traditional mereological predicates, the predicates,
‘x is externally connected to y’, ‘x is a tangential part of y’, and ‘x is a nontan-
gential part of y’. These definitions are as follows:

D0.6 ECx,y =4s Cx, y, - ~Ox, y
DO0.7 TPx,y =4e¢ Px,y - (32)(ECz,x-ECZ, y)
DO0.8 NTPx,y =4es Px,y-~(32) (ECz,x-ECZ, ).
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It is the later relation which Whitehead used to nest his regions in order to con-
struct his points. And it is this relation which we shall use to introduce our
pseudo-topological operators.

In order to introduce the pseudo-Boolean and pseudo-topological opera-
tors, we need to introduce a definition for ‘the fusion of a set of regions’. Since
a fusion of a set of regions, f’X, will itself be a region, we may introduce the
definition as follows:

D1.1 xX=f'X=qes (¥)[Cy,x=(32)(z€ X-Cy,7)].

With this definition of ‘the fusion of a set of regions’, we can introduce the
pseudo-Boolean operators, the sum of x and y, x + y, the complement of x, —x,
the intersect of x and y, x A y, as well as the universal individual, a*, as follows:

D1.2 x+y =gt f'{z: Pz,xVv Pz,y}
D1.3 —x =qer f'{y: ~Cy, x}

D14 a* =g f'{y: Cy,»}

D1.5 XAY =getf'{z: Pz,x-Pz,}.

In addition to these definitions, we need the usual axiom asserting the existence
of the fusion of any nonempty set:

ALl (X)(~X=AD @x)x=f'X).

It is because of this axiom that our operators are pseudo-Boolean. There is no
null element, since there is no fusion of the null set; and as a consequence, no
x Ay where x Ay =0, or where ~Ox, y, and no —a*. This, of course, is stan-
dard for the traditional calculus of individuals, and is what distinguishes the
domain of a calculus of individuals from a Boolean algebra.

It is, however, the presence of tangential and nontangential parts in the
present calculus which makes it possible to introduce the pseudo-topological
operators, the interior of x, ix, and the closure of x, cx. The interior of x is the
fusion of all the nontangential parts of x, and may be introduced as follows:

D2.1 ix =ger f'{y: NTPy, x}.
The closure of x, cx, may be introduced as —i — x, or as follows:
D22 cex=gf'{y: ~Cy,i—x},

in which case, ‘cx = —i — x’ becomes provable as a theorem, where ~x = a*. We
also need the following axiom with the presence of the pseudo-topological oper-
ators:

A2.1’ (X)) ((32)(NTPz,x-~z2=x)- (M) {(2) [(Cz,x D Oz, x) -
(Cz,y 2 0z,y)] D (2)(Cz,x Ay D Oz, x A Y)}).

The ‘(3z) NTPz,x’ component in the above axiom* assures us that every
individual has an interior; the ‘~z = x’ component that the calculus is non-
atomic; and the remainder that the intersect of two open individuals is itself
open. It should be remarked that it is the absence of a null element, along with
the presence of external connectedness, that makes these operators pseudo-
topological; there are no boundary elements. Usually x is a boundary element
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if, and only if, ix = 0. With A2.1 and the definitions, theorems concerning the
traditional properties of these topological operators are provable, except those
involving the nonexistent regions, theorems such as ‘c0 =0’; and ‘ixAiy =
i(x Ay)’ holds only if x A y exists.

With this basis at hand, we can now propose a definition of ‘X is a point’
as follows:

D3.1  PT(X) =g (x)()){(xEX-y € X) D [ECx,yVv (Ox,y-xAy € X)]}-
FNIXEX-Px,y) DyeX]-(x)(M)[x+yEXD(XEXVYEX)]-~X=A.

Although the above definition bears a certain similarity to the algebraic defini-
tions of a point, strictly speaking it is not, due to the presence of external con-
nectedness. We may also introduce a definition for ‘point X is incident in region

4

X'

D3.2  IN(X,X) =4 PT(X)-x € X.

We also need the following axiom for the existence of points:

A3l X)P)[Cx,yD AX)(PT(X)-xe X-ye X)].

From D3.1 the following theorems immediately follow:

T3.1 X)X {(PT(X)-xEX-y€ X) D [ECxX,yv (Ox,y-xAy € X)]}
T3.2 X)X I(PT(X)-xE X -Px,y) Dy € X]
T3.3 X)PX)[(PTX)x+yeX)D(xeXvyEe X)].

With D3.1, D3.2, and A3.1 added to the calculus of individuals based on con-
nection, the following also become provable theorems. Under each I have listed
the definitions, axioms, and theorems from which they follow. T0.__, T1.__,
and T2.__ refer to the theorems in [4].

T3.4 X)X (PT(X)-xeX-yeX)DCx,y]
(T3.1; T0.28)
T3.5 )P (X)) [(PT(X)-xEX) Dx+y€E X]
(T3.2; T1.17)
T3.6 X)P)X{PTX)D[(xeXvyeX)=x+ye X]}

(T3.3; T3.5)

T3.7 (X)(PT(X) D (x)xe X)
(D3.1)

T3.8 (X)(PT(X)Da*e X)
(T3.6; T3.2)

T3.9 X)(X)PT(X)D ~(xeX-—x€ X)]
(T3.3; T1.37)

T3.10 X)X [PT(X)D(xeXVv—x€EX)]
(T3.8;T1.41; T1.32)

T3.11 X)X)IPT(X)D(xeX=~—x€EX)]
(T3.9; T3.10)

T3.12 X)(X){PT(X) D [(2)(z€XDCz,x) =x€ X]}
(T1.37; T3.11; T3.2)
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T3.13 (x)(3X) IN(X, x)
(A3.1; TO.1; D3.2)

T3.14 X)) [Cx,y= BX)(PT(X)-IN(X,x)-IN(X, »y))]
(T3.2; A3.1; D3.2)

T3.15 ) (»)[Ox,y= AX)(PT(X)-IN(X, x)-IN(X,y)-~ECx,y)]
(T3.1; A3.1; T0.19; T0.27; D3.2)

T3.16 xX)(Y)[ECx,y= (3X)(PT(X)-IN(X,x)-IN(X,y)-~O0x,y)]
(T3.1; A3.1; T0.26; T0.27; D3.2)

T3.17 X)) {Px,y= (X)[(PT(X)-IN(X, x)) D IN(X, y)}
(T3.2; A3.1; T3.11; T1.36; T1.32; T1.25; D3.2)

T3.18 xX)(X)[(PT(X)-IN(X,ix)) DIN(X, x)]
(T3.2; T2.4; D3.2)

T3.19 X)(X)[(PT(X)-IN(X,x)) D ((32) 2= —xD IN(X, cx))]
(T3.2; T2.41; D3.2)

T3.20 (X)(X){[PT(X) -IN(X,x)-~(32)(z€ X-ECz,x)] DIN(X, ix)}
(T.31; T2.21; T3.12; D3.2)

T3.21 X)X {IPT(X)-IN(X,x)-(32)(z € X-ECz,x)] D ~IN(X, ix)}
(T0.27; T2.21; T3.12; D3.2)

Needless to say, T3.14, T3.15, T3.16, and T3.17 are critical theorems in
the above list. They conform to our heuristic interpretation of these four mereo-
logical relations and justify our definition of a point. T3.18-T3.21 are perhaps
equally critical, for they relate points to our pseudo-topological operators. In
T3.20 and T3.21 we can see the distinction between interior points and boundary
points emerging. In fact, T3.21 shows us that the boundary elements which were
eliminated at the level of regions begin to emerge at the level of points. Any
point incident in region x, but not incident in ix, will be a boundary point of
x. And the null region eliminated at the level of regions will emerge at the level
of sets of points as the null set. This we shall see shortly.

Perhaps a word should be said concerning these missing traditional
elements at the level of regions and the proofs of the above theorems. In the
earlier paper [4], we had to restrict Universal Instantiation in the presence of
these nonexistent regions. This complicated the proofs and theorems involving
x Ay and —x. We do not find quite the same complication in the above proofs
and theorems. In the sets which constitute our points, if x A y does not exist,
then x is externally connected to y. In the case of —x, some theorems, for
example T3.9, T3.10, and T3.17, do have to be proven on the condition that
(3z) z = —x and on the condition that ~(3z) z = —x, or equivalently, x = a*. To
instantiate any of these theorems, however, in terms of x Ay or —x, does still
require that (3z)z=xAyor (37)z= —x.

Our next task is to explore the relation between regions and sets of points
incident in particular regions. For this purpose it will be helpful to introduce
another kind of variable to range over sets of sets of regions. Along with
‘..., X, Y, Z’, ranging over sets of regions, we shall let *..., X, Y, Z’ range
over sets of sets of regions, and consequently, sets of points. Also, it will be help-
ful to introduce ‘¥’ for the set of all points, ‘X’ for the complement of X re-
stricted to the set of all points, and ‘P(x)’ for the set of all the points incident
in the region x. Their definitions are as follows:
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D3.3 V=g {X: PT(X)}
D3.4 -X =def | 48 —X
D3.5  P(x) =4 {X:PT(X) -x € X}.

With these definitions at hand, the following become theorems of the system:

T3.22 aV=A
(D3.3; D3.4)
T3.23 V =P(a*)
(D3.3; D3.5)
T3.24 (x) P(x) < P(a*)
(T3.17; T1.25; D3.5)
T3.25 2P(a*)=A
(T3.22; T3.23)
T3.26 (x)—P(x) = P(—x)
(T3.11; D3.3; D3.5; D3.4)
T3.27 xX)(¥) P(xAny) € P(x) N P(y)
(T1.50; T3.2; T1.48; D3.5)
T3.28 (X)(»)(~ECx,y D P(x) N P(y) =P(xAy))
(T3.1; D3.5; T3.27)
T3.29 (x)(») P(ix) N P(iy) = P(ix A iy)
(T3.28; T2.25; D3.5)
T3.30 (xX)(») P(x) UP(y) =P(x+Y)
(T3.6; D3.5).

The above theorems indicate something of the relationship between the
algebraic operators on the set of all space-time regions and the set theoretic
operators on the subsets of the set of all points. T3.27, T3.28, and T3.29 are
of particular interest. T3.27 and T3.28 are due to the fact that there is no
boundary element (or region) where ECx, y; there is no region to correspond
to the set of boundary points which the two externally connected regions have
in common; whereas T3.29 shows that the interiors of two connected regions
do have a common region to correspond to the set of their common points. This,
as we shall see, gives us the desired result that the interior of a set of boundary
points is identical to the null set. In order to compare the pseudo-topological
interior and closure operators on the set of all regions with the topology of the
subsets of the set of all points, we must introduce an interior operator, , on the
subsets of V, which associates with each set of points the set of all its interior
points. It may be defined as follows:

D3.6  IX=Y =4 (3x)(3y)(X = P(x) N P(y)-Y = P(ix) N P(iy) v
[Y=A-~(3x)3y)(X=P(x) N P(y)-Y = P(ix) N P(iy))].

This closure operator, C, can be introduced in the conventional way as:
D3.7 CX =ges I —X.

The reason for introducing the interior operator symbol, 7, in terms of N
is to simplify the proofs where ~(3z) z = x A y. It immediately follows from this
definition that the interior of the set of points incident in region x is identical
to the set of points incident in the interior of the region x:
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T3.31 (x) IP(x) = P(ix).

Some other theorems which follow in the system with these definitions added
are:

T332 IVv=V
(T3.31; T2.28; T3.23)
T3.33 (x)(») I(P(x) N P(y)) =IP(x) N IP(y)
(D3.6; T3.31)
T3.34 (x) IP(x) € P(x)
(T3.17; D3.2; T2.4; D3.5; T3.31)
T3.35 (x) IIP(x) = IP(x)
(T3.31; T2.27; T3.31)
T3.36 IA=A
(T3.7; D3.6)
T3.37 X)(V)(ECx,y DI(P(x) NP(y)) =A)
(T0.27; T2.19; T2.23; T3.14; D3.2; D3.5)
T3.38 CP(a™) = P(a*)
(T3.24; T3.36; T3.25; D3.7)
T3.39 (x) CP(x) = P(cx)
(D3.7; T3.26; T3.31; T3.26; T2.37; T3.38)
T3.40 CA=A
(T3.22; T3.32; T3.22)
T3.41 (x) P(x) € CP(x)
(T3.17; T2.41; D3.5; T3.24; T3.38; T1.32)
T3.42 (X)(¥) C(P(x) U P(y)) = CP(x) U CP(y)
(T3.33; T3.26; D3.7; T1.32)
T3.43 (x) CCP(x) = CP(x)
(T3.35; T3.26; D3.7; T3.35; T3.22; T3.23; T1.32).

T3.31 and T3.39 show the relationship between the interior (closure) of a
set of points incident in a region and the interior (closure) of the region. The
important theorems in the above list, however, are T3.32, T3.33, T3.34, and
T3.35 for the interior operator and T3.40, T3.41, T3.42, and T3.43 for the clo-
sure operator on the sets of points incident in regions. They express the tradi-
tional topological properties of sets of points, and they, unlike those of the
algebraic operators on regions, are existentially unconditioned, due to the pres-
ence of the null set and sets of boundary points at the level of sets of points.
It is T3.37 which characterizes the sets of boundary points. It is T3.37 which
characterizes the sets of boundary points. Again, however, T3.39, T3.41, T3.42,
and T3.43 require that the theorem be proven both for the case in which
(3z7) z = —x and the case in which ~(3z) z= —x, or x = ¢”, in order to remove
any existential conditions on the theorems. Thus the absence of a null region and
boundary elements at the level of regions appears to have no serious con-
sequences beyond the complication of the proofs of the theorems.

The following four theorems express the relationship between the regions
and their mereological relations and the sets of points incident in regions and
their topological operators. The theorems confirm our original heuristic interpre-
tation of these relations.
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T3.44 X)(Y)(Cx,y=~P(x) N P(y) =A)
(T3.14; D3.2)
T3.45 xX)(»)(Ox,y= ~IP(x) NIP(y) =A)
(T3.44; T2.23; T2.19; T3.31)
T3.46 X)(P)IECx,y = (~P(x) NP(y) =A-IP(x) NIP(y) =A)]
(D0.6; T3.44; T3.45)
T3.47 xX)(»)(Px,y = P(x) € P(y))
(T3.7; D3.2).

Further investigation of the topological properties of the sets of points inci-
dent in regions, although important, is largely of mathematical interest. Let us
turn to a question of more interest to a philosopher or constructionist, the ques-
tion of the alternative techniques for defining, or constructing, points. Our D3.1,
as suggested above, has a close parallel in the algebraic definitions; nonetheless,
the basis used, with slight modification and extension, was one proposed by
Whitehead [18] for a nesting definition. In his earlier work [16],[17], he based
his construction of physical space-time and its geometry on the mereological rela-
tion x is a part of y; or conversely, y extends over x. Nicod [10] had pointed out
that the individuals, so nested, could converge toward boundaries as well as
interiors of individuals without discrimination, and he suggested an alternative
nesting relation: x is in the interior of y. Also, de Laguna [6], attempting to over-
come this difficulty, suggested a primitive relation: x can be connected with y,
in terms of which one can construct the relation: x is a nontangential part of y,
apparently Nicod’s undefined relation. As a consequence, Whitehead [18] chose
de Laguna’s primitive relation as a basis for his last attempt to formulate his
final theory of points.

We have then the Nicod-de Laguna-Whitehead nesting relation in our cal-
culus of individuals based on connection; namely, x is a nontangential part of
y (D0.8). What is also of interest is that the nesting relation of Menger [8], x
is completely contained in y, is also available in our present system. Menger
informally characterizes his relation as holding between the interiors of lumps
and renders it as, ‘the closure of x is contained in y’. With our pseudo-
topological operators and our definition of ‘x is open’ (D2.4), we can define his
relation as follows:

CCx,y =qesf OPx-OPy-Pcx, y.

The presence of both these nesting relations in the present system makes it pos-
sible to compare the two relations as well as the two resulting definitions of a
point. Likewise, it makes possible a comparison of these two nesting definitions
of a point with our modified algebraic definition of a point given above.
Certainly, the modified algebraic definition of a point in this paper, as well
as the nesting definitions mentioned above, have a distinct advantage over nest-
ing definitions such as Tarski’s [14] nested spheres, for the former require that
the individuals have no particular shape. But our modified algebraic definition
has an apparent advantage over all the above nesting definitions in that it does
not require that the individuals be continuous, or connected in the topological
sense. With the introduction of the sum of two regions, z = x + y, it allows for
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separated and scattered regions as individuals. If, however, one desires nested
continuous, or connected, individuals for the construction of points, as Nicod,
de Laguna, Whitehead, and apparently, Menger, the presence of the pseudo-
topological operators on regions makes it possible to define such individuals.
We need first a definition for ‘x is separated from )’ as follows’:

D2.6 SPx,y =gef ~Ccx,y-~Cx, cy.
Then we can define ‘x is a connected individual’ along the usual lines as follows:
D2.7 CONx =4¢r ~(32)(3y)(z+y =x-SPz,y).

In short, x is connected if, and only if, x cannot be divided into two exhaustive
parts which are separated. There is also no reason to think, once we have an
advanced enough geometry, that Tarski’s spheres could not be defined in the
present system. Thus the extended calculus of individuals based on connection
with its modified algebraic treatment of points is a far more general and power-
ful system than any of those alluded to in the above remarks. The only advan-
tage we would claim at present for our modified algebraic definition of a point
is the straightforward way in which the pseudo-topology of the regions is
mirrored in the topology of the subsets of the set of all points.

A word also should be said about the atomic definitions of points and our
present proposal. Since the system presented here is nonatomic (A2.1'), we
cannot treat points as atoms in this extended version of the calculus of
individuals based on connection. On the other hand, if we made the basic cal-
culus atomic, we would lose most of the topological advantages of the present
treatment. There are good reasons not to sacrifice the present advantages for
an atomic definition of points. As Mortensen and Nerlich [9] point out, an
atomic definition of points is also philosophically questionable, because of what
they call “the epistemological priority of intervals over points: Separation and
intervals between points are somehow visible in a way that points are not”
(p. 217). Although the notion of “epistemological priority” is not a clear one,
it is the unobservability of points in contrast to the observability of events,
volumes, regions, lumps, spheres, etc. that has been the impetus for constructing
points as sets of the latter, beginning with Whitehead’s early attempts to those
of the present day. As Menger [8] puts it, “a topology of lumps seems to be
closer to the physicist’s concept of space than is the point set theoretical con-
cept. For naturally all the physicist can measure and observe are pieces of space,
and the individual points are merely given as the result of approximations”
(p. 85). To treat points as atomic parts of lumps puts points on the same level
as the lumps. A point is simply a lump which has no lump, except itself, as a
part.

In the beginning of the present paper, we allowed our lower case variables
to range over spatio-temporal regions. The interesting question arises: Can the
temporal ordering of regions be mirrored in the ordering of points somewhat
analogous to the way in which we have seen the topological properties mirrored?
In order to examine this possibility, let us add to our calculus of individuals
another two-place primitive predicate, ‘Bx,)’, to be taken as a rendering of
‘x is wholly before y’. We immediately have two obvious axioms:
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A4.1 (x){~Bx,x-(y)(z) [(Bx,y-By,z) D Bx,z]}
Ad4.2 X)(¥)(Bx,y D {~Cx,y-(z)(W)[(Pz,x-Pw,y) D Bz, wl}).

A4.1 tells us that wholly before is irreflexive and transitive, and A4.2 relates the
new primitive relation to the mereological relations in such a way as to charac-
terize the relation as wholly before, rather than partially before. Our heuristic
interpretation of ‘Bx, y’ which shall guide our construction is that all the points
of x are before all the points of y. With this new primitive, we can now
formulate definitions for ‘x is after y’, ‘x is contemporaneous with y’, ‘x is par-
tially contemporaneous with y’, ‘x is partially before y’, and “x is partially after
y’ as follows:

D4.1 Ax,y =4t By, x

D4.2 COx,y =4es (2)[Pz,x D ~(Bz,y v Az,¥)]-(2)[Pz,y D ~(Bz,x v
Az, x)]

D4.3 PCx,y =4 (32) 3W) (P7,x-Pw,y-COz, w)

D4.4 PBx,y =g4¢ (32) (P2, X Bz,y)

D4.5 PAx,y =4er (32) (P2, Xx-AZ, ).

With these additional axioms and definitions, the following become
theorems of our extended calculus:

T4.1 (x) ~Bx,x

(A4.1)

T4.2 x)(»)[(Bx,y-By,z) D Bx, 7]
(A4.1)

T4.3 (x)(y)(Bx,y D ~By, x)
(T4.2; T4.1)

T4.4 (x)(¥)(Bx,y = {~Cx,y-(z) (W) [(Pz,x-Pw,y) D Bz, w]})
(A4.2; TO.5)

T4.5 (x)(»)(2)[(Px,y-Bz,y) D Bz, x]
(A4.2; TO.5)

T4.6 x)(»)(2)[(Px,y-By,z) D Bx,z]
(A4.2; TO.5)

T4.7 x)(y)(Bx,y D ~Px,y)
(A4.2; TO.11)

T4.8 (x)(»)[(z)(Pz,x D Bz, y) = Bx, y]
(TO.5; T4.6)

T4.9 (x) ~Ax,x
(T4.1; D4.1)

T4.10 xX)(¥))[(Ax,y-Ay,z) D Ax, 7]
(T4.2; D4.1)

T4.11 x)(¥)(Ax,y D ~Ay, x)
(T4.3; D4.1)

T4.12 X)) (N (Ax,y={~Cx,y-(2)(W)[(Pz,x-Px,y) D Az, w]})
(T4.4; D4.1; T0.2)

T4.13 x)(¥)(Ax,y D ~Px,y)
(T4.12; TO.11)

T4.14 xX)(»)()[(Px,y-Ay,z) D Ax,z]
(T4.5; D4.1)
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T4.15 X)) (V)R [(Px,y-Az,y) D Az, X]
(T4.6; D4.1)

T4.16 X)W [(RR)(Pz,xD Az,y) = Ax,y]
(T0.5; T4.14)

T4.17 (x) COx, x
(T4.7; T4.13; D4.2)

T4.18 (x)(¥)(COx,y = COy, x)
(D4.2)

T4.19 (x)(y)(Px,y D PCx,y)
(T4.17; T0.5)

T4.20 (x) PCx, x
(T4.19; TO.5)

T4.21 (x)(»)(PCx,y = PCy, x)
(D4.3)

T4.22 x)(»)(COx,y D PCx,y)
(T0.5; D4.3)

T4.23 (x)(¥)[~COx,y = (PBx,yv PAx,y)]
(T4.18; D4.4; D4.5)

T4.24 xX)(»)R)[Bx+y,z2D (Bx,z-By,z)]
(T4.6; T1.17; T1.15)

T4.25 x)(»)(z)[Bz,x+yD (Bz,x-Bz,y)]
(T4.5; T1.17; T1.15)

T4.26  (x)(»)(2){(@3w)w=XxAzD [Bx,y D Bxnz,y]}
(T4.6; T1.50)

T4.27 X))@ {@w)w=yAzD [Bx,y D Bx,yrz]}
(T4.5; T1.50)

T4.28 (x)(~Bx,a*-~Ax,a")
(T4.7; T4.13; T1.25)

T4.29 (x) PCx,a*
(T4.19; T1.25)

T4.30 (x)(»)[Bx,y D (Bx, iy-Bix, y-Bix, iy)]
(T4.6; T4.5; T4.4; T2.4).

T4.3-T4.8 give us some indication of how the temporal ordering relation,
x is before y, functions with reference to the relation, x is a part of y. T4.9-
T4.16 are due to the fact that the relation, x is after y, is the converse of the
relation, x is before y. T4.24-T4.29 indicate something of the way the temporal
ordering relation orders the pseudo-algebraic elements. And T4.30, along with
A4.3, indicate the way in which it orders the interiors of regions.

With our primitive temporal ordering relation holding between regions, it
is now possible to define a temporal ordering relation holding between points
as follows:

D5.1  B(X,Y) =4 PT(X)-PT(Y)-(3x)(3y)(x € X-y € Y-Bx, y).

There is no ambiguity between ‘Bx, y’ and ‘B(X, Y)’ since the former contains
individual variables ranging over regions and the latter variables ranging over
sets of regions. With this definition we can define ‘point X is after point ¥’ and
‘point X is contemporary with point Y’ in the usual way:
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D52  A(X,Y) =4 B(Y, X)
D53  C(X,Y) =4t PT(X)-PT(Y)-~B(X,Y) ~A(X, Y).

Along with these new definitions, we need two new axioms:

AS.1 xX)(Y)(~Bx,y D AX)@AY){PT(X)-PT(Y)-xEX-y€ Y-(2)(W)
[zeX-we Y)D ~Bz,wl}).

AS5.2 X)X {(PT(X)-PT(Y) - x€EX-yEY-Bx,Y) D(2)(w)
[(zeX-we YY)D (u)(Av)(Pu,z-uc X-Pv,w-vE€ Y-Bu,v)]}.

These two axioms together perform functions analogous to those of A2.1 and
A3.1. In the case of A2.1, the first half of the main conjunct assured us of the
existence of needed individuals, namely, the interiors of regions, and the second
half is needed because of the absence of the boundary elements in external
connectedness. In the case of A3.1, we are assured of the existence of needed
individuals, namely, points, and again are compensated for the absence of the
boundary elements in external connectedness. If, for example, it were not for
the missing boundary elements, A3.1 could be written: ‘(x)(3X)(PT(X)-
x € X)’. Analogously, AS5.1 assures us of the existence of needed elements,
namely, a pair of points such that no region of the first will be wholly before
any region of the second. AS.2 compensates for the missing boundary elements
in external connectedness. If these elements were not missing, then A5.2 would
be provable.

With D5.1-D5.3, AS.1, and A5.2 added to our system, the following
become theorems of the system:

T5.1 (X)Y(V[(PT(X)-PT(Y)) D(B(X,Y)vVC(X,Y)VA(X, Y))]
(D5.2; D5.3)
T5.2 (X)(Y)(B(X,Y)={PT(X)-PT(Y)-(x)(»)[(xeX-yEY)D
(3z)(Aw)(Pz,x-z€ X-Pw,y-w€E€ Y-Bz,w)]})
(AS5.2; D5.1; T3.7)
T5.3 xX)(»){Bx,y = (X)(Y)[(PT(X)-PT(Y)-x€X-yEY) D
B(X,Y)l}
(D5.1; AS.1)
T5.4 (X)~B(X, X)
(T3.14; D3.2; A4.2; D5.1)
T5.5 (X)(Y)(2)[(B(X,Y)-B(Y,Z)) DB(X,2)]
(T4.2; TA4.5; T5.2; T3.7)
T5.6 X)(Y)(B(X,Y)D~B(Y,X))
(T5.5; T5.4).

The important theorems here are, of course, TS.3 and T5.4-T5.6. T5.3 is
analogous to T3.14-T3.17 in that just as the latter theorems indicated that our
definition of points conforms to our heuristic interpretation of the mereologi-
cal relations, T5.3 indicates that our temporal ordering of points conforms to
our heuristic interpretation of ‘Bx, y’: x is wholly before y if, and only if, every
point of x is before every point of y. And T5.4-T5.6 tell us that our temporal
ordering relation on points has the conventional properties of being irreflexive,
transitive, and asymmetrical.
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In characterizing the primitive relation, x is wholly before y, we did not
characterize it in such a way that the relation, point X is contemporaneous with
point Y, turns out to be transitive. If we take ‘Bx, ¥’ to be a rendering of ‘x is
wholly in the causal past of )’, then at the level of points we can construct the
Minkowski cones in our space-time topology. ‘X = the causal past of Y’,
‘X = the causal future of ¥’, and ‘X = the causal contemporaries of Y’ can be
defined as follows:

D5.4 X=CP'Y=¢s X ={X:B(X,Y)}
D5.5 X=CFY=g¢4X={X:A(X,Y)}
D56 X=CO'Y=¢4sX={X:C(X,Y)}.

Sets analogous to Carnap’s [1] world lines can be defined in the system as
follows:

D5.7 WL(X) =g ~X=A-XS V- (X)[XEXD (AY)(YEX-
B(Y,X))-(3Z)(Z€ X-B(X,Z)))]- (X)(Y)[(XEX-YEX) D (B(X,Y) v
B(Y,X)vX=Y)]-(X)(V)[(XEX-YEX-B(X,Y))D(AZ)(ZEX-
B(X,Z)-B(Z,Y))].

A world line, then, is a nonempty set of space-time points, ordered by the tem-
poral relation in such a way that it has no initial member and no final member,
is connected and dense. A world line is a causal temporal path through the space-
time points. A Carnapian simultaneous space can then be defined as follows:

D5.8 SS(X) =¢et (X)(Y)[XEX-YEX)DC(X,Y)]-(Y)[WL(Y)D
AX)(XeY-XEX].

A simultaneous space is a set of points any two of which are contemporary and
it is complete in that it includes one point from each world line. There can be
alternative simultaneous spaces for any one point, since the relation, X is
contemporaneous with Y, is not transitive. These definitions are sufficient to
indicate the possibilities of the constructed space-time topology.

If it is the case, and it certainly appears to be the case, that we do not
observe points, then they must be constructed in terms of something that we do
observe. And if it is the case, as it appears to be, that as our ability to observe
and measure improves, we observe smaller and smaller events, lumps, or regions,
which approach points, then the calculus of individuals based on connection
gives us a basis for constructing space-time points for science on the basis of
these smaller and smaller individuals which approach points. Such a construc-
tion of points was the basis of Whitehead’s [18] and Russell’s [11] dream for
constructing the physical world of natural science. Such a construction could also
give us a more adequate construction of points for a program similar to
Carnap’s Aufbau [2]. After abstracting qualities from elementary experiences,
Carnap utilizes ordered quadruples of real numbers as spatio-temporal points,
and then assigns qualities to points such that g, a quality, is at (¢, x, y,Z), where
t, x, ¥, and z are real numbers. But as Quine [11] has pointed out, such a treat-
ment is hardly compatible with Carnap’s phenomenological starting point. This
suggestion for reconstructing the Aufbau and the above use of Carnap’s
definitions of world lines and instantaneous spaces must not be taken, however,
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as maintaining that the points as constructed here would have all the properties
required for such a construction. No doubt additional axioms would be required
as we saw, for example, in introducing A3.1, AS5.1, and AS5.2. Otherwise world
lines and instantaneous spaces may not exist. It should also be pointed out that
in order to utilize a construction of points such as the present one, Carnap’s
elementary experiences, like Whitehead’s percipient events [16],[17] or actual
occasions [18], must themselves be taken as regions, divisible into subregions and
exemplifying the mereological relations of our calculus of individuals. In which
case, then, ‘q is at (¢, x, y, z)’ could be replaced by a topological mapping of the
qualified subregions of an elementary experience into the regions of a*. This
would, however, depend upon our first overcoming the companionship difficulty
and the difficulty of imperfect community. And a solution becomes possible,
if elementary experiences are taken as divisible regions.® Whether such a con-
structed system would be called phenomenal would depend upon how the term
‘phenomenal’ was used. In short, it would depend upon whether or not we take
contemporaneous and past regions to be given to a momentary experience. Some
philosophers would maintain this to be the case; others would not. This, of
course, is not the place to reconstruct the Aufbau. I mention this only to sug-
gest the possible usefulness of the above treatment of points.

NOTES

1. See [12], “Preface”. Carnap also mentions this in [2].

2. Universal Instantiation has to be limited here because of the absence of certain
elements; namely, the null individual and the boundary elements. It must be limited
to elements which exist when these elements are introduced by ‘f’X’. See [4].

3. The numbering here is the numbering in [4].

4. It should be pointed out that there is a serious typographical error in A2.1 in [4]. It
should read: ‘(x)((3z)NTPz,x-(»){(z)[(Cz,x D 0z,x)-(Cz,y D Oz,y)] D (2)(Cz,x A
D O0z,xnYy)}).” The only difference between A2.1 in [4] and the present A2.1’ is
that ‘~z = x’ has been added to make the pseudo-algebra nonatomic for the defini-
tion of points. The question of atomaticity versus nonatomiticity was left open in [4].

5. I have introduced this numbering here to conform with [4]. Thee definitions should
be a part of the topological part of the calculus of individuals based on connection.

6. I outlined such a solution in [3] and developed it further along slightly different lines
in “Qualia, Extension and Abstraction” (forthcoming).
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