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Some Remarks on Equivalence in Infinitary

and Stationary Logic

MATT KAUFMANN*

The logic L(aa) is obtained by adding a quantifier aa ("almost all")
ranging over countable sets (see [1]). If instead one extends first-order finitary
logic by allowing arbitrary conjunctions and disjunctions and quantification
3<jcα: a < λ) and V(xa: a < λ)(λ<κ) and restricts to formulas with fewer than
K free variables, one obtains the infinitary logic Looκ (see, for example, [3]). The
following theorem extends Section 5 of [1] and answers a question of Nadel.

Theorem 1 For every cardinal /c, there are structures A and B such that A
and B satisfy the same sentences of Looκ but not of L(aa).

Proof: Fix K > ω. It is routine to construct a chain (Aa: a < κ+) of structures
for the vocabulary {X, Y,P, e}, satisfying the following inductive hypotheses (1)
through (4) below. Here X, Y, and P are unary relation symbols and e is binary.
We write Aa = {Aa\Xa9 Ya9Pai E), and we use the standard notation [Z]ω for
the set of countably infinite subsets of a set Z.

(1) Aa = XaU Ya, Ya = [Xa]
ω, Pa^ Ya9 and E is the membership relation on

Xa X Ya. Also a < β implies Aa £ Aβ.

(2) μrα|=2\
(3) Suppose that Z0^Xa and \Z0\ < K, and that \Z\ =κ and (Z0U [Z 0]ω,

^«Π [Z 0]ω, E) c (ZU [Z]ω, P, E). Then for some Z'<^Xa+u there is
an isomorphism j from (ZU [Z]ω, P, E) onto (Z' U [Z']ω, Pα +i Π
[Z']ω, E) such thaty extends the identity function on Z 0U [Z 0]ω .

(4) If α is a limit ordinal of cofinality ω, then for all s E K J ^ Γ -
, , L β<a J

U lχβ]ω> we have s GPa.
β<a

*We thank Mark Nadel for raising questions that led to the theorems in this paper. We
also thank Ken Kunen for bringing Lemma 3 to our attention.
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Similarly define a sequence (Ba: a < κ+) satisfying (1), (2), and (3) above (with
Aa = (Aa;Xa, Ya9Pa, G) changed to Ba = (Ba,Xa, Ya9Pa, G)), along with (4)
changed so that s£Pa9 i.e.,

(4') If a is a limit ordinal of cofinality ω, then f or all s G K J Xβ [ -

U [Xβ]
ω, wehaves£P α .

β<a

Now let A = U Aa and B = U Ba.

The class of countable subsets of \A | satisfying the hypothesis of (4) (for
some a < κ + ) is clearly closed unbounded in the class of countable subsets of
\A\, so A \= aasP{s Π X). More precisely, A ι= aasly[vx(xey++s(x) ΛX(X)) Λ

P(J>)] Similarly, (4') implies that B ι= ύrαs1 -ιP(.s Π ̂ T), hence B \= ~^aasP(s Π
X). Therefore v4̂ and B do not satisfy the same sentences of L(aa).

On the other hand, consider the set of all partial isomorphisms / from (a
subset of) \A\ to \B\ satisfying the following conditions: |domain(/) ΠXA\ <
K, [domain(/) Π XA]ω = domain(/) Π YA, and |range(/) Π X 5 ] ω =
range(/) Π y β . It is easy to see, using (3), that this set is an appropriate back-
and-forth system for L^^ (cf. [2], or simply check by induction on formulas
that every such function preserves truth, and 0 is such a function). Therefore
A and B satisfy the same sentences of LooK+. D

Theorem 1 produces structures of power 2K which are Loo^-equivalent but
not isomorphic. We now consider whether LooK+(αύf)-equivalent models of
power κ+ must be isomorphic. (Here L^^iaa) is formed using the formation
rules of Loo/(+ and of L(aa), so 6aaJ still ranges over countable sets.) This can
fail for Abelian groups if K = ω. This follows from the following immediate con-
sequence of [4], 1.5(4) and 5.2, where we write aaκ to denote the interpretation
of W using the cub filter on Pκ(κ) instead of Pωi(κ): (Assuming V- L) For
every regular cardinal K which is not weakly compact, there are 2K different
Abelian groups of power K which are pairwise £0^(00κ)-equivalent.

Here we consider only the interpretation of '##' over countable sets, and
we treat only successor K, leaving open the limit case. A well-known construc-
tion easily yields Looωi(αα)-equivalent linear orders of power ωi which are not
isomorphic; this is Proposition 1. Theorems 2 and 3 extend this result to cardi-
nals greater than ωi under certain hypotheses.

Proposition 1 There is a family of 2ω i pairwise nonisomorphic linear
orders of power ωx which are all Looωi (aa)-equivalent.

Proof: For all XQ ωu let (Lx, <x) be the ordered sum £) Aa, where Aa is

(Q, <) if 0 < a G X and Aa is 1 + (Q, <) otherwise. If the symmetric differ-
ence (X- Y) U (Y-X) is stationary then (Lx, <x) and (Lγ, < γ) are not
isomorphic. Now it is well-known that there is a family {Xγ: 7 9 ω i} of 2ω i

stationary subsets of ωu each with stationary complement, whose pairwise sym-
metric differences are stationary. For example, let {Sa: a < α }̂ be disjoint sta-
tionary sets by Ulam's Theorem (see, e.g., [6], II.6.11, 6.12), and for
0 ψ Y5 ω i let Xγ = U{Sa: α G Γ j . I t remains to prove that if X, Y, ωx - X,
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and ωx — Y are stationary, then (Lx,<x) and (Lγ

9 <γ) are Lo.^aa)-
equivalent. In fact, we show that for any isomorphism / from an initial segment
/ of Lx onto an initial segment / of L r , such that / and / either both have or
both do not have suprema (in <x and < y, respectively), we have (Lx, <x) t=
φ(domf) iff (L γ,<γ)t= Φ(rnf), all φ £ L^aa); that is, (Lx, <x) t= φ[s]
iff (L γ, < γ) t= φ[f°s] for every assignment s of the free variables of φ into the
domain of/. (The conclusion follows by setting/= 0.) The proof is a standard
induction on complexity of φ; we focus on the 'aa9 step. (The '3' step follows
as in the proof of (*) in Theorem 2.) Suppose (Lx, <x) t= aasφ(s,domf).
Then since JT and α>i - X are stationary, <LX, <^> \= φ(s,domf) for some
initial segment 5 which has a supremum, and for one with no supremum. It
follows from the inductive hypothesis that (Lγ,<γ) \=φ(s,rnf) for every
sufficiently large initial segment s; hence <L r , < γ) t= aasφ(s, rnf). The reverse
direction is similar. To be more careful we should replace 0(5,...) by a
formula φ' in the above argument, in which each occurrence of s(x) is replaced
by \ / x — yn9 where the variables yι do not occur in φ and are interpreted by the

elements of s. We omit the details. D

For the next theorems we need some properties of the cub filter from
Kueker [5]. (The first part is Corollary 2.2 of [5]; the second part follows easily
and is also well-known.)

Lemma 1 Suppose that D is cub in Pωi{B) and A <^B.
(i) There is a countable family $ of finitary functions on B such that for every
countable sQB which is closed under the functions in 5, we have sGD.
(ii) There is a cub C c Pωχ{Λ) such that Cc {s Π A:s G D], D

The following well-known characterization of saturated dense linear orders
is also useful. For this purpose it is useful to define the coinitiality ci{I) of a
proper initial segment /of (L, <) to be the cofinality of (L — I, <~ι \ (L — /)>.
We understand the cofinality to be 0 if there is a greatest element; similarly for
coinitiality.

Lemma 2 For any regular cardinal λ, a dense linear order (L, <) is λ-
saturated iffcf(L) > λ or L has a greatest element, ci(L) > λ or L has a least
element, and for every initial segment I of (L, <) with 0£l£L9 cf(I) >λor
ci(I) > λ. D

The following theorem generalizes Proposition 1 above using a similar
familiar construction of nonisomorphic orders via disjoint stationary sets. We
will use the notation \AS\ =AS

9 |^45(α:)| =As(a)9 and so on.

Theorem 2 Suppose κ<κ = K. Then there is a family of2K+ pairwise noniso-
morphic dense linear orders of power κ+ which are all Looκ+(aa)-equivalent.

Proof: The case K = ω is just Proposition 1, so suppose κ> ω. Since κ<κ = K,
there is a saturated model (L, <) of Th(Q, <), of power K. For each SQκ+

define As to be the ordered sum of linear orders A^(a <κ+), where ^ =
1 + (L, <) if a E S and c/(α) = K, and ^ = (L, <) otherwise. As in the proof
of Proposition 1, it suffices to show that As is L^+iaa)-equivalent to As' for
all S, S' c K. This is a special case of the following claim.
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(*) Suppose that / maps a proper initial segment / of A s isomorphically
onto a proper initial segment /' of As\ and that cf(I) =cf(Γ) = «(/) =
ci(Γ) = K. Then for all φ E L^+iaa), As^ φ(domf) iff As' ι= φ(rnf).

Noting that the atomic case of (*) is trivial, we proceed by induction on φ. The
propositional steps are clear, so suppose φ is 3xψ and As t= ψ(α, domf) where
/, /, /' are as in (*). Choose J^I and / ' £ /' such that α c / and cf(J) =
c/(/') = d(J) = c/(/') = K. Now / — / and /' - /' are saturated by Lemma 2.
Hence they are isomorphic, and if g is an isomorphism then the inductive
hypothesis applied t o / U g to show As' \=ψ((fU g)(ά),rnf). Hence As't=
3xψ(x9rnf). The reverse direction is similar.

Finally, suppose As t=aasφ(s9domf). It is clear that the set of all
s E Pωι (A s) such that the set [s Π A s -1] is a dense linear order without end-
points is cub in Pωι(As). Hence there is a cub family of such s, such that
As t= \[/(s,domf). Now by Lemma l(ii) we may choose a cub CQ Pωi(/) such
that for all sEC, there is t E Pω,C4 s — /) such that Ms a dense linear order
without endpoints and A*' \= ψ(s U t9domf). Let C = {/[s] U ί ί G C ,
ί E Pωι(As' - / ' ) , ί a dense linear order without endpoints}. Clearly C is cub.
The proof that As> t= ψ(u, rnf) for all w e C ' i s similar to the argument in the
'3' case, since one may choose 'g' to extend any isomorphism between the
appropriate countable dense linear orders without endpoints.

We do not know if the condition κ<κ = K can in general be weakened
to 2<κ = K in Theorem 2. However, our final theorem asserts that this is the
case if V = L. In fact, what we need is the following consequence of Jensen's
principle D*.1

Lemma 3 Assume V=L. Then for every infinite cardinal K and every regu-
lar cardinal μ < K, there is a stationary subset E of {a< κ+: cf(a) = μ} such
that for all β<κ+, EΠβ is not stationary in β. D

Theorem 3 Assume F = L. Then for every infinite cardinal K there is a
family o/2K+ linear orders of power κ+ which are pairwise Looκ+(aa)-equivalent
and nonisomorphic.

Proof: By GCH in L, we may assume that K is singular (or else Theorem 2
applies). Then there is a (unique) special model A of Th(Q, <) of power K. By
Lemma 3 there is a stationary subset E^ {a < κ+:cf(a) = cf(κ)} such that
EΠβ is not stationary in β9 all β < κ+. These facts are exactly what we use
about L in this proof.

For any S g κ+ define A% = 1 + A if a E S, and A% = A if a £ S, and let
As be the ordered sum Σ{A^: a < κ+}. By partitioning E into κ+ disjoint sta-
tionary subsets (as before, see, e.g., [6], II.6.11), we see (as in the proof of
Proposition 1) that it suffices to prove that A s and A s> are Looκ+(aa)-QquiwalQnt
whenever S and S' are stationary subsets of E such that E — S and E — S' are
stationary.

Let us say that a dense linear order (L, <), without a last element, is short
λ-sαturαted if it satisfies the criteria of Lemma 2 except that we make no restric-
tion on the cofinality of L. Now fix a strictly increasing sequence <κ/: / < cf(κ))
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with sup K. A dense linear order B of power K is short special if it is the union
of an increasing chain </?,: i<cf(κ)) of elementary submodels such that /?, is
short /{/-saturated for all i<cf(κ). We claim:

(1) Suppose SQE. For all a<β<κ+ let A(cc,β) be the ordered sum
Σ{Aξ: a < y < β}. Then A(a, β) is short special.

We prove (1) by induction on β. Suppose (1) holds for all β' < /?, and fix a < β.
Notice that if β = 1 then A(0,β) =AQ is short special because it is special.
Next, suppose β = y + 1 where a < y (as the case β = a 4- 1 follows just as the
case β — 1). Then A (a, β) is the ordered sum A (a, y) + Ay. If γ ί S then since
^4(α, Y) is short special and Ay is special with no least element, it is easy using
Lemma 2 to see that A (a, β) is special. If γ G S then γ G is so c/(γ) = cf(κ).
Therefore A (a, β) is special, because it is the ordered sum of two special models
by the following claim:

(2) If B is a short special dense linear order and cf(B) =cf(κ), then B is
special.

To prove (2), suppose B is the increasing union of submodels J5, (ι < cf(κ))
where each Bj is short nf -saturated. By reindexing if necessary, we may choose
an increasing sequence <#/:/< cf(κ)) cofinal in B such that afEBi for all
i<cf(κ). Then if B is the submodel obtained by restricting Bt to {xGB^:
x < 0/}, then B is /c+-saturated and still B = U {5/: / < c/(/c)}, so 5 is special.
This concludes the proof of (2), and hence of the successor step of (1).

Finally we prove (1) for β a limit, a < β fixed. Since SQE,v/e may choose
a continuous strictly increasing sequence </?,: / < cf(β)) from β — S which has
supremum β, such that a = β0. For each i < cf(β) let A [i] =A(βh ft+i). Then
each model A[i] is short special by the inductive hypothesis, and A{a,β) =
Σ{A[i]:i< cf{β)}. For all /< cf(β) we write A[i] as an increasing union of
elementary submodels A[i]j (j < cf(κ)) such that A [i]j is /(/-saturated. Now let
Bj = Σ{A [i]j: i < cf(β)}. Since ft <£ S for all / < cf(β), no model A [i]j has a
least element (except perhaps for A[0]j). It follows easily that Bj is short */-
saturated for ally < c/(j3). Since A(a, β) is the increasing union of the models
BjU<cfW)> it follows that A(a9β) is short special, so the proof of (1) is
complete.

Notice that since there is a unique special model of power K, (1) and (2)
together immediately imply

(3) if α</3, a'<β'9 aES iff α'GS', and cf(β) =cf(β') = cf(κ), then
As{ot,β)=As'(a\β').

This yields the 43' step in the proof of the following claim, as in the proof of
Proposition 1.

(4) For a < κ+ let ̂ 45(α) denote A 5(0, a) (and similarly for S') and suppose
cf(a) = c/(α') = c/(κ) where α E S iff α' G S'. Also suppose/M 5(α) =
^ 5 ' (α') . Then for all φGL^+iaa), As^φ{domf) iff As't= φ(rnf).

Having commented on the '3' step of the proof (by induction on φ) of (4), and
noting that the atomic and propositional steps are obvious, let us treat the case
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φ = aasφ. Moreover, even this step follows as in the proof of Theorem 2 if
cf(κ) > ω, since in that case we have (A,s) = (B, t) for all special
A, B t= ΓΛ(Q, <) of power K and all countable s, 11= ΓΛ(Q, <) which are con-
tained in A and B (respectively). (This follows just as the proof of uniqueness
of special models.) So let us assume cf(κ) = ω and As ι= aasψ(s9 domf), where
f:As(a) = As (a'). Also let us assume α, a' φ S\ the case α , α Έ S is similar.
By Lemma 1 there is a countable family $ of finitary functions on As such
that for every countable s<Ξ:A which is closed under the functions of SF,
As\= φ(s9domf). Since S is stationary, we may choose yGS such that As(y)
is closed under the functions of ίF, and such that y is the limit of an ω-sequence
a = γo < 7i < < 7/i < of elements of κ+ — S of cofinality ω. For each n,
(3) shows that there is an isomorphism/„ from As(a) onto As(yn9yn+o. Let

C consist of all countable sets s^As(a) such that the set sU UZ/Js] is

closed under the functions in 5\ Clearly C is cub in Pωι(As(a)). Now when-
ever a' < δ < η < κ+ with cf(δ) = cf(η) = ω and δ, η $. S', fix an isomorphism
fδfV from As\a') onto ^ ^ ( δ , ^ ) , by (3). Let D be the family of countable
subsets of As' which have the following properties.

(I) f-ιlsΠAs'(af)]GC.
(II) For all a, b G s and a < δ < η < κ+ with c/(δ) = cf(η) = ω and δ, η £ 5,

if a<EAs>(δ9δ+l) and 6 G^5'(r/,ry + 1), then / ^ [ J Π ^ V ) ] =
sΓ\As'(δ,η) andfatδ[snAs\a')] =sΠAs'(a\δ).

(III) For all a G 51 there is δ G /c+ - S of cofinality ω such that a EAs'(δ) and
s Π , 4 s / ( δ , δ + 1) Φ0.

It is easy to see that D is cub in Pωι(As'). We will prove:

(5) For all s G A there exists / G C a n d g 3 / such that g / U U fnlt] = ^
L /?<ω J

and g maps As(y) isomorphically onto As (δ) where δ = sup(s) -def

sup{η: (laGs) aeAs'(η9η+ 1)}.

By the inductive hypothesis, since As\=ψ(tU \J fn[t], domf\ for all teC,
then (5) implies ^ n<0) '

(6) For all s G D, if sw/?(s) G S' then 4̂ s' t= ̂ (5, rn/) .

A nearly identical argument (starting with 7 G κ+ — S of cofinality ω rather
than 7 G 5) gives a cub Dx c Pωi(^45') such that

(7) For all 5 G Dx, if sw/?(s) ί S' then ̂  5 ' 1= ψ(s, rnf).

From (6) and (7) one obtains As t= \{/(s,mf) for all sGDΠDU and hence

As \= aasψ(s9 rnf). The reverse direction of the '##' step is of course similar.

It remains then only to prove (5). Fix sGD, and choose an ω-sequence

a = δo<δχ< . . . <δn< . . . with supremum δ = sup(s), such that for all n > 0,

sΠA(δn,δn + 1) Φ 0 and δ^ G κ+ — S' has cofinality ω. (Such a sequence

exists by III.) Now let g=fU U (fbn,bn+ι°f°fή
X)\ so g maps As(y) iso-

morphically onto v45'(δ). Let t =f-ι[sΓiAs'(a')]. Then / G C b y (I), and
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g\tV \JfΛt]] =f[t] U U^Λ+i /l'l =/['] U Όf6n,6π+ί[sΠAs'(a')] =

[•yΠ,4s'(α')] U U [snAs'(δn,δn+ι)] (the latter is by (II)) = s, as desired.D

NOTE

1. Ken Kunen brought Lemma 3 (and its proof) to our attention in the case μ > ω. A
proof can be found for K = ω in Baumgartner [2], p. 221, who attributes the result
to "Magidor (and possibly others)". The proof for arbitrary K is essentially the same;
just begin by restricting at the start to {a < κ+:cf(a) = μ}, μ as below.
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