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Mechanizing Logic Il:
Automated Map Logic Method
for Relational Arguments on Paper

and by Computer

JANET RYBAK and JOHN RYBAK*

This article is a continuation of our [12] and [13]. The methods of [12]
enable us to mechanize arguments with premises containing complex terms such
as ‘All (X or Y) are (Z and non-W)’. Then [13] goes on to provide a basis for
mechanizing relational arguments.

To the methods of [12] we add two new ideas:

(1) A rule for handling relational propositions we call Relational Conversion
(RC). Here we state the rule in generalized form, and show how it works.
(2) A proposition-sorting routine, based on the moves used in our formal solu-
tions, called ‘‘streaming’’ which allocates variables to Karnaugh maps.

Relational Conversion [10] Although Relational Conversion seems to be
customarily used to describe an interchange of singular terms, we have employed
it to cover also general terms. This process is not quite the same as change of
quantifier order in predicate calculus.

The rule RC yields equivalent but formally different relational propositions
for propositions having a relational term as predicate. (If only the subject is rela-
tional, a separate RC rule could be added, but it is ultimately simpler to use ex-
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actly the same rule applied after obverting and/or converting the proposition
(cf. (8) below and (3) on the next page). RC exchanges:

(a) The subject with the first (i.e., the dominant) relational-particle’s
relatum

(b) The dominant relational-particle with its correlate

(c) The copula quantity with the relatum quantifier and vice versa; if af-
firmative a < d and i < u, if negative e~ d and o < u.

For example, the proposition («) ‘Some mathematicians specialize in some
branches of algebra’, gives by RC (8) ‘Some branches of algebra are specialized
in by some mathematicians’. Symbolically, these two equivalent propositions
are:

(@) MiS—B, and (8) BiS'—M,.

(See [13], Appendix 1, for key to symbolism.)

The central point is that in () ‘branches of algebra’, ‘B’ is only a depen-
dent part of a relational term, whereas in (3) it is an independent nonrelational
term.

Consider the case of the RC of a relational product:

(a) Original proposition: ‘Some students respect anything favored by any
radical professors.” Symbolically: S i R—(F—P;)4

(B) RC with respect to R—: ‘Anything favored by any radical professors is
respected by some students.” Symbolically: F—P; a R’—S,,

(v) RC with respect to F—: ‘No radical professors favor anything non-
(respected by some students).” Symbolically: P ¢ F'—(R'—S,)4

To obtain this RC, obvert (8) F—-P,; ¢ R'—S,, convert R’—S, ¢ F—P,;and RC
P e F'—(R’—-S,)4. (Every proposition has an equivalent obverse (cf. Double
Negation). Only e/i propositions are directly converted in this system. To convert
a/o propositions obvert them first to e/i propositions.)

Thus we have three equivalent but formally different propositions. RC is
an extendible rule which can be applied to propositions of increasing complexity.
Notice that the original quantities are retained throughout changes of order.

For a somewhat different account of RC see [10] or [13].

Boolean Form of Relational Propositions Relational propositions of this
extended Traditional Logic are treated predicatively, just as are the nonrela-
tional propositions; e.g., ‘Some students fear some exams’ is formalised as
‘S i F—E,” which is read traditionally as ‘Some students are (beings or things)
fearing some exams’. So, (just as ‘Some A are B’ is written in Boolean form as
A-B #0) this is written S-F—E, # 0 and its RC as E-F’—S,, # 0. This permits
the diagramming of relational arguments in the same way as the nonrelational.

An Introduction to Streaming

Consider the argument: Some (things) observed by every guard are mere
visitors. Certain guards are trained men. Therefore,
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some mere visitors are observed by certain trained

men.

Formally: 1. O-G,iV Dictionary: V' = mere visitors
2. GiT O— = (things) observed by

“Vio-T, G = guards
T = trained men
O’— = observing

RCs: 3. GaO'-V, (RC of 1) (O—Gy, i V converts to Vi O—Gy)
TiO' -V, (RC of conclusion)

Streaming is a relation-dependent technique. If all propositions (premises
and conclusions) are nonrelational (monadic) then all variables lie in the one
stream, appear on the one diagram. That is, streaming is normally directed by
the relation-particles.

The first move is to initiate as many streams as possible by choosing a
proposition with the largest number of relation-particles. So,

(1) having set up the argument in logical form

(2) RC all propositions that can be RC-ed (here (1) and the conclusion)

(3) Take from the given group any proposition having the greatest number of
relations (in this example any one of the relational propositions) and ar-
bitrarily enter its terms individually as Stream 1 and those of its RC as
Stream II. It is essential to separate each relational proposition from its RC.
All parts of the one proposition share the same stream. Here we could begin
with premise 1 and its RC.

Stream I: O-Gy; V
Stream II: G; O'—V,,

(4) Now take any other relational proposition present, here the conclusion and
its RC. The ‘O—’ of the conclusion shows it belongs to Stream I and this
is confirmed by the ‘¥ it has in common with the entries already made. Its
RC shares ‘O'—V,” with Stream II and so belongs there. It is also banned
from Stream I by the ‘V’ already lodged there (see the section ‘To Initiate
Streaming’, and Rule 3 following it)

Stream I: O—-Gy; V; O—-T,
Stream II: G; O'=V,; T

(5) This leaves only premise 2 to deal with. We see ‘G’ and ‘T are banned from
Stream I since they appear there as relata and at the same time, in this case,
happen to be already recorded in Stream II.

So streaming is complete. (If it were desired to finish the whole process, all that
remains is to draw two three-variable maps (one for each stream) and enter the
variable labels thus sorted above. The premises and RCs are then plotted in
Boolean form on the relevant maps in essentially the same way that Venn did
with his nonrelational arguments, whereupon we are effectively presented with
the results—here the (equivalent) RC of the given conclusion would appear on
Map II (Map I being otiose)—a relational argument has been mechanized.) Com-
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plete solutions of arguments will be given below but for the moment we wish
to consider only streaming.

Streaming sorts given propositions by collecting their terms in groups ready
for mapping. It is guided by a set of rules sufficiently precise and complete to
have allowed the writing and successful operation of a noninteractive computer
program.

To initiate streaming Translate the argument into logical form, and add all
RCs for the relational propositions. Now, choose any one of the given proposi-
tions with the largest number of relations and arbitrarily assign its terms and the
terms of its RCs to different streams. In assigning the terms of a relational
proposition to a particular stream we are automatically banning (excluding) these
terms from the stream(s) chosen for its RC(s).

Streaming rules Each proposition is considered for placement into a stream
by the following rules:

(1) All terms of a given proposition belong together in the one stream

(2) Propositions with the same relation-particles are placed in the same stream.
A relation with a relational relatum, e.g., S i R—(F—P,), is streamed by
its first (dominant) relation-particle, here ‘R—’.

(3) A relation and its correlate(s) are always in different streams. This implies
that the terms of a proposition containing the relational-particle are excluded
or banned from the stream(s) containing the correlate(s) and vice versa.

(4) Repeated variables in the one proposition are treated as separate instances
of the same variable. The importance of this idea is shown by two
examples:

a. A repeated relational-particle in one proposition: Take, for example,
‘D—-C, a D—F,” which has two RCs each having a dominant cor-
relate ‘D’—’, so in this case two different streams contain the same
correlate.

b. An identical subject and relatum:

Suppose streaming is initiated by: (1) X a L—By
and its RC: (2) Ba L'—Xj,.

This would cause B and L’— to be banned from Stream I and X and
L— from Stream II. Now, if the next premise were, e.g.;

‘B likes himself’: (3) Ba L—By,
and its RC: (4) Ba L'—By,,

then the B of (3) won’t be banned, as might be expected, from stream
I, but will in fact be placed there by its predicate ‘L —B,” while (4) goes
into Stream II because of the shared ‘L’—’. So, the streaming for these
four propositions would be:

I X; L-B;; B
Il B;L'-X,; L'"-B,.
The double occurrence of B in (3) and (4) accounts for the unusual

streaming together of B as an independent term and B as a relatum in
both streams.
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(5) While streaming is a relation-dependent technique, when the relations give
inadequate guidance, nonrelational terms are used to decide to which
stream a proposition should be assigned.

(6) Nonrelational propositions are placed in streams either already containing
all its terms, or containing at least one term and having some other term
banned from each of the alternative streams.

Final Steps: As each new term-placing adds more evidence for other term-
placings several passes may be needed before all associated propositions are cor-
rectly located in some stream. When these movements have subsided, nonplaced
propositions which have one term already in one or more streams and their other
terms nonbanned from these streams are added to the streams. Remaining
propositions unplaceable in already established streams have new streams started
for them.

Why Stream? Streaming assigns terms (variables) to relevant Karnaugh
maps. Streaming has grouped together propositions from which deductions
(syllogisms, sorites, complex-term moves, etc.) are possible. By drawing
Karnaugh maps for each stream, and plotting the assigned propositions on them,
the Boolean form of each deduction licensed by this system is shown auto-
matically.

A fuller understanding of this procedure is aided by a study of our formal
solutions, where common terms usually suggest which pairs or groups of
propositions should be considered together to produce useful results. RC changes
the terms or is used to move deductions from one map (stream) to another. In
the formal method discretion is needed to choose pairs, trios, etc. of premises
with common terms from which useful subconclusions can be drawn and to
decide which premises can be usefully RC-ed to free new terms for further
deductions. Streaming is the mechanized version of these procedures, sub-
stituting rules for discretion.

However streaming is best understood by illustrations, which will follow
below.

The Algorithm After examining the detailed working of the illustrative
examples the algorithmic steps below will be easier to follow.

Step 1: Add RCs
The rule RC is used to add the equivalent relational converses for each

given relational proposition (including conclusions) in the argument. This
allows terms embedded by the initial form of the proposition to be released;
a dependent relatum may thus become an independent term. The number
of equivalent propositions is equal to the number of relations in the original
proposition +1, i.e., the original proposition + an RC-ed form for each
relation. With a simple dyadic relational proposition there will be a total
of two equivalent forms.

Step 2: Stream .
Once the complete set of propositions has been found by RC, streaming
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can begin. This is done by applying the rules (described above and discussed
in detail in the examples) designed to associate propositions with common
relational-parts or terms, and to separate the equivalent RC propositions
from each other, thus linking into groups propositions which can be com-
bined to eliminate common terms.

Step 3: Draw the Karnaugh Maps

One Karnaugh map is drawn for each stream (group of associable proposi-
tions). Each variable (i.e., all terms not currently acting as relata or part
of a relatum as these are merely fragments of terms) becomes a label or
Boolean term on its appropriate map. Repeated or redundant variables do
no harm other than expanding the map size. Map size is determined by the
number of variables; n variables require 2” cells.

Step 4: Translate into Boolean Form and Plot Premises

Each premise is changed into Boolean form and plotted on the appropriate
map. It is represented by zeros if universal or a continuous line joining rele-
vant cells if particular unless it covers only one cell, when it is shown by
a ‘/’ within that cell.

Step 5: Find Subconclusions

Each map is now scanned exhaustively for new valid universal combina-
tions (all relevant cells are zero), and new valid particular combinations (a
line or ¢/’ lying within the scope of the cells selected by the new combina-
tion) for two terms, then three terms and so on. A limit to this process is
set by the number of variables on the largest map. If no further conclusions
or subconclusions have been found by the end of this exhaustive process
then the program terminates; any proposed conclusions which have not
been found to be valid are invalid (see step 7). If after an exhaustive scan
for, say, two-term combinations, some valid cases are found, then step 6
is used or else an exhaustive scan for three terms follows.

Step 6: Supply Equivalent Propositions to Subconclusions by RC

The found valid combinations (subconclusions) if relational, are RC-ed to
find their equivalent relational converses which are then transferred to the
other relevant maps provided all the variables of their Boolean form are
present on the other map, otherwise they are ignored as lying outside the
field of the given.

Step 7: Iterate Subconclusion Finding and RCing

Again the maps are scanned because new information has been added to
the other maps. New valid subconclusions are sought and, if found, are
RC-ed and their RCs are placed on the appropriate maps (ignoring proposi-
tions with terms absent from the given set for that map). That is, steps 5
and 6 are iterated until either each proposed conclusion (or one of its RCs)
is found to be valid, or no further information results from the scanning;
i.e., nothing further can be deduced and so the program halts, having con-
verged, and any proposed conclusion which has not been found to be valid,
is invalid.
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Notes on the Algorithm: Karnaugh maps are Venn diagrams extended to n
variables—an accepted effective decision procedure. RC has well-known
linguistic applications (e.g., active-passive transformations or correlates ‘left
of—right of” etc.). Streaming is a new mechanical analogue of the formal logi-
cians’ discretionary taking together groups of propositions to discover what they
imply, if anything. Some refinements of the algorithm are best reserved for a
separate publication. They have been set aside as needlessly complicating an
initial presentation of a largely new approach.

Notice that the search for subsidiary conclusions aids the discovery of a
range of nongiven valid conclusions (i.e., unforeseen links between variables are
revealed). Karnaugh maps also help to focus attention on inconsistent premises.
Map conclusions are always found in Boolean form and can, of course, be
translated into many formally equivalent linguistic forms.

Small problems can be solved more concisely by hand using formal
methods (which may be established or checked mechanically by Karnaugh map)
but here we are concerned to show a reliable method which uses no intuition or
ingenuity, and which always terminates for the data-set tested. (See the Appendix
for discussion of the computer program.)

The algorithm is completely computerizable. To illuminate its essential
features and to confirm its effectiveness, four examples are illustrated by
hand.

Validity-Invalidity Check: If the conclusion is valid then mapping the premises
(and subsidiary conclusions) automatically maps the conclusion or its RC on
some iteration. If the conclusion is invalid, mapping the premises, etc., will not
map the conclusion on any iteration.

That is, a/e conclusions are valid if all cells representing the conclusion con-
tain zeros (actually premise numbers). If a/e conclusions do not fulfill this con-
dition on any iteration they are invalid.

If a curved line (premise or subsidiary conclusion) lies entirely within the
scope of the cells given by an i/o conclusion then the conclusion is valid. If the
validity condition is not fulfilled on any iteration or if all cells given by the i/0
conclusion are filled with zeros (a/e premise or subconclusion numbers) then the
conclusion is invalid.

It is essential that a/e premises (and RC-ed subsidiary conclusions) are
always plotted before i/o premises, etc., as cells with zeros are not accessible to
curved lines. This means that maps are replotted by the computer after each
iteration.

‘Curved lines’ are not always continuous on a Karnaugh map as a/e plot-
tings may interrupt the curved lines.

As a relational proposition and its RC are equivalent, if one is found to
be valid then the other is also valid for this system.

Other Automatic Methods: We have looked at the increasingly complicated
literature of the prevailing automatic theorem-provers (for example, [31, [8], [4],
and also [1] and [5]) and decided to test the effect of searching in an entirely dif-
ferent direction for a simpler solution to the problems of mechanizing
logic.
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The Algorithm at Work with Examples Done
Formally in Mechanizing Logic 1

Example 1. A Simple Illustration:

Argument: Some botanists are eccentric women.
Some botanists do not like any eccentric person.
Therefore, some botanists are not liked by all botanists. [6]

Symbolized English Boolean Form Comments
(1) BiE-W B-E-W=+0
(2) BolL-E, B-L-E;+0
..BoL'-B, S.B-L'-B,#0
Added RCs

(3) EelL’-B, E-L'-B,=0 (RC of (2))

Bo L-B, B-L-B,#0 (RC of conclusion)

Streams: I B; L—E,;; L—B, (3 variables)

INE; L'-B,; B, W (4 variables)

Streaming is initiated with the RC pair (2), (3); then because the conclusion con-
tains the streamed term ‘‘L’—B,’’ which is banned from Stream I the conclu-
sion subject is added to Stream II. Premise (1) belongs to Stream II as ‘E’, like
“L’'—B,’’, is banned from Stream I, so ‘W’ is added to Stream II. The RC of
the conclusion is in Stream I, because of its relation-particle ‘L—’. Now all
variables are streamed.

Points of interest:

1.1 ‘not every, not all’ = some: u; (‘not any’ = d).

1.2 The two instances of B in the conclusion and in its RC cause B to be
present in two streams. The predicate in each case selects the stream for
the subject B.

1.3 Changing variable-name positions on the map will not affect the results.

1.4 On the maps, a/e premises are marked by premise numbers (instead of
zeros), and i/0 premises are shown by numbered curved lines, or a single
straight line if only one square is involved.

1.5 [12] describes the method for drawing maps of any size.

Premise (2) is entered on Map I, and premises (3) then (1) are plotted
onto Map II. The proposed conclusion (circled) is found to be present on the
map, i.e., the conclusion is valid. Map 1 is not functional in this example, as it
happens.

Other proposed conclusions can be checked on the maps. For instance, ‘No
women are liked by all botanists’ (W e L'—B,), i.e., W-L'—B,, = 0. Checking
the combination ‘““W.L’—B,”’ on Map II, it will be seen that only two of the
four possible squares contain premise numbers (zeros), therefore this pro-
posed conclusion is invalid. ‘All botanists are liked by some botanist’
(B alL-B,), B-L'-B,=0, is also invalid. Or, on Map I, ‘Some who like
every eccentric do not like some botanists’ (L—E; o L—B,), L—E;-L—B, #0,
is invalid because nothing is shown by the specified cells.
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B
B
3 3
L'~ B,
L-Ey
3 3
w S
242 /1'
L- By
I
Map I Map I1
Figure 1
Example 2. Illustration of the Method:
Argument: Helen is an actress.
All actresses like Tony.
All men liked by Helen are good-looking.
Therefore, Tony, the man, is good-looking. [2]
Symbolized English Boolean Form Comments
(1) HaAd H-A=0
2 AalL-Ty A-L-T;=0
3 M-L'-H;aG M-G-L'-H;=0 Explained below*
“T-MaG T-M-G=0
Added RCs
(4 TalL —-A, T-L'-A;=0 (RC of (2))
5) HelL—-(M-G)y H-L-(M-G);=0 (RC of (3))**

*Obvert: M-L'—H, e G: convert: G e M-L'—H,;, Add and Drop SC:
M-G e L'—H,.!
**‘Helen doesn’t like any non-(good-looking) man’.

Streams: 1A; L—Ty; L—(M-G)g; H (4 variables)
nN7T,L-A;; M; L'—-Hy;, G (5 variables)

Streaming is initiated with the RC pair (2), (4); then (3), (5) are added to
II and I respectively because of their relation-particle matches, L’— and L—.
Now all variables have been assigned to a stream, so, premise 1 is in Stream 1.

Premise numbers instead of the Boolean ‘O’ are recorded on the maps to
aid the selection of new combinations. If a cell has been marked by a premise
number, other premise numbers falling in the same cell are omitted to simplify
the figures in this paper, e.g., premise 5 on Map I.

After the maps have been plotted they are examined for new combinations.
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L-Ty
1 1 1 1
H
5 .2 2
4 ..
2 2
\—__/
L-(M-G)y
Map |
L'-Ag4
7 7 3 4 3 4 4
T
7 7 4 4 4 4
G
3 3
M L'~ Ha M
Map II
Figure 2

Here the only subsidiary conclusion which is not just a mapped premise or
part of a mapped premise is found on Map I, (6) “H-L-T7,=0", i.e.,
“H a L—T,’ whose RCis “T a L'—H,” giving (7) “T-L'—H;=0"’ to be
plotted on Map II. The required conclusion (circled) “7-M-G = 0’’ is now seen
to be present on Map II. Therefore the required conclusion “7-M a G’ is
valid.

All other subsidiary conclusions read from Map II have RCs which con-
tain a term lying outside the range of the data-set (e.g., “7-G a L'—H,;’ RCs
to““H a L—(T-G),”’ and “L—(T-G),” is not a given term on any map). That
is, no further information is exchanged between maps: the iterative process has
converged. As convergence has been reached, the maps can be inspected to see
whether proposed conclusions using terms on the maps are valid or invalid. For
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example, “M-L’—A,;=0" (All men are liked by any actress) is invalid. Or, on
Map I, “A-L—(M-G);=0" (Every actress likes every non-(good-looking)
man)—not demonstrated on the map—is invalid.

Example 3. A More Complicated Example with
Four Maps and Three Iterations:

Argument: Everyone reading some good biology books is interested in every
good biology book.
All zoologists read some good biology books.
All Darwin’s main works are good biology books.
All good biology books interesting every zoologist contain some
firmly established doctrines.
All firmly established doctrines are seminal.
.. All Darwin’s main works contain something seminal.

Symbolized English Boolean Form Comments

(1) R—-B,al-By R-B,-I-B;=0 (R = reading,
I = interested in)

2) ZaR-B, Z-R—B,=0
(3) DaB D-B=0 (D = Darwin’s main
works)
4 B-(I'-Z;)aC—-F, B-(I'-Z;)-C-F,=0 (C = containing)
S FasS F-§$=0 (F = firmly established
doctrines)

S.DacC-S§, ..D-C-S,=
Added RCs

6) Bal'—(R—B,), B-I'-(R-B,);=0 (RC for ‘I-’ for (1))
(7) BoR'—(I-By)g B-R'—(I-By)4#0 (RC for ‘R—’ for (1))
8 BiR'-Z, B-R'-Z,+0 (RC for (2))

9) FiC'—(B-I'-Z;)y F-C'—(B-I'-Zz)4#0 (RC for ‘C—’ for (4))
(10) ZeI-(B-C-F,), Z-I-(B-C=F,),=0 (RC for ‘“F’'—" for (4))

SiC'-Dy S-C'—D,;#0 (RC for conclusion)
Streams: I R—B,; I-By; Z; I-(B-C—F,)q (4 terms)
II B;I'-(R-B,))g; I'-2,4; C—F,; C—-S,; D (6 terms)

III B; R"—(I-By)q; R'—Z4; D (4 terms)

IV C'—(B-I'-23)4; F; S; C'—Dy (4 terms)

Points to notice:

3.1 Premises 1 and 4 have two relations and hence two RCs each. (7) is (1)
obverted, converted, and RC-ed: R—B,, e [-B;; I-B;, ¢ R—B,; B o
R’'—(I-B,)g4. (10) comes from (4); obvert, convert, and add SC, B, to
subject, drop SC, B, from the predicate then RC: B-(I'—Z2,;) e C—F,;
C-F,e B-(I'-2;); B.C-F, e I'-2,4; Z ¢ I-(B-C—F)),.

3.2 Where there are two relation-particles forming a relational product the
stream is decided by the first of the pair, e.g., R’— for premise 7.

3.3 On Map II, “D a I'-(R-B,),”’, e.g., can be seen to be valid, but
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I-D, (in its RC) is not a data item, so this adds no new information for
the next iteration.
3.4 i/o premises are plotted with curved lines (identified by their premise
numbers) through the relevant cells (see Map IV).
Map III is otiose here and is omitted.
Conclusions other than the one named in the argument can be found on
the maps, e.g., S i C'—(B-1'-Z,)4, on Map IV, the RC of which could
be transferred to Map II to produce further conclusions.
3.7 Note, incidentally, the method of drawing a map for six variables. [9]

w W
AN W

The Algorithm at Work: (1), (6), and (7) are used to initiate Streams I, II, and
III, respectively. (2) and (8) are located next in I and III respectively because of
R— and R’—. (10) is now placed in Stream I as its relation-particle is ‘I—’,
and ‘Z’ also lies in Stream 1. Premise 3, being a nonrelational proposition,
is placed in both Streams II and III as they already contain B. Because of B and
I’'— in its subject, premise 4 belongs to Stream II; this adds ‘C—F,’ to that
stream. The conclusion is in Stream II because both D and C— are there. (5),
(9), and the RC of the conclusion are associated with each other (because of
C’—, S and F) but not with any other stream, therefore Stream IV is started for
them and streaming is complete.

R-By,
[-Bg
10 2 2
Z . .
1 1 "2 2
1 1
I —(B-C—Fy)q
Map I
Figure 3a

Reading the Valid and the Invalid from the Maps: Subsidiary conclusion (11),
‘Z a I-B;, found on Map I gives as RC, (12) ‘B a I'—Z; which can be
transferred to Map II. The second iteration conclusion, (13), ‘D a C—F,’, now
found on Map II has as RC, (14) ‘F i C'—D, which is added to Map IV
giving (15) ‘S i C’'—D,’. Thus, the RC of (15) ‘D a C-S,’, the required con-
clusion, appearing on the third iteration, is valid.
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B
12 12
12 12 3 3 3 3
I'~(R=B, )4
. 12 12 3 3 3 3
12 12
6 6 6
6 6 6 3 3 3 3
6 6 6 3 3 3 3
6 6 6
I'-Z4 -y I'-2,
Map II
C'-Dy
S 5 5 S
s F
14 -—t+—14 !
ol e 9 ri——9
C'—(B-I'-Z4)q
Map IV

Figure 3b
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An illustration of the second invalidity condition (see the earlier section
“Validity-Invalidity Check’’ for i/0 conclusions can be seen on Map II. If we
wished to check the possible conclusion ‘Some good biology books do not con-
tain all firmly established doctrines’, i.e., ‘B-C—F,, #+ 0’ we would find every
cell for this Boolean combination is occupied by a zero (a premise number
only); the conclusion is invalid. We might also ask whether ‘/—B; a Z’ (All
(beings) interested in every good biology book are zoologists) is valid? Map I
shows it has not been implied—is invalid. Is ‘All firmly established doctrines are
contained in Darwin’s main works’ (F a C’—Dy) to be found on Map 1V? No;
it is invalid.

Example 4. An Illustration with Four Particular Conclusions,
Two Valid and Two Invalid:

Argument: All contributions to this publication are reports of original research
work. Anyone who produces a report of original research work is
hard-working or nonconformist. Some very obscure persons pro-
duced some of the material which is a contribution to this publica-
tion. Therefore, (a) some very obscure persons are hard-working or
nonconformist, (b) some very obscure persons are not producing
some reports of original research work, (c) some very obscure per-
sons are neither hard-working nor nonconformist, and (d) some

reports of original research work are produced by some very obscure
persons. [2].

Symbolized English Boolean Form Comments
(1) CaRr C-R= 0
2 P-R,a(HVN) P-R,-H-N=0 (P = producing)
3 O0iP-(M-C), O-P-(M-C),+0
SLOi(HVN) SJO-HVO-N+0

O o P-R, . O-P-R,#0

Oo (HVN) O-H-N+0

RiP-0, R-P—0O,+0

Added RCs

4 RoP—(H-N), R-P'—(H-N);#0 (RC of (2))
5y M-CiP-0, M-C-P-0,+0 (RC of (3))

Ro P -0, R-P'-0,+0 (RC of conclusion (b))

Oi P-R, O-P-R,+0 (RC of conclusion (d))
Streams: I P—R,; H; N; P—(M-C),; O (5 variables)

II R; P—(H-N);; M; C; P"—O, (5 variables)

Points to notice:

4.1 Complex terms (terms linked by ‘and’ and ‘or’) fit neatly into the system.

4.2 (4), the RC of (2), is obtained by obversion and De Morgan’s Law then
conversion and RC; i.e., P-R, ¢ (HVN); P-R, ¢ H-N; H-N e
P-R,: R o P'—(H-N),.

4.3 a/e premises are plotted first, then the i/0 premises which are indicated
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by drawing curved lines through the remaining relevant cells. On Map I
the range of premise 3 is confined by premise 2.

4.4 A single term may represent many words, e.g., ‘C’ = ‘contributions to
this publication’ (see also the later section, ‘Other Points’).

The Algorithm at Work: Streaming starts with (2) and (4). (3) and (5) are then
placed in Streams I and II, respectively, because of their relation-particles ‘P—’
and ‘P’—’. All terms are now streamed.

P-R,
H
6 3 —
0 ’ ,1
2 l ’ ] 2 S
6 6
2 2
5 P—(M-C), v
Map I
R
1 1
P'~(H N);
/5 1 |
P'-0,
T L
\ S I\
\ 4
y\_/// ] 1
M ¢ M
Map 11

Figure 4
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Considering only two-term combinations, and ignoring part premises (e.g.,
‘P'—0,-M # (0 on Map II arising from premise 5) and nontransferable new
combinations (e.g., ‘R-M # 0’ on Map II) the only new RC-able subsidiary con-
clusion is ‘R-P'—0,+ 0’ or ‘R i P'—0,’ from Map II, which is conclusion
(d), i.e., conclusion (d) is valid. Conclusion (d) RCs to (6) ‘O i P—R,’ or
‘O-P—R, # 0’ which is plotted onto Map 1.

The Algorithm seeks two-term combinations first. If at least one RC-able
subsidiary conclusion is found then the program passes back to the RC routine,
and hence the next iteration. But if no two-term combinations are found, then
three-term combinations are sought, and so on, up to the total number of terms
on the largest map. Here the second iteration finds no two-term subsidiary con-
clusions, but conclusion (a) ‘O-HV O-N # (0’ is now present on Map 1. So,
‘Oi (HV N)’ is valid.

New three-term subsidiary conclusions are ‘R-M-P'—0,+ 0’ and
‘R-C-P'—0,+0’ and ‘R-M-C # 0. The last is nonrelational and RCing the
first or the second leads to nongiven Map I terms. The only four-term subsidiary
conclusion ‘R-M-C-P'—0, # 0’ also leads to a nongiven Map I term. No five-
term subsidiary conclusions are found. Now that convergence has been
reached, it can be seen that conclusions (b) and (c) are not supported by the
given premises. That is, they are invalid.

Reading subsidiary conclusions from the maps has, with this example,
almost reached the point of complexity where it is sensible to hand the job over
to a computer. A computer is particularly well-suited to this phase of the
algorithm. When the detail becomes excessive and strenuous for the human mind
to handle, then it is time to use the computer, though eventually exponential
growth will defeat the computer and breaking the problem up into smaller units
may be the answer. The algorithm incorporates the basic instructions needed by
the computer program to carry out mechanized deduction.

The Computer Program The authors actually have a somewhat inelegant
but nevertheless working computer program written in accordance with this
algorithm. The program is described in more detail in the Appendix.? A data-
set of some seventy varied problems each with valid and invalid proposed con-
clusions taken from different modern logic texts (e.g., [21, [7], etc.) presented
no difficulties to the program. This would seem to support the soundness of the
algorithm, and its theoretical basis.

Program Restrictions: The program has so far been confined to propositions
with a maximum of two relations: a relational product, two relations connected
by ‘and’ or ‘or’, or a relation governing a complex relatum of which one term
is relational. The authors’ next program would allow relational propositions of
any complexity consistent with storage limitations, as there seems to be no dif-
ficulty, apart from exponential growth problems with computer storage and
time, in expanding the algorithm to accommodate more complicated proposi-
tions.

Other Points: We have to concede, as every system of logic has to, that transla-
tion into logical form can involve serious doubts and difficulties. However the



MECHANIZING LOGIC II 281

relative closeness to ordinary English and the conciseness of the symbolism of
this system are attributes in its favor.

Conclusion Map Logic is an applied logic which has a convergent (termi-
nating) iterative procedure which shows the validity of the valid conclusions and
equally the invalidity of the invalid conclusions. This has been confirmed by our
successful testing of the repertoire of representative logic-text examples. The
system seems to be viable in this field.

Considerations of space would require us to leave for a future article some
topics which might include, e.g., some refinements of streaming, triadic and
other polyadic relations, tentative applications to elementary algebra, and
generally problems even more complicated than those exemplified in this
article (cf. [11]).

Appendix: The Program The authors have written in Fortran IV (4.7 ex-
tended) a Map Logic program, developed over the last five years, to run on the
University of Sydney’s CDC Cyber-170-730. It was written to test the soundness
of their theory. Data are read as characters but immediately converted to a
numeric form by using a dictionary of terms and of relation-particles. The pro-
gram expects to perform algebraic Boolean operations on propositions. Each
Karnaugh map is a vector of 2” elements where # is the number of variables on
the map. (n+2) is restricted to the integer digit-size of the computer word (here
17) as each variable is assigned a value 0, 1, or 3 (positive, negative, or not
present) and there is a propositional-value-indicator with a value 0, 1, or 2 (‘=0’,
‘#£0’ for 1 cell, i.e., */’; or ‘+0’ for more than 1 cell, i.e., a curved line) plus
an ‘and/or’ term-indicator for propositions with ‘and/or’ terms. The RC
routine, at present, handles up to two dyadic relations per proposition. That is,
relational-products, two relations linked by ‘and’ or ‘or’, or a relation gov-
erning a complex relatum of which one term is a relation (in one of the
equivalent RCs).

The present pilot program has a total maps-size area of 4096 words, i.e.,
12 variables for a nonrelational problem, or, for example, 10 variables on each
of four maps. This area can be increased by full use of core stores, disk storage,
or magnetic tapes in exchange for some job run-time loss, but as the problem-
size expands, storage requirements increase rapidly as map-vector size is an ex-
ponential function of the number of variables. This is a difficulty which haunts
all methods attempting to solve similar problems, but is somewhat alleviated in
this case by the sharing of the variables over several maps.

The pilot program was written to test our theoretical position and so con-
tains much redundant text built in to check that the program was behaving self-
consistently. Now the authors are prepared to write a more generalized version,
adding programming improvements and storage economies to enhance its effi-
ciency, as time and money allow. Then its present execution (CPU) time of 3.0
sec for Example 2, 12.9 sec for Example 3, and 28.4 sec for Example 4 should
be greatly improved (assuming the same computer and systems). Significant in-
formation for each step of the algorithm is printed, and a special option-call sup-
plies Karnaugh maps and other diagnostic information.
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NOTES

1. For further details, see [13] under headings Add SC and Drop SC.
2. The authors will be happy to enter into correspondence about the computer program
with those interested.
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