Notre Dame Journal of Formal Logic Volume 25, Number 3, July 1984

A Model Theoretic Proof of Feferman's Preservation Theorem

DAVID MARKER

Let L be a countable first-order language containing a binary relation symbol \triangleleft . If \mathfrak{A} and \mathfrak{B} are L-structures and $\mathfrak{A} \subseteq \mathfrak{B}$, then we say \mathfrak{B} is a *faithful extension* of \mathfrak{A} if and only if for any $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$ if $\mathfrak{B} \models b \triangleleft a$, then $b \in \mathfrak{A}$. Thus if \triangleleft is a linear order on \mathfrak{A} , \mathfrak{B} is a faithful extension if and only if it is an end extension.

In [2] Feferman gives a very natural classification of the formulas which are preserved under faithful extensions. His proof uses a many-sorted interpolation theorem proved by a cut elimination argument. With the introduction of recursively saturated models Barwise and Schlipf [1], and Schlipf [5] attempted to give a unified framework for many preservation and definability theorems. In this note I will give an instructive model theoretic proof of Feferman's theorem. (I should note that Stern [8] and Guichard [4] have given model theoretic proofs of Feferman's theorem using model-theoretic forcing and consistency properties, respectively, but neither of these approaches matches the elegance of [5].)

The proof given here is directly inspired by Friedman's theorem [3] that every countable model of Peano Arithmetic is isomorphic to a proper initial segment of itself and the related embedding results presented in Smoryński [6]. In fact, independently of the author, Smorynski [7] uses Friedman's theorem to prove Feferman's result in the special case that \mathfrak{A} and \mathfrak{B} are models of Peano Arithmetic.

1 Embedding recursively saturated models

Definition 1.1 Let L be as above. We inductively define Σ a class of L-formulas as follows:

(i) If $\varphi(\bar{v})$ is quantifier free, then $\varphi(\bar{v})$ is in Σ .

(ii) If $\varphi(\bar{v})$ and $\psi(\bar{v})$ are in Σ , then $\varphi(\bar{v}) \wedge \psi(\bar{v})$ and $\varphi(\bar{v}) \vee \psi(\bar{v})$ are in Σ .

Received August 8, 1983; revised December 2, 1983

DAVID MARKER

(iii) If $\varphi(u, v, \overline{w})$ is in Σ , then $\exists v \varphi(v, \overline{w})$ is in Σ .

(iv) If $\varphi(u, v, \bar{w})$ is in Σ , then $\forall v(v \triangleleft u \rightarrow \varphi(u, v, \bar{w}))$ is in Σ .

We abbreviate $\forall v(v \triangleleft u \rightarrow \varphi(u, v, \overline{w}))$ as $\forall v \triangleleft u \varphi(u, v, \overline{w})$.

Definition 1.2 If \mathfrak{A} and \mathfrak{B} are *L*-structures, an embedding $f : \mathfrak{A} \to \mathfrak{B}$ is *faithful* iff *f* is one to one and \mathfrak{B} is a faithful extension of the image of \mathfrak{A} .

Lemma 1.3 Suppose $\varphi(\bar{v})$ is a Σ -formula and $f: \mathfrak{A} \to \mathfrak{B}$ is a faithful embedding. If $\bar{a} \in \mathfrak{A}$ and $\mathfrak{A} \models \varphi(\bar{a})$, then $\mathfrak{B} \models \varphi(f(\bar{a}))$.

Proof: By a simple induction on the complexity of Σ -formulas.

Our goal is to provide a partial converse to Lemma 1.3. We might first introduce a bit of notation.

Definition 1.4 We define Π a class of *L*-formulas containing the duals of Σ -formulas. That is, Π is the smallest class of *L*-formulas containing the quantifier-free formulas and closed under conjunction, disjunction, universal quantification, and, if $\varphi(u, v, \bar{w}) \in \Pi$, then $\exists v(v \triangleleft u \land \varphi(u, v, \bar{w})) \in \Pi$. (Again $\exists v(v \triangleleft u \land \varphi(u, v, \bar{w}))$) will be denoted $\exists v \triangleleft u\varphi(u, v, \bar{w})$.)

If $\mathfrak{A} \models T$ and $\bar{a} \in \mathfrak{A}$, the Σ -type of \bar{a} in \mathfrak{A} is the collection of all Σ -formulas $\varphi(\bar{v})$ such that $\mathfrak{A} \models \varphi(\bar{a})$. We define Π -types similarly.

We can now prove the main result.

Theorem 1.5 Suppose \mathfrak{A} and \mathfrak{B} are countable L-structures and the pair $(\mathfrak{A}, \mathfrak{B})$ is recursively saturated. Assume further that if $\varphi \in \Sigma$ is a sentence and $\mathfrak{A} \models \varphi$, then $\mathfrak{B} \models \varphi$. We may conclude that there is a faithful embedding $f: \mathfrak{A} \rightarrow \mathfrak{B}$.

Proof: Let a_0, a_1, a_2, \ldots list \mathfrak{A} and let b_0, b_1, \ldots list \mathfrak{B} . We build f by finite stages. Our inductive assumption is that if f has been defined on domain \bar{a} , the Σ -type of \bar{a} in \mathfrak{A} is contained in the Σ -type of $f(\bar{a})$ in \mathfrak{B} (or equivalently, the Π -type of $f(\bar{a})$ in \mathfrak{B} is contained in the Π -type of \bar{a} in \mathfrak{A}). Note our assumptions on \mathfrak{A} and \mathfrak{B} give the induction hypothesis for the initial case $\bar{a} = \phi$.

Step n. (1) Let f be defined on \bar{a} . (We allow the possibility that n = 0 and $\bar{a} = \phi$.) Let i be minimal so that $a_i \notin \bar{a}$. Let $\Gamma(v) = \{\theta(v, f(\bar{a})) : \theta \in \Sigma \text{ an } L$ -formula and $\mathfrak{A} \models \theta(a_i, \bar{a})\}$.

Claim 1 It is consistent that \mathfrak{B} realizes $\Gamma(v)$.

Let $\theta_0, \ldots, \theta_n \in \Gamma$. Then $\mathfrak{A} \models \exists v \bigwedge_{i=1}^n \theta_i(v, \bar{a})$. As the Σ -type of \bar{a} in \mathfrak{A} is contained in the Σ -type of $f(\bar{a})$ in $\mathfrak{B}, \mathfrak{B} \models \exists v \bigwedge_{i=1}^n \theta_i(v, f(\bar{a}))$. Thus realizing $\Gamma(v)$ in \mathfrak{B} is consistent.

Claim 2 $\Gamma(v)$ is realized in \mathfrak{B} .

Realizing $\Gamma(v)$ in \mathfrak{B} is equivalent to realizing $\Gamma^*(v)$ in $(\mathfrak{A}, \mathfrak{B})$ where $\Gamma^*(v) = \{v \in \mathfrak{B}\} \cup \{\theta^{\mathfrak{A}}(a_i, \bar{a}) \to \theta^{\mathfrak{B}}(v, f(\bar{a})) : \theta \in \Sigma \text{ an } L\text{-formula}\} \text{ and } \theta^{\mathfrak{A}}, \theta^{\mathfrak{B}}$ denote the formulas obtained by replacing all quantifiers $\exists v$ and $\forall v$ by $\exists v \in \mathfrak{A}$, $\forall v \in \mathfrak{A} \text{ and } \exists v \in \mathfrak{B}, \forall v \in \mathfrak{B}, \text{ respectively. But then } \Gamma^*(v) \text{ is a consistent recur$ sive type and thus must be realized. Let <math>b realize $\Gamma^*(v)$. Clearly b realizes $\Gamma(v)$.

214

Let $f(a_i) = b$. By choice of Γ our induction hypothesis is preserved.

(2) Suppose b_i is least so that $b_i \notin f(\bar{a})$ and for some $b \in f(\bar{a}) \mathfrak{B} \models b_i < b$. We must ensure b_i is in the range of f to make f faithful. Let $\Gamma(v) = \{\theta(v, \bar{a}) : \theta \in \Pi \text{ an } L$ -formula and $\mathfrak{B} \models \theta(b_i, f(\bar{a}))\}$. Let $\theta_0, \ldots, \theta_n \in \Gamma(V)$. Then $\mathfrak{B} \models \exists v < b \bigwedge_{i=1}^n \theta(v, f(\bar{a}))$. Since the Π -type of $f(\bar{a})$ in \mathfrak{B} is contained in the Π -type of \bar{a} in $\mathfrak{A}, \mathfrak{A} \models \exists v < f^{-1}(b) \bigwedge_{i=1}^n \theta(v, \bar{a})$. Thus it is consistent to realize Γ in \mathfrak{A} . As in Claim 2 above, Γ must be realized by some $a \in \mathfrak{A}$. Let $f(a) = b_i$. Again it is clear that the induction hypothesis is maintained.

This concludes step n.

It is easy to see that Part (1) of the construction ensures f is a total function embedding \mathfrak{A} to \mathfrak{B} . Part (2) of the construction guarantees that if $b \in \operatorname{range}(f)$ and c < b, then $c \in \operatorname{range}(f)$. Hence f is faithful.

2 *Feferman's theorem* Feferman's theorem follows from Theorem 1.5 and the following lemma. Fix *T* an *L*-theory.

Lemma 2.1 Let φ be a consistent L-sentence which is not provably equivalent to a Σ -sentence in T; then there are $\mathfrak{A}, \mathfrak{B} \models T$ such that $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi \cup Th_{\Sigma}(\mathfrak{A})$ (where $Th_{\Sigma}(\mathfrak{A})$ denotes the Σ -sentences true in \mathfrak{A}).

Proof: Suppose not. If $\mathfrak{A} \models \varphi$, let $\Gamma_{\mathfrak{A}} = \{\psi \in \Sigma : \mathfrak{A} \models \psi\}$. If $\mathfrak{B} \models \Gamma_{\mathfrak{A}}$ then $\mathfrak{B} \models \varphi$ as otherwise we would be done. Thus there is $n_{\mathfrak{A}}$ and $\psi_{1}^{\mathfrak{A}}, \ldots, \psi_{n_{\mathfrak{A}}}^{\mathfrak{A}} \in \Gamma_{\mathfrak{A}}$ so that $T \vdash \bigwedge_{i=1}^{n_{\mathfrak{A}}} \psi_{i}^{\mathfrak{A}} \to \varphi$. Let $\theta^{\mathfrak{A}}$ denote $\bigwedge_{i=1}^{n_{\mathfrak{A}}} \psi_{i}^{\mathfrak{A}}$. Let $\Delta = \{\neg \theta^{\mathfrak{A}} : \mathfrak{A} \models \varphi\}$. $\Delta \cup \{\varphi\}$ is inconsistent since if $\mathfrak{A} \models \Delta \cup \{\varphi\}$, $\mathfrak{A} \models \theta^{\mathfrak{A}}$ and $\neg \theta^{\mathfrak{A}}$. Thus there are $\mathfrak{A}_{1} \ldots \mathfrak{A}_{n}$ such that $T \vdash \varphi \to \bigvee_{i=1}^{n} \theta^{\mathfrak{A}_{i}}$. Since $T \vdash \theta^{\mathfrak{A}_{i}} \to \varphi$, $T \vdash \varphi \leftrightarrow \bigvee_{i=1}^{n} \theta^{\mathfrak{A}_{i}}$. But $\bigvee_{i=1}^{n} \theta^{\mathfrak{A}_{i}} = \bigvee_{i=1}^{n} \bigwedge_{j=1}^{n} \psi_{j}^{\mathfrak{A}_{j}}$, a Σ -formula. Hence φ

is provably equivalent to a Σ -formula.

Corollary 2.2 (Feferman's theorem) An L-formula $\varphi(\bar{v})$ is preserved under faithful extensions of models of T iff $\varphi(\bar{v})$ is provably equivalent to a Σ -formula.

Proof: (\Leftarrow) This is Lemma 1.3.

(⇒) Without loss of generality assume φ is a sentence. If φ is not provably equivalent to a Σ -sentence we can use Lemma 2.1 to find countable $\mathfrak{A}_0 \models \varphi \cup T$ and $\mathfrak{B}_0 = T \cup \neg \varphi \cup Th_{\Sigma}(\mathfrak{A}_0)$. Form the pair $(\mathfrak{A}_0, \mathfrak{B}_0)$ and let $(\mathfrak{A}, \mathfrak{B}) > (\mathfrak{A}_0, \mathfrak{B}_0)$ be a countable recursively saturated extension. By Theorem 1.5 there is a faithful embedding of \mathfrak{A} into \mathfrak{B} . Thus φ is not preserved under faithful extensions.

REFERENCES

[1] Barwise, J. and J. Schlipf, "An introduction to recursively saturated and resplendent models," *The Journal of Symbolic Logic*, vol. 41 (1976).

- [2] Feferman, S., "Persistent and invariant formulas for outer extensions," *Compositio Mathematica*, vol. 20 (1968).
- [3] Friedman, H., "Countable models of set theories," in *Cambridge Summer School in Mathematical Logic*, ed., A. R. D. Mathias and H. Rogers, Springer-Verlag, 1973.
- [4] Guichard, D., "A many sorted interpolation theorem for L(Q)," *Proceedings of the American Mathematical Society*, vol. 80 (1980).
- [5] Schlipf, J., "Towards model theory through recursive saturation," *The Journal of Symbolic Logic*, vol. 43 (1978).
- [6] Smorynski, C., "Recursively saturated nonstandard models of arithmetic," *The Journal of Symbolic Logic*, vol. 46 (1981).
- [7] Smorynski, C., "Lectures on nonstandard models of arithmetic," *Proceedings of the Florence Meeting*, North-Holland, Amsterdam, to appear.
- [8] Stern, J., "A new look at the interpolation problem," *The Journal of Symbolic Logic*, vol. 40 (1975).

Department of Mathematics University of California at Berkeley Berkeley, California 94720