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Individual Concepts as Propositional

Variables in MLv+λ

ALBERTO ZANARDO*

/ Introduction The modal languages MU and ML* of Bressan (to be
described in more detail in the second part of this introduction) are presented
in [4] and [5]; substantially, ML1* is obtained from MU by adding proposi-
tional variables and constants. For every positive integer v, the modal language
MU is based on a type-system τv which has v types ( 1 , . . . , v) for individual
terms and, accordingly, the semantical structures for MU (the Mis-
interpretations) are constructed starting from v individual domains Dχ9..., Dv

and a set Γ of (elementary) possible cases (elsewhere called worlds or points),
briefly, Γ-cases. The individual terms of type r of MU are assumed to range
over individual concepts (of type r) which are functions from Γ into Dr. This
holds similarly for the ML * -interpretations, where, in addition, the proposi-
tional variables range over sets of possible cases. In every interpretation for
MU (or ML*) the conceivability relation between possible cases is Γ x Γ and,
hence, the corresponding calculi MCV and MCI are based on Lewis's S5.

If we consider an MLp+ι-interpretation in which Dv+Ϊ is a two-element set,
then the individual concepts of type v + 1 can be considered as characteristic
functions of subsets of Γ and hence they serve to represent propositions. In this
paper this representation is used to reduce the concepts of MLv*-υalidity and
general MLl-validity (see Definition 2.2) to the analogous concepts for MLv+ι.
In this way, the completeness of the calculus MCI (with respect to general
ML*-interpretations) can be deduced from that of MCv+ι, which is proved in
[14]. In particular, in Section 3 a correspondence between MLP+^interpreta-
tions (in which Dp+{ is {0,1}) and ML £ -interpretations is defined, which be-
comes a bijection when restricted to general interpretations. In Section 4 it is
proved that a formula p of ML* is valid (or valid in a general sense) iff the same
holds for a suitable correspondent of it in MLp+ι. Furthermore, in Section 5,
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the syntactical counterparts of these results are proved and this yields the com-
pleteness of MCI.

The general interpreted modal calculus MCV was conceived, at the begin-
ning, in order to provide a logical basis suitable for the axiomatization of
physical theories. In particular, MCV aims at improving the axiomatizations of
classical particle mechanics performed in [10] and [3], as far as modalities or
quantification of possible worlds is concerned. In [10] some counterfactual con-
ditionals (considered troublesome by the author himself) have an essential role.
In [3] a generalized version of Painleve's axiomatization is presented and, in
order to treat the above conditionals rigorously, an unusual extensional language
is employed.1 The work [4] on MCV allows us to base [3] on a usual modal
language, e.g., the (unformalized) one used in [10]. The considerations above,
however, are concerned only with one aspect of Bressan's work, since, actually,
the ideas developed in [4] also have considerable relevance with respect to general
issues concerning the introduction of quantifiers into intensional contexts.

For every individual term Δ we can consider the individual concept Δ cor-
responding to it (in a given interpretation), which is a function from Γ-cases to
individuals. Then, following Carnap, we say that the extension of Δ in the
possible case y is the individual Δ(γ); thus the intension of Δ is represented by
Δ, which Bressan calls the quasi-intension (briefly, QI) of Δ. The sentences of
MU have subsets of Γ as QIs and their extensions are truth values.2 Let
Δ 1 ? . . . , An be terms in MU of the types t u . . . , tn, respectively, then t =
<*!,..., tn,0) is a (relational) type in τv and Δ ( Δ 1 ? . . . , An) is a (well-formed)
formula whenever Δ is a term of type t. In [4], N7, Bressan shows that a cor-
rect use of the predication in modal context must be nonextensional, which
means that, in general, the truth value of Δ(Δi , . . . , An) in γ(EΓ) does not
depend only on the extensions of Δ i , . . . , Δrt in 7, but on the whole intensions
of these terms. In particular, the extension of Δ in a Γ-case is a set of π-tuples
of quasi-intensions. This holds similarly for functional terms and is one of the
most important innovative features of MU.

Let us remark that the above considerations do not exclude the treatment
of extensional relations (or functions) in MU. This can be done since identity
is interpreted contingently: Ax = A2 holds in 7 iff Δ! and Δ2 have the same
extension in 7. Thus, for every relational term Δ (that we assume to be unary
for the sake of simplicity) we can define the extensionalization Δ ( e ) of Δ by
A^e){x) Ξ=D (iy)(A(y) Ax = y) and, for t = (t\90), we can define the property
Extt (which has the type </,0>) of being an extensional relation of type /:
Extt(R) =DR = R(e\ where R is a variable of type t.

Contingent identity has also an essential role in the interpretation of
definite descriptions, which are treated in a unified way (that is, without any a
priori distinction between intensional and extensional contexts) and for which
Frege's method is adopted.3 The Church lambda-abstraction is defined in
MU by means of the description operator: (kxi, . . . , xn)p = D ( 7 ^ ) ( V * I > . . . ,
xn)(R(xu..., xn) = p); and it is proved to have the usual properties.

Another important notion developed in [4] is that of "absoluteness". A
(unary) attribute F is absolute if it is modally constant (it has the same exten-
sion in every Γ-case) and modally separated (if ξ and η belong to the extension
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of F, then their extensions coincide in every or in no possible case). Bressan
shows, among other things, that the notion of absolute attributes is essential in
using natural numbers—which are defined in MU according with the Frege-
Russell definition—for instance, in order to distinguish " 9 " from "the number
of known planets".4 Absolute attributes can be viewed as determining "cri-
teria" for transworld identification. We can say that £ at 7 is equal to £' at 7'
(with respect to the absolute attribute F) whenever a QI η falls under F such that
the extension of η is the same as that of £ in 7 and as that of £' in 7'. With
respect to this, Belnap claims that "Bressan's notion of absoluteness is the
proper foundation for an adequate understanding of essentialism, essential
predication, and the de dicto/de re distinction" (cf. [2], p. xxiv), and in [1] it
is shown that Thomason's quantification over substances (i.e., constant in-
dividual concepts, see [13]) can be expressed by quantification (over arbitrary
individual concepts) restricted to suitably chosen absolute attribute.5

In [4], NN47-49, it is shown that Γ-cases can be represented within MU
itself; in particular, the formula El(u) and \u are defined, to be read respec-
tively as "u represents a possible case" and "the possible case (represented by)
u actually holds". This provides a very remarkable growth of the expressive
power of MU; for instance, several conceivability relations between (repre-
sentatives of) possible cases can be defined simultaneously in MU', together
with the corresponding modal operators.6

The language MU was designed with a view to its use over standard inter-
pretations. Unfortunately, the intended use faces a significant difficulty: the cor-
relative concept of validity is nonaxiomatizable.7 The difficulty is remedied in
[14], where the familiar ideas of Henkin [8] are applied to define the general in-
terpretations for MU. It is with respect to general interpretations that the com-
pleteness of MCV is provable.8 (See Section 2 for a complete discussion of
interpretations.)

In [5] Bressan considers the problem of axiomatizing and formalizing prob-
ability theories (e.g., on the basis of Reichenbach's work [12]). He observes that,
in order to deal with these theories, one should be able to express functions and
relations having propositional arguments; hence he defines MU*. Let us remark
that propositional variables (and quantification over them) are expressible in
MU itself: propositions correspond to sets of Γ-cases, which can be represented
in MU (see above). The use of MU*, instead of ML\ is motivated in [5] by the
quite natural treatment of probability concepts allowed by it. In any case, the
reducibility of MU* to simpler languages can be used to derive technical results.

2 Preliminaries The modal language MU, (where *>GZ+, the set of
positive integers) is based on the type-system τζ9 which is the smallest set such
that {0,1,..., v] c rϊ and (tu . . . , tn,t0) G rϊ whenever n > 0 and [tOitu...,
tn] c τ j . We call (tu..., tn,t0) a type for relations or functions (and we
denote it by (tl9..., tn) or (tl9..., tn,t0)9 respectively) according to whether

or not t0 - 0.

For every tGrζ and every nGZ+, the constant ctn and the variable vtn are
primitive symbols of ML*, in addition to the usual logical symbols: =, ~, Λ,
D, ?, comma, and left and right parentheses. The set δ* of the designators or
wfes (well-formed expressions) of type / ( G T Ϊ ) for MU* is defined recursively
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by means of the formation rules (/i) to (/8) below, where nG Z + and t, t0,
/ i , . . . , tn run over r*.

(fi) ctn, vίne&*
(f2) Δ 1 , Δ 2 E ε ; = > ( Δ 1 = Δ 2 ) G δ * 0

(f3) A G δ ^ M > and Δ,E δ*(/ = 1,. . . , « ) = *
(Δ(Δb...,Δw))eε;

(f4_7) Pige&o^i-p), (p*q), ((vtn)p), (Πp)eεs
(f8) peεro=>((wtn)p)eε*t.

The elements of δ* are called wff (well-formed formulas) for ί = 0 and
terms for / ^ 0 . The symbols V, D, ( 3 ^ J , 0, Ξ , and other metalinguistic
abbreviations are understood to be defined in the usual way. In particular,
(ix), =, (x), ~, Λ, v, D, and s have decreasing cohesive powers and (3{x)p
will stand for (3x)[pΛ 0>)(/?[#/y] Dx = j ) ] . Furthermore, in order to avoid
spelling out the types of all the expressions used, henceforth we assume every
such expression to be well formed.

The type system r", on which the language MU is based, is the smallest
subset of rϊ such that { l , . . . , ^ / and (t\9..., tn,t0) E τv whenever
{t1,..., Q c rv and t0 G f" = τv U {0}. The set 8, of the wfes of type t (Gfv)
for ML" is defined by (fi) to (f8), where t9 tiy..., tn run over τv and t0 runs
over τv.

The basic axiom schemes for the calculus MCV (which is based on MLV)
are MA3.1-3.18 in [15]. In particular, we point out that the indiscernibility of
identicals (MA3.9) concerns itself with necessary identity, that is:

(2.1) D(Δi = Δ2) D A[Z/A{] = Δ[z/Δ2],

and that the axioms for descriptions (MA3.14, 15) are:

(2.2) I. (3iVtn)pΛp[vin/x] Dx=(wtn)p

II. ~(liVtn)pD(wtn)p = a?

(where a* denotes (wtγ)(vtι Φυn)) and

(2.3) I. ~aϊ(xu. . . , * „ ) it=(tl9...9tn))

II. a?(xl9. ..9xn)=a;0 (t = (tl9..., tn: t 0 ) ) .

The axioms of MCI are the instances in ML* of the axioms of MCP and,
in addition,

A*l ~0O*
A*2 (φ = φ) = (φ = φ)

(where φ and ̂  are variables of type 0).
The deduction rules in both MCV and MCI are Modus Ponens, the

Generalization Rule, and the Necessitation Rule, that is:

o ^ P^>q> P £_ __R
( l A ) q ' (x)p ' Πp *

The definitions of "provable in..." and "deduciblefrom Kin..." are the



336 ALBERTO ZANARDO

usual ones and we shall write hr and ^ as abbreviations for h—7 and hr^τ;,
respectively.

For every choice of v sets Dx,...,/)„ of individuals and every set Γ of
possible cases we say that S = {Qβt: t E r*} is an MLl-structure if the follow-
ing conditions hold:

(2.5) Q . S r c ( Γ ^ β r ) ( r = l , . . . , y ) > Q i S o C ( P ( Γ )
(2.6) Q,ίί</l,...,//7,/0>c((ΠfQ,^.)-Q,^0),

where Π/1 denotes the Cartesian product with the index / running from 1 to /?,
(P denotes the power set, and A ->B is the set of functions from A to B.

An MLl-interpretation is an ordered triple <§,#", 3) (=5f) in which S is an
MLl-structure, av is a function of domain rϊ such that α/' E 0,0, for all tEτζ>
and 5 is a function assigning every constant ctn of ML* an element of
Qβt{t E r ϊ ) . If, in an ML-interpretation 5, (2.5) and (2.6) hold as equalities,
then ύ is said to be standard. For every tGrζ, the elements of Qβt are called
quasi-intensions (briefly QIs) of type / and av

t is said to be the nonexisting ob-
ject of type t. A valuation V of the variables of ML* in the ML*-interpretation
ύ (briefly, an ^-valuation) is a function such that V(vtn) E Qβt for every tGrζ
and every nG Z+.

If ξ and η are β/s (of type / E rϊ) of the ML ί-interpretation ίί and 7 is a
possible case (of £ί), then we say that ξ and η are ^-equivalent (briefly, ξ =yη)
in 5 when

(2.7) / G { 1 , . . . , ? } < W K / £ ( 7 ) = I K 7 ) , or
/ = 0 and ξ Π {7} = η Π {7}, or
/ = < * ! , . . . , /Λ,/o> β/irf {(«) = 7 i?(α) /or α// α E Π/1 Q,5V

In [4] (see Theorem 10.2) it is proved that ξ = η iff ξ =y η for all 7 E Γ.
For every wfe Δ of ML%, the designatum desev(A) of Δ (with respect

to the ML J-interpretation if and the ^-valuation V) is determined by the rules
(di) to (d8) below, in which V(x/ξ) is the ^-valuation just like V except
V(x/ξ)(x) = ξ , and Δ' denotes desϋV(A') for every subexpression Δ' of Δ.
Note that desev(A) may fail to be a QI of d; this is unsatisfactory, but it does
not happen when β is general.

(dθ fifes'^(vtn)=V(vίn), desβv(ctn) = 3(ctn)

(d2) rfβ50V(Δi = Δ2) = {7 : Δi =7Δ2}
(d3) des^ίΔ ' ίΔ! , . . . , ΔΛ)) = Δ ' ^ , . . . , ΔΛ)
(d4,5) desϋv(~p) = Γ\p, desύV(pΛq)=pΠq
(d6) desΰv((vtn)p) = Oξewt desβv,(p)9 where V = V(vm/ξ)
(d7) des$v(Π\p) = Γ if p = Γ, 0 otherwise
(d8) desw((wtn)p) = the only ζ)/ ξ of type ί such that:

(a) 7 E tfeSj,v((3ii>f#,)/>) and 7 E desΰV\p) for V = V(ι;/Λ/iy) => { = 7 η

(b) 7 ^ fifes 0v((3i^n)p) => f =7«Λ

The exact uniqueness of the QI ξ fulfilling (a) and (b) can be easily proved
(cf. Theorem 11.1 in [4]) and, in particular, desβv(a*) - av

t for every tGrζ (cf.
Theorem 11.2 in [4]).
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Definition 2.1 The QI ξ of type <*i,..., tn,t0) ( Ξ Γ Ϊ ) is said to be defin-
able (in the ML*-interpretation β) if there exist: (i) an 3-valuation V; (ii) an n-
tuple X= (x\,..., xn) of variables of type tu . . . , ίΛ, respectively; and (iii) a
wfe Δ of type t0 such that

(2.8) ξ = rf(Δ,*, fl,^) = {«?!, . . . , U , <fe%v(Δ)> :
1/ e Gtf,. (/ = 1,..., n) and V' = V(x{/ξu . . . , *„/£„)}.

Definition 2.2 An ML*-interpretation £ί is said to be general if every QI of
type t ( e r ϊ ) definable in 0 belongs to Q,3f.

Let us remark that in a general ML*-interpretation β, desϋV(A) is a Q/of
£ί for every wfe Δ and every ^-valuation V.

The definitions of structure, interpretation, and general interpretation for
MU are identical to those given above for MLl, where, of course, the types are
suitably assumed to run over τv or f" (cf. Definitions 3.1 and 3.2 in [15]). In the
sequel the same symbols will be used to denote ML "-interpretations as well as
ML*-interpretations; it will be clear from the context which kind of interpreta-
tion will be referred to.

If β is a general MLV (or ML"-) interpretation, then 0 G Q.3O and every
constant function (from Π/1 Qβti into Q,βtQ) belongs to Q.3<tι,...,/Λ,/0>; so that we
can include the following (useful) assumption (2.9) in the definition of general
MLV (or MU-) interpretation:

(2.9) I. aζ = 0
II. The image ofav

{tu^^tni,0> is {aQ.

Furthermore, in [15] (cf. Theorem 4.2 and Hypothesis 5.1) it is shown
that no loss of generality takes place if we assume that

(2.10) I. af (r G {1,..., v}) is a constant function
II. Qβo = {η: η = desev(p), for some wffp and some ^-valuation V}.

(Let us remark that (2.10)1 can be assumed even if β is not general.)
As usual we say that a formula p of MLl is true in the ML I -interpretation

β if desev(p) = Γ for every ^-valuation V; p is said to be MLl-υalid [g-
MLl-υalid] (briefly, t^pl^p]) if it is true in every [every general] ML*-interpre-
tation. MLv-υalidity and g-MLp-validity are defined in the same way.

The completeness of MCV with respect to general ML "-interpretations is
proved in [14], whereas the soundness of the general ML*-interpretations, i.e.:

(2.11) K^p^K^p (/7Gδ*0, ^ c δ * 0 ) ,

is provable by an induction on the complexity of p.

3 MLv+ι-interpretations Let β = {S,^ 1 ,^) be an ML"+1-interpretation in
which we assume Du+ι to be a two-element set and Q,βv+ \ to contain at least
two necessarily distinct QIs. This holds iff the formula

(3.1) (3x,y)(a(xΦy)Λ(z)(z = xVz = y)),

where x,y,z are distinct variables of type v + 1, is true in β.9
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If £ί is as above, then every QI ξ of type v + 1 in ϋ (which is a function
from Γ into Dv+Ϊ) corresponds to a subset of Γ and hence the variables of type
Ϊ>+1 can adequately represent (in β) propositional variables. Furthermore, this
correspondence can be extended in a natural way to the Qh of higher type-level,
so that an ML * -interpretation (which we shall denote by β*) can be represented
in β. The details of the construction of β* are as follows.

The subset τL+x of τv+ι is the smallest set such that { l , . . . , ^ l } c τ ! + 1

and <*!,.,., tn,t0) G τ*+ 1 whenever {tl9...9 tn,t0} £ τϋ+ 1. For every QI ξ of
type t (eτ-+ι) in 3, the correspondent £σ of ξ is defined by

(3.2) ξσ = ξifte{l9...9p}
ξσ={y:ϊ(y)±avΛ\(l)}ift = p+l
r = { « ί i σ , . . , i Λ

α >,ίo σ >:«fi,-. . , f ι ,>,fo>eί} ift = <tl9...9tn9t0).

The correspondence ξ -• ξσ is trivially one-to-one. If ξ has type t (erϋ+1)
then the type of ξ σ (that we shall denote by tσ) is obtained from t by
substituting 0 for every occurrence of v + 1 in it. Therefore, the correspondence
/->/σ is a bijection between r^+1 and r ϊ , and the sets

(3.3) Q.£f;σ={Γ:ξEQΛ} (tGτL+ι)

constitute an ML*-structure that we call S* (cf. (2.5) and (2.6)).
The ML*-interpretation β* = (S*,a\3*) is defined by means of (3.4) and

(3.5) below (in addition to (3.3)).

(3.4) α £ = ( α / + 1 Π f e τ I + 1 )
(3.5) β*(cίσn) = (Hctn))σ(t G rv+\n G Z + ) .

It is obvious that av fulfills the condition (2.9) on the nonexisting object
whenever the same is for ap+ι.

From now on, in order to avoid tedious specifications, by "ΛfL"+1-
interpretation" we shall mean an MLv+ι-interpretation in which Dv+i = {0,1},
Q,9μ+i has two elements which are necessarily distinct, and aϊ+l(y) = 0 for
every possible case y (cf. (2.10)1).

We shall denote by 8_(= 8!L+1) the set of the wfes (of MLv+ι) in which
only variables and constant of types in τ*L+ι occur (note that the wfes in ε_
have types in τL+ι U {0}). For every wfe Δ G 8_, we let Δ* be the wfe (of ML*)
obtained by replacing every variable υtn [constant ctn] in Δ with υtσn[ctσn].
Thus, if Δ is a formula then so is Δ*, whereas Δ* has type tσ when Δ has type
t Φ 0.

Before proving the following theorem we need to note that, for every
couple ξu ξ2 of QIs (of type /) in ύ9

(3.6) ξ 1 = 7 ξ 2 / / / £ f = 7 ξ Π γ e Γ ) ;

this can be proved, on the basis of (3.2) and (2.7), by an induction on the
complexity of t.

Theorem 3.1 Assume that (1) d is an MLv+ι-interpretation, (2)V is an β-
valuation, and (3)V* is the β*-valuation defined by

V*(vtσn) = {V(vtn))σ (tGτL+ι,neZ+) .
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Then, for every wfe A E ε_, desβ*v*(A*) = (desϋv(A))σ (where the equality
η = ησ is understood for every η c= Γ).

Proof: We use an induction on the number ?Δ of occurrences of ί in Δ, and, in
correspondence with a given value of iΔ, we use an induction on the complexity
of Δ. The second part does not depend on iΔ, therefore it is considered only for
?Δ = 0, as follows.

If Δ is a constant or a variable, then the thesis holds trivially.
Let Δ be A{ = Δ2. Δ* is Δ* = Δ5, thus, by the inductive hypothesis, the

thesis is a consequence of (3.6).
The proofs in the cases where Δ is F(Aχ,..., ΔΛ), or -/?, or p Λ q, or Ώp

are straightforward applications of the inductive hypothesis.
Let Δ be (x)p (where x has type /). Then, for every y E Γ, y E

des$v(A) § γ E desβV{<x/^(p) for all £ E Qβt <=> (by the inductive hypothesis)

7 E <feSjrv*<*v**)(/>*) f o r a 1 1 £ Ξ QA ̂  (by (3 3 » 7 G rfβSfl v ((x*)P*).
Now, let Δ be (ΊJC)/? (where c has type t) and let us assume inductively that

the thesis holds for every wfe Δ' such that ?Δ' < ?Δ. We denote cfe%v>(Δ) and
rfβ53 v*(Δ*) by ξ and £*, respectively.

If Ύ<£ rfes5v((3i^)p)(=rfes^v'((3iX*)P*), then ξ = γ < + 1 and ξ* = 7 ^ ,
that is (by (3.4) and (3.6)) Γ = τ ξ*.

If γ G f c ^ ( ( 3 ! φ ) and y E des$Vi<x/η)(/?), then (by the inductive hy-
pothesis) γ E tfesa v otVv')(/**)• Hence, ξ = 7 η and ?* =Ύ ryσ, that is £σ =Ύ ξ*.

Therefore, £* = ξσ since they are 7-equivalent for every 7 E Γ.

4 Reduction of general MLl-validity to general MLv+ι-validity In MLl
there are infinitely many wfes that are not *-translations of wfes in δ_ (e.g.,
0̂1 Λ yoi is o n e of them). In this section we complete the characterization of

ML*-validity in terms of MLv+ι-validity by proving that every wfe Δ' in MLl
is equivalent to a wfe of the form Δ*, with Δ in δ_.

Definition 4.1 (1) An occurrence p of the wff p in the wfe Δ' (of MLl)
is said to be a formula-occurrence (briefly, an /-occurrence) (of p) if ~p, or
p Λq9 or (x)p, or D/?, or (ix)p is a subexpression of A'. Otherwise we say that
p is a term-occurrence (briefly, a ^-occurrence) of p.

(2) A wff p (of MLl) is said to be a ί-wff if it is t;θΛ, or c0/7, or
F ( Δ ! , . . . , ΔΛ), or (wOn)p. Otherwise we say that /? is an/-wff.

Lemma 4.1 / w ei ery wfe A' of MLl, a wfe Δ E δ _ exists such that
Δ' = Δ* iff no f-wff has a t-occurrence in A' and no t-wff has an f-occurrence
in Δ'.

Proof: If p (ESQ) is q* and p is a ί-wff, then q is a term of MLv+ι, whereas
q is a formula if p is an /-wff. Therefore, Δ' (in MLl) is not Δ* (for any
Δ E 8_) whenever some /-wff has an /-occurrence in Δ' or some /-wff has a
/-occurrence in Δ'.

Conversely, assume that, for every formula/?, if p is an/-occurrence [a
/-occurrence] of p in Δ', then/? is an/-wff [a /-wff]. In order to prove that a
wfe Δ E δ_ exists such that Δ' is Δ*, we use an induction on the complexity of
A'.
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If Δ' is a variable or a constant, then the thesis holds trivially.
Let Δ' be ~/?. By the inductive hypothesis p is q* for a suitable wfe

q G δ_. The formula/? has (only) an/-occurrence in Δ' and hence it is an/-wff;
thus, q is a formula and Δ' is (~q)*.

In cases Δ' is p Apu or (x)p, or Dp, or (τx)p we proceed exactly as
above.

Let Δ' be F ' ( Δ ί , . . . , Δ^) where F' is a term of type (tx, . . . , /„,/()>. Then,
by the inductive hypothesis, F, Au . . . , An G δ_ exist such that F * is F ' and,
for / = 1 to n, Δ* is Δ/. If Δ/is a term then Δ, is also a term. If Δ/G 8Q, then it
is a /-wff since it has a /-occurrence in Δ' and hence Δ, is a term. Therefore,
F{AU . . . , ΔΛ) is well formed and Δ' is {F(Aχ,..., An))*.

The case in which Δ' is Δ{ = Δ£ is similar to the previous one.

Theorem 4.1 Assume that (1) Q is an MLl-interpretation in which aft = 0 ,
and {2) A' is a wfe of ML*, then a wfe Δ G δ_ exists such that, for every $-
valuation W, desgw(A') = des$<w(A*).

Proof: We first remark that, for every wff p of MLl, the equivalence p =
(p Φ at) is true in #, as well as the equality p= (ιψ)((ψ Φ at) =p) (with ψ not
free in/7).

If p is a /-occurrence of the /-wff p in Δ', then the wfe obtained by replac-
ing (in Δ') p with (tψ)((ψ Φ a£) =p) has the same designatum as Δ' (with
respect to every ίJ-valuation) and has fewer /-occurrences of/-wffs than Δ r.
Likewise, the wfe obtained by replacing an /-occurrence p of the /-wff p in Δ'
with p Φ #o is equivalent to Δ' and has fewer/-occurrences of /-wffs than it has.

By applying the above substitutions finitely many times, we obtain a wfe
of the form Δ* for which the thesis holds.

Now, in order to consider MLV and MLp+ι-validity in the general sense
(i.e., with respect to general interpretations), we first prove that the structure
for a general MLp+ι -interpretation is determined by the set {Q.3,: / G rϋ+ 1}. For
every / G fu+ι we let /' be the element of τ_+ι obtained by substituting v + 1 for
every occurrence of 0 in /, and let pt be the function, of domain Qβt> (in a given
MLv+x-interpretation), defined by

(4.1) Pttt) = {y:ϊ(y) = l},fort = 0

P / « ) = { , / o r / G { l , . . . , ^ + l }

P/(ί) = {«Pr 1 « i ) , . . ,P ί | l (€/,)>,P/o(^)>:
«iι, , UΛo) E ξ},for t = (tu . , tn,t0).

Note that, when / G τL+ι, t' = t and pt is the identity on Q,βt.

Lemma 4.2 If ϋ is a general MLp+ι-interpretation, then, for every t G fv+ι,
pt is a bijection between Q,3r, and Qβt.

Proof: By induction on the complexity of /. By (4.1) pt is injective for every
tGfv+ι, therefore we have to prove that, for every £ G Qβt' [η G Qβt],
P/(ί) [pίHv)] is a definable Q/in Q,^ [QA]. Because of (4.1)3, the wfe defin-
ing ρt(ζ) (for / = < / ! , . . . , /«,/0>) must include wfes expressing equalities of
the form pti(ξi) = ryz; this will be supplied by defining, at every step of the
induction, a wff Φ,(Δ,Δr) (where Δ and Δ' have the type / and /', respectively)
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such that, for every ^-valuation V, des ^(Φ^ΔjΔ')) = Γ [ 0 ] if desϋV(A) =
[Φ] pt(desϋV(A')).

For tG {1,.. ., v + 1}, pt is trivially bijective and Φ^ΔjΔ') is D(Δ = Δ').
Let / = 0. If ξ G QΛ+! and V(x) = ξ, then desβv(x Φ a*+x) is po(ξ) and

belongs to QβQ. Conversely, if η G Q,30> desβv(p) =η (cf. (2.9)11), and the
variable x (of type *> + 1) is not free inp, then des$v((lγx)(p = χφ a*+ϊ)) = Γ
and ξ = ^ ( ( Ί j ) ( / ? Ξ j c ^ f l ; + 1 ) ) (which is in Qβp+ι) fulfills: £(γ) = 1 iff
TG)|; that is, po(ξ) = *7 Φo(Δ,Δ') is Π(Δ = Δ' Φ a*+ι).

Let now / be {t{i..., tn,t0). We can assume inductively that the thesis
holds and that Φ,(Δ,Δ') is defined for tG {to,t\,- , tn}.

Case 1. t0 = 0. Assume that: (1) /MS any variable of type t'\ (2) p is the formula

( 3 J Ί , . . . , JΊ.) [ Λ Γ ^ t e ^ / ) Λ F(yx , . . . , y n ) Φ a ζ t λ

and (3) ̂  = d(p, {xu..., xn},β,V), where V(F) = ξ (GQ.3^). For every /i-tuple
<i?i, , ηn> e Πf Q.3//f γ e iy(iyi,..., ηn) iff an /i-tuple < ξ l f . . . , U(GΠ?ft3//)
exists such that £,.((•,•) = ηt (i = 1 , . . . , n) and ξ(ξu.. -, ξΛ)(Ύ) = l BY t h e i n "
ductive hypothesis, every 77, can be written as pti(ζi) and hence η(ptι(£ι), >
P/Λ(έ/i)) = {7:έ(ίi» » ξ/i)(7) = l}» w h i c h i s Po(£i>. ., ξ^) That is, iy =
P*(ί).

Conversely, assume that: (1) i^ is a variable of type ί; (2) Δ is

(Ίx)(3xu...,xn)\/\"φti(xi,yi) ,A.R(xu..., xn) Ξ*χφaϊ+χ\\ and (3) ξ =

rf(Δ, {>>!,..., ^ , 3 , ^ ) , where V(Λ) = iKeq.3,). Let ξ0 be ξ ( ί l f . . . , ξ j ; then
£0(7) = 1 iff 7 e i?(P/ 1 ( ί i) , . . . ,P/ n (ξ Λ )), that is po(£o) = ^(p^ifi), ,
Ptn(ξn))- Since this holds for every /i-tuple, < ξ i , . . . , ξn) G Π? Q,^,/,Pr(ξ) = η.

It is now easy to verify that Φ,(Δ,Δ') is

(Vxi,..., x « , ^ i , . . . , ^ )

Cί?5"e 2. toΦθ. The proof (similar to that of Case 1) is left to the reader: it is a
straightforward application of the definition of pt.

This result proves that the correspondence £J -• 5* is substantially injective,
when restricted to general MLp+ι-interpretations. In fact, if β and βx are
general MLv+{-interpretations and β* = 3*, then: (\) β and β{ have the same
MLp+ι -structure (by Lemma 4.2); (2) the nonexisting objects are the same in β
and β{ (by (2.9)); and (3) β(ctn) = 3 1 (c m ) whenever / G r ! + 1 (by (3.5));
therefore, £f and 5̂  differ (at most) in the valuations of some constant of a type
mτv+ι\τ!L+ι.

In order to prove that the *-correspondence is a bijection (in the sense
above) between the set of all general MLv+ι -interpretations and that of all
general MLϊ-interpretations (cf. Theorem 4.2 below), we need to express the
designatum of any wfe in a (general) ML "^-interpretation β by means of a
suitable designatum in β *. Note that the converse of this is given by Theorems
3.1 and 4.1.
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For every wfe Δ of MLp+ι, we denote by Δ° the wfe (of ML*) obtained
by substituting vt>σn [ctσn] for every variable υtn [constant ctn] in Δ. The cor-
respondence Δ->Δ° is not injective (e.g., t><,,+ i,o>i = t>o>+i,iH-i>i) which can
cause some trouble in the proofs; thus, we assume that in every wfe considered
in the sequel, variables with different types have different indices.

Lemma 4.3 Assume that: (1) Δ E £>t (t E fv+ι) and no constant occurs in
Δ; (2) ύ is an MLp+ι-interpretation in which, for every t E τp+ι, pt is a bijec-
tion between Q,βt> and Q.3,; (3) V is an ύ-valuation; and (4) V° is any
β*-valuation such that, for every variable xE&s occurring in Δ, V°(x°) =
(p7 l e V(*)) σ . Then

desB.Vo(A°)=ξσiffPt(des3V(A))=ξ ,

(where the equalities ση = η = poη are understood for every η c Γ).

Proof: Let us first remark that V°(x°) is well defined since, by the assumption
above, x° = y° holds for no variable y in Δ different from x. Now the proof
proceeds exactly like that of Theorem 3.1. We have only to note that, for every
u E f"+1, ξx, ξ2 e QA,', and 7 E Γ, ξx =y ξ2 iff pu(^) = 7 pw(ξ2) (which follows
from (3.6) and (4.1)) and that, for every u E r" + 1 , opΰx (the composition map)
is a membership preserving bijection from Qβu onto Qβu'°-

Theorem 4.2 (a) For every general MLv+ι-interpretation β, β* is general.
(b) For every general MLl-interpretation $ = {{Qβt t E τζ},ap

9 #>, there exists
a general MLv+ι-interpretation β such that β * = $.

Proof: (a). By Theorem 4.1 we can consider only QIs defined in 5* by wfe of
the form Δ*. Every variable of MLl is x* for a suitable xG δ_ and every
β "^valuation is V* for a suitable 3-valuation V; thus, the thesis follows from
(3.3) and (3.4) and the equality

rf(Δ*, K , . . . , **}, fl , V*) = (d(A9 {*i,..., Xn}> $, V))σ

which is a straightforward consequence of Theorem 3.1.
(b). For every t E τϋ+ι, we can let Q.9, be the only set of QIs for MLv+ι

such that QΛ*σ = £&tσ (cf. (3.3)). For t E fv+ι\τL+ι we set Q,^ = {pt(ξ): ξ E
Q,5r}. Furthermore, we let av+ι be determined by (2.9) (hence (3.4) holds) and,
as far as the valuation of the constants is concerned, we let ϋ be any valuation
for which β* = 3 (cf. (3.6)).

L e t ξ b e t h e Q I ( o f t y p e t = ( t l 9 . . . 9 tn,t0» d ( A 9 { x ί 9 . . . 9 xn}> $ , V ) . W e
can assume (without loss of generality) that no constant occurs in Δ, since,
otherwise, we could replace the constants with new variables and change V
suitably; hence Lemma 4.3 can be used. We consider the QI (for ML*) ξ° =
d(Δ°, {jcf,..., Xn}> 3> *V°) where^for every variable x of type s occurring in Δ,
V°(x°) = σps~\V(x)). £° is in ξ$rσ and hence there is an η E Q,βr such that
ί ° = ησ. Now, by Lemma 4.3, for every ((ηu..., ηn)9 η0) E (Πf Q3f/) x Q.fl/6>

«r)ΐ, . ,ri£),rio)€ξ0 iff «P/,(i?i), , Ptn(ηn)>, P/O(*7θ)> G ξ. This is
equivalent to P/(r/) = ξ and hence ξ E 0,0 .̂
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By Theorems 3.1 and 4.2, the "reduction" theorem holds:

Theorem 4.3 For every wffp ofMLl, p is g-MLVvalid iff it is (equivalent
to) the ^-translation of a g-MLv+x-valid wff of MLp+ι.

5 Completeness of MCI: Concluding remarks The completeness of MCI,
with respect to general MLζ-interpretations, is a consequence of the syntactical
counterparts of Theorems 3.1 and 4.1.

Let Δ' be any wfe of MLl and let A{ be the wfe (of the form Δ*) obtained
from Δ' by means of the substitutions considered in Theorem 4.1. Then, by
Theorem 32.4 in [4],

(5.1) hrD(Δ' = Δ!)

is a consequence of the following lemma.

Lemma 5.1 For every wffp of ML* and every variable ψ of type 0, not
free in p: (a) brQ? = (p Φ %*))> and (b) hr(p = (iφ)({φ Φ *o) = P))-

Proof: By A*l, p s ~(p = #o) is an instance of a tautology and hence (a) holds
by A*2.

By (a), hr((0 **<J>Φ *o)) => (Φ =P)) and kr((3φ)(φ = (pΦ aξ)); that is
\*((*ιΦ)(Φ = (pΦ aζ)))y which yields (b) by (a) and (2.2)1.

Henceforth, by MCv+ι we mean the calculus endowed with (3.1) in addi-
tion to the usual axioms; that is, since MCV is complete with respect to general
ML ̂ -interpretations, MCv+ι axiomatizes the concept of g-MLv+{-validity con-
sidered in this paper.

Lemma 5.2 For every wff q ofMLp+ι, \j^q implies hτ#°.

Proof: The derivation rules (for M C + 1 ) are preserved by the correspondence
Δ-*Δ° (that is, {{x)p)° is (x°)p°9 ( A Dp2)° isp? Dp%, and (Πp)° is Ώp°);
therefore, we have to prove that krq° whenever q is an axiom of MCv+ι.

If q is one of the axioms MA3.1-MA3.18 in [15] then q° is an axiom of
MCI (actually, q and q° are instances of the same axiom schema).

Now let q be (3.1). Then q° is

(3ψiφ)(Ώ(φΦψ)A(Vθ)(ψ = ΘVφ = θ)) ,

where φ, φ, and θ are distinct variables of type 0. Let ψ' be p Λ — p and φ' be
p\l ~p (wherep is any closed wff). Φ' - θ V φf = θ and ψ' Φ φr are tautologies,
and W ( f = ί v f = ί) and Ώ(φ' Φ φ') can be derived by necessitation and
generalization. Then \*q° follows from hr Π(ψ' Φ φf) Λ iyθ){φ' = θ V φf = β)
by the rule hr/? =* hr (3x)/?.

Theorem 5.1 For every wffp ofMLl, hrp iff ι§jσ.

Proof: By (2.10) we have only to prove the implication from right to left. By
Theorem 4.1 and Lemma 5.1 we can assume p to be q* (qG δ_). Then (by
Theorem 4.3) &=<?, which is equivalent to v^+ιq. Hence the thesis follows from
the equality q* = q° and Lemma 5.2.
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In the Introduction we observed that the propositional variables are ex-
pressible in MU by means of the representatives of possible cases. It is worth
recalling in this connection that the use of the formulas EL(u) and \u (from a
syntactical point of view) requires MCV to be endowed with the additional
axiom AS12.19 (cf. Note (7)). This axiom has no role in the embedding of ML*
into MU+ι considered in previous sections and, actually, it provides something
more: not only can the subsets of Γ be represented by it, but also the possible
cases one by one.

If we want to achieve in MU itself a construction like that considered in
this work without referring to AS12.19, then we can use one of the following
two methods. The first one requires the assumption that, in every Mis-
interpretation, Qβi contains two QIs £1 and ξ2 which are necessarily distinct. In
this way, every individual concept ξ such that £ = 7 ^ or £ = 7 £2> f° r all 7 E Γ,
represents a subset of Γ (that is, {7: ξ = 7 ξι}). The second method (which re-
quires no particular assumption) consists in representing subsets of Γ by QIs of
type (1): η(^T) corresponds to η' = {<£,7> : ξ E QβuyE 77}. Let us remark
that, no matter what method is adopted to embed ML* into MU, the technical
details of the whole construction are very complex. For instance, the represen-
tatives of all QIs for MLl are to be defined in addition to those of the subsets
of Γ, and, for every tGrζ, there must be built up a formula (R,(Δ) meaning
"Δ represents an expression of type t of MLV\ Of course, the quantifications
and the descriptions (in MLl) turn out to be expressed by quantifications and
descriptions (in MU) restricted by (R,, for suitable t.

NOTES

1. A class, PMC, of possible mechanical cases is a primitive notion in [3]. It affects
various other notions. For instance, instead of the ordinary notion of position, one
uses the position (P^(M9θ9y) of the mass point M(in the kinematic space ξ) at the
instant θ, in the case 7 E PMC. Thus in various cases an ordinary assertion p is
replaced by an assertion pΊ containing 7 explicitly; and (Vγ G PMC)/?7 [(37 E
PMC)/?7] stands for Πp[Op\.

2. For every sentence p, p is the set of possible cases in which p holds and the exten-
sion of p in 7 (EΓ) is T or F according to whether p holds in 7 or not.

3. For every type t, a QIav

t is fixed to represent the "nonexisting" object of that type
and, for every 7 E Γ the extension of (τx)p in 7 is defined as follows. If a QI ξ ex-
ists such that: (1) p is true in 7 when the interpretation of x is ξ, and (2) every QI £'
with the property (1) has the same extension of ξ in 7, then the extension of (ix)p
in 7 is that of ξ; otherwise, the extension of (ix)p in 7 is that of the nonexisting
object of the same type of x.

4. Let ξ be the number of known planets. Then £ = 9 holds in the actual case yRi

whereas it is natural to assume that D(£ = 9) does not. Now, the property Nn of
being a natural number is absolute and Nn(9) holds in every Γ-case. Thus, Nnie){ξ)
and Nn(ξ) are respectively true and false in yR.

5. Note that the existence of this attribute must be explicitly asserted in MCV (cf.
AS25.1 in [4]).
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6. In order to prove in MCV the main results concerning the representatives of the
possible cases, we must endow MCV with the strong axiom AS12.19 in [4], which
asserts that, for every relational QI ξ and every 7 E Γ, there is a modally constant
QI ξ' having (in every possible case) the extension of £ in 7. This holds iff the QIs
of the formulas of MU constitute an atomic Boolean subalgebra of (P(Γ) (cf. [9],
Section 4, and [15], Theorem 5.1) and, indeed, the independence of AS 12.19 can
be proved by considering a different semantics for MU', in which the formulas
take values on a complete, but not atomic, Boolean algebra (cf. [7], Section 15).
On the basis of this remark, in MCζ AS12.19 is equivalent to (3φ)(φΛ (ψ)(ψD
D(0 D ψ))), where 0 and ψ are propositional variables (cf. [6], p. 338).

7. This is a consequence of the well-known results on the (extensional) theory of types,
but the same holds for the first-order part of MU (see [11]).

8. A similar result is proved in [11] for the first-order part of MCV, deprived of
descriptions.

9. In the strict sense, this formula is true in an MLv+x-interpretation β whenever Qβx

contains two elements, ξj and ξ2> necessarily distinct and, for every possible case 7
and every ξ E Qβi, ξ(y) = ^(7) or ξ(y) = ξ2(τ) This does not imply that Dv+{ has
exactly two elements, but it can be proved that an ML"+1-interpretation exists,
which is isomorphic to β and where Dv+X has the required property (cf. Theorem 4.2
in [15]).
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