Notre Dame Journal of Formal Logic Volume 25, Number 4, October 1984

An Axiomatization of the Equivalential Fragment of the Three-Valued Logic of Łukasiewicz

JACEK K. KABZIŃSKI

The problem of axiomatizing the purely equivalential fragment of the infinite-valued \mathcal{L} ukasiewicz logic (L_{∞}) and the corresponding variety of algebras remains open. Moreover for every $n = 3, 4, \ldots$ one may ask about axiomatization of the purely equivalential fragment of *n*-valued \mathcal{L} ukasiewicz logic (L_n) . In this paper we give an axiomatization of the purely equivalential fragment of L_3 and an appropriate set of identities determining the corresponding variety of algebras (see [3]).

Let us recall that the three-valued logic of Łukasiewicz L_3 is determined by the following matrix: $L_3 = (\{0, 1, 2\}, \{0\}, \rightarrow_L, \wedge_L, \vee_L, \sim_L)$ where $x \rightarrow_L y = max(0, y - x), x \wedge_L y = max(x, y), x \vee_L y = min(x, y), and <math>\sim_L x = x \rightarrow_L 2$ (see [5]).

The other well-known three-valued logic is the logic H_3 considered by Heyting in [1]. It is determined by the matrix $H_3 = (\{0, 1, 2\}, \{0\}, \rightarrow_H, \land_H, \lor_H, \sim_H)$, where $x \rightarrow_H y = y$ whenever x < y and $x \rightarrow_H y = 0$ otherwise, $x \wedge_H y = max(x, y), x \lor_H y = min(x, y)$, and $\sim_H x = x \rightarrow_H 2$.

Let the symbols L_3^{\equiv} and H_3^{\equiv} denote the purely equivalential fragments in question. Since $x \equiv y =_{df} (x \rightarrow y) \land (y \rightarrow x)$ then L_3^{\equiv} and H_3^{\equiv} are determined by the following matrices L_3^{\equiv} and H_3^{\equiv} respectively: $L_3^{\equiv} = (\{0, 1, 2\}, \{0\}, \equiv_L)$ where $x \equiv_L y = max(x - y, y - x)$ and $H_3^{\equiv} = (\{0, 1, 2\}, \{0\}, \equiv_H)$ where $x \equiv_H y = max(x, y)$ whenever $x \neq y$ and $x \equiv_H y = 0$ otherwise.

It is known that neither $L_3 \not\subseteq H_3$ nor $H_3 \not\subseteq L_3$; for example $(\alpha \to (\alpha \to \beta)) \to (\alpha \to \beta) \in H_3 - L_3$ whereas $((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in L_3 - H_3$. Nevertheless we shall prove that the purely equivalential fragments of L_2 and H_3 are identical.

The equality $L_3^{\equiv} = H_3^{\equiv}$ is an immediate consequence of the fact that the matrices L_3^{\equiv} and H_3^{\equiv} are isomorphic. The reader will have no difficulty in verifying that the required isomorphism is the mapping $i: \{0, 1, 2\} \rightarrow \{0, 1, 2\}$, such that i(0) = 0, i(1) = 2, i(2) = 1.

Received November 2, 1983

EQUIVALENTIAL FRAGMENT OF ŁUKASIEWICZ'S LOGIC 355

The notion of intuitionistic equivalential algebra introduced in [2] (see also [4]) is an algebraic counterpart of the equivalential fragment of the intuitionistic propositional logic. This fragment was axiomatized by Tax in [6] by means of the single axiom

(TA)
$$((\beta \equiv (\beta \equiv \alpha)) \equiv ((\beta \equiv (\beta \equiv \alpha)) \equiv (\alpha \equiv (\alpha \equiv (\gamma \equiv \delta)))))$$

 $\equiv ((\alpha \equiv \delta) \equiv (\gamma \equiv \alpha))$

and the following rules of inference:

(DR)
$$\frac{\alpha \equiv \beta, \alpha}{\beta}$$
 (the detachment rule for the equivalence)
(TR) $\frac{\alpha}{\beta \equiv (\beta \equiv \alpha)}$ (the Tax rule).

The class of intuitionistic equivalential algebras was defined in [2] as the variety of all algebras of type $\langle 2 \rangle$ satisfying the following identities:

(i1)
$$(a \equiv a) \equiv b = b$$

(i2) $((a \equiv b) \equiv c) \equiv c = (a \equiv c) \equiv (b \equiv c)$
(i3) $((a \equiv b) \equiv ((a \equiv c) \equiv c)) \equiv ((a \equiv c) \equiv c) = a \equiv b$

The variety of algebras corresponding to the equivalential fragment of the logic H_3 has already been axiomatized in [4] by the identities (i1), (i2), (i3), and

(h1) (((a = ((b = c) = c)) = ((b = c) = c)) = ((a = ((c = b) = b)) = ((c = b) = b))) = ((a = (b = c)) = (b = c)) = a(h2) (a = (((b = c) = c) = b)) = (((b = c) = c) = b) = a.

On the basis of axioms of the variety of intuitionistic equivalential algebras

the identities (h1), (h2) are equivalent to the one identity

(h)
$$(a \equiv (b \equiv c)) \equiv (b \equiv c) = (a \equiv ((a \equiv b) \equiv b)) \equiv ((a \equiv c) \equiv c).$$

A routine proof will be omitted.

Since just the same variety corresponds to the equivalential fragment of the logic L_3 , one gets the following:

Corollary The identities (i1), (i2), (i3), (h) form an axiomatization of the variety determined by L_3^{\ddagger} .

The results of Tax [6] combined with our corollary yield the following:

Theorem L_3^{\equiv} can be axiomatized by adopting (TA), (DR), (TR), and the following axiom: $((\alpha \equiv (\beta \equiv \gamma)) \equiv (\beta \equiv \gamma)) \equiv ((\alpha \equiv ((\alpha \equiv \beta) \equiv \beta)) \equiv ((\alpha \equiv \gamma) \equiv \gamma)).$

REFERENCES

 Heyting, A., "Die Formalen Regeln der intuitionistischen Logik," Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse (1930), pp. 42-56.

- [2] Kabziński, J. K., Algebry Równoważnościowe, Ph.D. dissertation, Jagiellonian University, Krakow, 1974.
- [3] Kabziński, J. K., "On equivalential fragment of the three-valued logic of Łukasiewicz" (abstract), Bulletin of the Section of Logic, Polish Academy of Sciences, vol. 8 (1979), pp. 182-187.
- [4] Kabziński, J. K. and A. Wroński, "On equivalential algebras," Proceedings of the 1975 International Symposium of Multiple-Valued Logics, Indiana University, Bloomington, May 13-16 (1975), pp. 419-428.
- [5] Łukasiewicz, J., "O logice trójwartościowej," Ruch Filozoficzny, vol. 5 (1920), pp. 170-171.
- [6] Tax, R. E., "On the intuitionistic equivalential calculus," Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 448-456.

Department of Logic Jagiellonian University 31-044 Krakow, Poland