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Some Results on Quantifiers

DAG WESTERSTAHL*

Introduction We shall study (generalized) quantifiers in the framework
introduced by Barwise and Cooper in [ 1 ], the logical investigation of which
has been continued in van Ben them [3] and Keenan and Stavi [2]. The present
paper, although self-contained, is in the spirit of [3]. Its main characteristic is a
systematic use of a method of proof introduced by van Benthem, which is
based on a representation of quantifiers as relations on the natural numbers.
With this method we give simplified proofs of a number of van Benthem's
results and prove some new ones. In particular, the number-theoretic repre-
sentation proves convenient for studying monotonicity behavior of quantifiers,
and our main result is a characterization of the first-order definable quantifiers
in terms of monotonicity.

1 Preliminaries The basic idea in [ 1 ] is that quantifiers correspond to
noun phrases in natural language. A quantifier has the syntactic form

Dη,

where D is a determiner and η a set term (an expression denoting a set of
individuals), and denotes, in a model M = (E, II* ll>, a set of sets of individuals,
namely, those subsets X of E for which Dr\(X) holds (or, more accurately,
Dη(ξ) holds when llfll = X). Familiar determiners are, e.g., all, some, most,
exactly one, and we have (in M)

Wallη\\ = iXCE: \\η\\CX\
\\someη\\ = \XCE: \\η\\ΠXΦφ\
imost η II = \X C E : Illr? II Π X\ > Illη II - X W
Wexactly oneη\\ = \XCE: \\\η\\Γ\X\ = l i .

*I would like to thank Johan van Benthem for inspiration and encouragement during the
preparation of this paper.
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Since \\Dη\\ - IIZ)ll(llτ?ll), this means that the determiners themselves denote
functions from P{E) (the power set of E) to P(P(E)), so that, e.g., borne II is
the function defined on P(E) by

Wsome\\(Y) = lXCE: YΠXΦφl

Using this idea Barwise and Cooper give a new formulation of logics (or
languages) with generalized quantifiers (for the relation between their formula-
tion and the traditional one cf. [4]). The further details of the syntax and
semantics of these logics will not concern us here, however.

In general, the interpretation llDll of a determiner symbol 7}' may vary
from model to model. In the present paper, however, we shall treat determiner
symbols as constants in the sense that their interpretation is fixed in each
universe E. We may then write

DE

instead of \\D\\M when M = (E, ll*ll>, and identify the determiner with its inter-
pretation DE for all (nonempty) E. So a determiner D is, in what follows, a
functor assigning to each E Φ φ a function from P(E) to P(P(E)).

Not all such functors deserve to be called 'determiners', however. Below
three conditions are stated, and a determiner is then defined to be a functor of
the above type satisfying all three conditions. The linguistic and philosophical
justification of these conditions is discussed in [1], [2], [3], and [4], and will
not be repeated here.

Let D be an arbitrary functor as above. The first condition is a strength-
ening of the requirement that the interpretation of a determiner symbol is
determined by the universe:

(CONST) If A, B C Ex C E2, then BeDEι(A)*>B e DEHA).

This condition enables us to view determiners from a new and, as it has
turned out (cf. [3]), fruitful perspective, namely, as binary relations between
sets: we let

DAB

mean that, for some universe E with A, B C E, B e DE(A). By CONST, D is
well-defined as a relation. This view of (and notation for) determiners will be
used frequently in what follows.

The second condition is the crucial conservativity condition, introduced
by Barwise and Cooper in [ 1 ]:

(CONSERV) For all A,B, DAB <=>DA(A Π B).

(The term 'conservativity' is from [3], where it is used for a condition com-
bining CONST and CONSERV above; some reasons for keeping them apart
are given in [4]. Barwise and Cooper express CONSERV by saying that the
quantifier DE(A) lives on A.)

Our final condition is familiar from traditional logic with generalized
quantifiers:
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(ISOM) If E is a universe, / a permutation of E, and A, B C E, then B e
DE(A)*>f[B]eDE(f[A}).

A seemingly more general condition would be obtained by using two universes
instead of one, and letting / b e a bijection between them. However, it is not
hard to see (cf. [4]) that, under CONST, this condition is in fact equivalent to
ISOM.

This concludes the definition of determiners. We may note that the class
of determiners is closed under Boolean operations: conjunction, disjunction,
negation.

It is often convenient to exclude certain trivial determiners:

(NONTRIV) There are universes Elt E2 and Ax C Eίf A2 C E2 such that
DE±(A λ)Φφ and DE*(A2) Φ P(E2).

Unless otherwise stated, we always assume in what follows that NONTRIV
holds for the determiners involved.

In some contexts, certain strengthenings of NONTRIV seem appropriate,
e.g., the following:

(VARX) For each universe E there are Ax, A2 C E such that DE(AX) Φ φ and
DE(A2)ΦP(E).

( V A R 2 ) F o r e a c h u n i v e r s e E t h e r e a r e E ' D E a n d A C E ' s u c h t h a t φ Φ
DE\A)ΦP(E').

V A R J is from van Ben them [3], and VAR2 has been proposed by Zwarts [5].
van Benthem also considers a further strengthening:

(VAR*) For all universes E and all nonempty ACE.φΦDE(A) Φ P(E).

These VAR constraints require a determiner to be more or less "active" on
every universe. Note that VAR2 and VAR2 are independent, but that both
imply NONTRIV and are implied by VAR*. Use of any of the VAR con-
straints will always be explicitly stated in what follows.

2 Determiners as relations on ω It follows from CONST, CONSERV, and
ISOM that only the cardinals \A ~B\ and \AC\B\ matter for whether DAB
holds or not. In general these cardinals may be infinite. However, we now lay
down the following constraint:

(FIN) Only finite universes are considered.

This is a drastic restriction, no doubt. It is partly motivated by the fact that a
great deal of the interest of the present theory of determiners comes from
applications to natural language, where this restriction is reasonable. But FIN is
also a characteristic of certain logical results on quantifiers which appear to be
interesting in their own right, and which fail without it. In particular, the
representation of determiners as relations on ω developed in this section
presupposes FIN.

With FIN, then, the cardinals \A - B\ and \A ΠB\ above are finite, and it
follows that to every determiner D there corresponds a unique relation between
natural numbers defined by



SOME RESULTS ON QUANTIFIERS 155

R(a, b) ^ there are A, B with \A - B\ = a and \A Π B\ = b
such that DAB.

Note that NONTRIV implies that φΦRΦ ω X ω. Conversely, given a relation
i^CωXco, the corresponding determiner is given by

DAB<*R{\A -B\, \A ΠB\).

To facilitate reading we shall use the same symbol ('/)', 'Df\ etc.) for the deter-
miner and the corresponding relation on ω. A determiner D is thus sometimes
viewed as a relation between sets (the set-theoretic framework), and sometimes
as a relation between natural numbers (the number-theoretic framework).

In the number-theoretic framework, then, a determiner can be represented
as a subset of the tree

diagonals
a + b = 0 4Φ 00 Γco/ a=\A-B\

= 1 V5° 10 01 % b = \ACΛB\
= 2 20 11 02
= 3 30 21 12 03

For example, the determiner all is the first (rightmost) row in the tree, exactly
one is the second column, and some consists of all columns except the first.
Note that conjunction of determiners (as relations between sets) corresponds
to intersection in the tree, disjunction to union, and negation to complement.

Properties of determiners can also be given two formulations: a set-
theoretic and a number-theoretic one. For example, one easily checks that the
VAR constraints, which we formulated set-theoretically in Section 1, have the
following number-theoretic versions:

(VARj) Of the pairs (0,0), (1,0), and (0,1), at least one is in D and at least
one is not in D.

(VAR2) There is at least one diagonal (in the tree) with one point in D and
another point not in D.

(VAR*) On every diagonal except 0 there is at least one point in D and
another point not in D.

Here we have used the "tree representation" to express number-theoretic
properties of D. This is often convenient but not, of course, necessary; VAR*,
for example, can also be formulated thus (with quantification over ω):

(VAR*) X/xy(x + y Φ 0 -* 3zu(D(x + y - z, z) Λ ~£>(χ + y - u, u))).

In Sections 3 and 4 we shall consider some properties of determiners
which are natural in the set-theoretic framework. For these simple properties
there is an easy mechanical translation procedure into the number-theoretic
framework, which we now sketch. To begin with, all properties to be con-
sidered are universal in the sense that they can be written with only universal
set quantifiers in front and no other quantifiers. Consider a property of D of
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the form

(1) \/EΦφ\/A,BCEφ,

where φ is a truth-functional combination of expressions of the forms DXY
and X C 7, where X and Y are Boolean combinations of A, B within the
universe E. Looking at the A, B, E in φ as sets for the moment, we let x =
\A -B\, y = \A Γ)B\, z = \B~A\, u = \E ~ (A UB)\. Then, for every Boolean
combination X of A, B in the universe E we can find an arithmetical term tx in
x, yy z, u such that ^ = \X\. Now replace, in φ, every expression DJίfy by
D(tχ-γ, tχnγ) and every expression I C 7 b y tχ-γ = 0. Finally, if the result of
this is φ*, it is easily seen that the number-theoretic formulation of (1) is

(Γ) Vxyzu ψ*.

For example, translating the properties

(2) VAB(DAB -> (DJ55 Λ D U Π 5)5))

(3) MABφAB Λ D5^[ -> A = 5)

by the above method yields

(2') Vxyz(P(x, y) -> φ(0, y + z) Λ D(0, y)))
(3') \fxyz(D(x, y) Λ Z)(Z, 3;) -> x = z = 0).

A similar procedure works with more than two set variables. In particular,
with three set variables A, B, and C we use the correspondence indicated in
Figure 1.

E C

Figure 1.

Then, for example, transitivity of D, i.e.,

(4) \/ABC(DAB Λ DBC -> Zλ4C),

translates as

(4') Vxj . . . x6(D(x3 + x4, xλ + x2) Λ D(x2 + xs, x1 + x6)
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Since we only deal with universal properties we shall often omit the
universal (set or number) quantifiers from expressions such as (4) and (4').

3 Some elementary properties of determiners The following is a list of
properties of D (most of which are studied in [3]) in their set-theoretic formu-
lations, together with their translations, by the procedure from Section 2, into
the number-theoretic framework.

Reflexivity DAA D(0,x+y)
Quasireflexivity DAB -> DAA D(x, y) ->D(0, x + y)
Weak reflexivity DAB -» DBB D(x, y) -»Z)(0, y + z)
Symmetry DAB -> DBA D(x, y) ->D(z, y)
Asymmetry DAB-+-DBA D(x,y)->~D(z,y)
Antisymmetry DAB ΛDBA ->A=B D(x,y) ΛD(Z,y)-*x = z = 0
Transitivity DAB Λ DBC ->DAC D(x3 + x4, xx + x2)

ΛZ>(x2 + X5, Xx + Xβ)

->Z)(x2 + x4, xx + x3)
Circularity DAB Λ Zλ£C ->Z)C^ D(x3 + x4, Xj + x2)

AJD(x2 + x5, Xj + x6)

Euclidity Z)yl5 Λ DAC->DBC D(x3 + x4, χx + x2)
ΛZ)(X2 + X4, XX + X 3 )

->Z)(x2 + x5, Xi + x6)
Antieuclidity D^15 Λ DCB -^DAC D(x3 + x4, x2 + x2)

ΛD(X 3 + X7, xj + x6)

-•Z)(x2 + x4, x2 + x3)

Part of the study of determiners concerns the investigation of which
determiners have properties like those listed above, or combinations of such
properties. In this section we prove some results of this type. Several of these
results are in van Benthem [3], but whereas he uses the set-theoretic frame-
work, we use the number-theoretic one. This often has the effect of making
the proofs shorter. Indeed, certain facts which need proof in the set-theoretic
formulation become obvious in the other formulation. As an example, we may
note that it is immediate in the number-theoretic framework that

(1) weak reflexivity implies quasireflexivity,

a fact which is not equally obvious in the set-theoretic framework. (We leave
the formulation of a direct set-theoretic proof as an exercise for the reader.)

The next lemma shows that some of the number-theoretic formulations in
the above list can be simplified in the sense that the number of variables can be
reduced.

Lemma 3.1

(a) Reflexivity is the property that D(0,x) (for all x)
(b) Symmetry is the property that D(x, y) *->D(0,y)
(c) Antisymmetry is the property that D(xfy) ->x = 0.

Proof: (a) is immediate, and the others are almost immediate. We prove (b) for
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illustration. Suppose first that D(x,y) -> D(z, y). Then, given D(x, y) we get
D(0,y) (put z = 0), and given D(0,y) we get D{x, y) (put z = x). Thus Z)(x, y) ++
D(0,y). Conversely, assume that the latter holds. Then, given D(x, y) we get
D(0,y), and then £>(z, j/) (put* = z). ΎhusD(x, y)-+D(z,y).

We may note that these number-theoretic versions of the three properties
in Lemma 3.1 are easy to visualize in the tree. For example, symmetry means
that if a point (x, y) is in D then so is the whole column through (x, y).

Lemma 3.1 also gives us new set-theoretic equivalents of the last two
properties:

Corollary 3.2 In the set-theoretic framework,

(b) symmetry is equivalent to DAB <->D(A Π B)(A Π B)
(c) antisymmetry is equivalent to DAB -+ACB.

Proof: Translating the expressions to the right we get the number-theoretic
formulations of Lemma 3. l(b)-(c).

Corollary 3.2(b) was first proved by Barwise and Cooper in [ 1] 3.2(c) has also
been proved by Zwarts.

Can weak reflexivity also be expressed as a universal property using only
two number variables? The answer is yes, and we leave to the reader to verify
that weak reflexivity is equivalent to

D(x,y)->D(0,y) Λ D(0,y) -+D(09y + 1).

Now we use Lemma 3.1 to give easy proofs of a number of results on
determiners. Let alle be the determiner (not, it seems, unusual in natural
language) defined by alleAB ^ A Φ φ and A C B, or, if we wish, alle(x, y) *>
x = 0andy>0.

Theorem 3.3

(a) (van Benthem) There are no asymmetric determiners.
(b) (Barwise and Cooper) There are no reflexive and symmetric determiners.
(c) (van Benthem) The only symmetric and quasireflexive determiners are at
least k, for k > 1. In particular, under VAR1 the only symmetric and quasi-
reflexive determiner is some.
(d) Under VAR*, the only antisymmetric determiners are all and alle.
(e) (van Benthem) The only antisymmetric and reflexive determiner is all.

Proof: (a) Suppose that D is asymmetric. If, for some x,y, D(x,y), then, by
the number-theoretic version of asymmetry, ~D(x, y) (put z = x). Thus
~D(x, y) for all x, y. But this contradicts NONTRIV.

(b) By Lemma 3.1(a) and (b), a reflexive and symmetric determiner would
contain all the points in the tree, contradicting NONTRIV.

(c) Evidently the determiners at least k, for k > 1, are symmetric and quasi-
reflexive. Now suppose D is a symmetric and quasireflexive determiner. We
argue in the tree. Let k be the least y for which there is an x such that (x, y) is
in D. k exists by NONTRIV. By symmetry, the whole column k (i.e., the one
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through (0,/:)) is in D. By quasireflexivity, (0,x) is in D for all x > k (draw a
picture!). Thus, by symmetry, all columns y for y > k are in D, and no other
points are in D, i.e., D is αί /eαsf fc Also, by NONTRIV, k > 0. Furthermore, it
is clear that VARi excludes all at least k, for k>2, leaving only some.

(d) and (e) These are immediate from Lemma 3. l(a) and (c).

The tree ω X ω is symmetric with respect to the line through (0, 0), (1, 1),
(2, 2), . . ., and determiners and results about determiners can be "mirrored" in
this line. To do this, define, for each determiner D, the co-determiner D~ by

D~(x,y)*D(y,x)9

or, equivalently,

D~AB<»DAB

(where B = E - B for some suitable E). We leave to the reader to check that D~
is indeed a determiner, i.e., satisfies the three conditions from Section 1. Next,
if P is a property of determiners we say that D is co- ? iff D~ is P. We then
get a symmetric version of Lemma 3.1, i.e.,

co-reflexivity is equivalent to D(x, 0) (for all x)
co-symmetry is equivalent to D(x,y) *-+ D(x, 0),

etc. And the symmetric version of Theorem 3.3 tells us that there are no
co-asymmetric determiners, no co-reflexive and co-symmetric determiners, that
under VARj the only co-symmetric and co-quasireflexive determiner is some~,
i.e., not all, that the only co-reflexive and co-antisymmetric determiner is all~,
i.e., no, etc. There are also results on combinations of properties with co-
properties, e.g.:

Proposition 3.4

(a) Under VAR lf there are no reflexive and co-reflexive determiners.
(b) There are no symmetric and co-symmetric determiners.

Proof: (a) If D is both reflexive and co-reflexive, then Z)(0,0), £>(l,0), and
D(0, 1), contradicting VARi.

(b) If D is symmetric and co-symmetric, then, by NONTRIV, one row and
one column of the tree are in D. But then the whole tree is in D, contradicting
NONTRIV.

Following [ 1 ] we may also define the dual D of a determiner D by

D = ~D~(=~φ~) = (.~Dy~).

For example, all = some. Barwise and Cooper call D self-dual \SD-D. In their
examples from English they find instances of self-duality only among partially
defined determiners. This is no accident, since for our (totally defined) deter-
miners we have

Proposition 3.5 There are no self-dual determiners.

Proof: If D is self-dual then, for all x, y, D(x, y) o ~D~(x, y) o ~D(y, x). But
this is impossible when x = y.
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Now let us turn to the properties of transitivity, circularity, euclidity, and
antieuclidity. Here the number-theoretic versions seem rather complicated, due
to the large number of (number) variables. But this number can be reduced, as
we shall see.

We begin with euclidity, i.e.,

(2) D(x3 + jt4, xλ + x2) ΛZ>(X2

 + * 4 , * I + x-s)~*D(x2 + xs, * i + *ό)

In [3] van Benthem proved that under VARX there are no euclidean deter-
miners. But his proof actually shows that VARj can be replaced by NONTRIV:

Theorem 3.6 There are no euclidean determiners.

Proof: (The following proof is essentially a translation of van Benthem's
proof.) First let x2 = x3 = xs = 0 in (2). Then we get

(3) D(x,y) ^D(0,y + z),

i.e., weak reflexivity of D. Next, putting x2 - x$ = x* = Xβ = 0 a n d * i = *s in (2)
we get

(4) D(0,x)->D(x,x).

Next, with x1 = x4 - x5 = x6 = 0 and x2 = x3 we get

(5) D(x,x)-+D(x, 0).

Also, from (3) with;; = z = 0,

(6) D(x,0)^D(0,0).

Finally, letting xx = x2 = x3 = x 4 = 0 in (2) we get

(7) D{Q,Q)-+D(x,y).

But it is easily seen that (3)-(7) are inconsistent with NONTRIV.

As a bonus we get the following

Corollary 3.7

(i) There are no circular determiners.
(ii) There are no symmetric and transitive determiners.

Proof: (i) Circularity is the property that

(8) D(x3 + x4, xί + x2) Λ D(x2 + xs, xλ + x6) ~>D{xβ + xΊ, xx + x3).

Letting x2 = x3 = x6 = 0 and x 4 = x5 in (8) we get

(9) D(x,y)-+D(z,y),

i.e., D is symmetric. Further, applying symmetry to circularity in their set-
theoretic formulations (for once) gives us

(10) DBAhDBC^DAC.

\ But this is just euclidity, which is impossible by Theorem 3.6.
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(ii) Under symmetry, transitivity clearly implies circularity, so the result
follows from (i).

Corollary 3.7 is also proved in [3], under the additional hypothesis of
VAR^

Now we turn to antieuclidity, i.e.,

(11) D(x3 + x4, xx + x2)
 Λ D{x3 + xn, xx + x6) -*D(x2 + x*, X\ + x3)

Theorem 3.8 Antieuclidity is equivalent to the property

D(x,y)++D(0,x+y),

or, in the set-theoretic framework,

DAB^DAA.

Proof: First suppose that D is antieuclidean. Putting x2

 = x$ = Xβ = χi = ^ in

(11) we get

(12) D(x,y)^D(0,x+y).

Likewise, with x3 = x4 = xΊ = 0 and x2 = Xβ w e get

(13) D(0,x+y)-*D(xty).

Now suppose that D(x,y) <-+ D(0,x + y) holds. Assume Z)(x3 + x4, xλ + x2)
Then, by the hypothesis, D(0,xί + x2 + X3 + ΛT4), and so, again by the hypothe-
sis, D(x2 + x4,xί + x3). This proves (11) (and also that the second conjunct
in (11) is redundant).

The theorem tells us that D is antieuclidean iff whenever (x, y) is in D, so
is the whole diagonal x + y. This gives a characterization of the antieuclidean
determiners:

Corollary 3.9 D is antieuclidean iff there is a set X C ω such that D(x, y)^
x + y eX(ie.,DAB<*\A\ e X).

Corollary 3.10 (Zwarts) Under VAR2 there are no antieuclidean determiners.

VAR1 does not exclude antieuclidity; an example is the determiner
defined by DAB <* \A I = 0 v \A I = 2.

By the proof of Theorem 3.8, antieuclidity can also be written as

DAB -+DAC.

Thus antieuclidity implies transitivity, and from Corollary 3.7 we get

Corollary 3.11 There are no antieuclidean and symmetric determiners.

Finally, we look at the most interesting of the four properties under
consideration, viz., transitivity:

(14) D(x3 + x4> xx + x 2 ) Λ D(x2 + x5, xλ +x 6 ) -+D(x2 + x4, x1 + x3).

We prove a series of lemmas which lead up to a characterization of transitivity.

Lemma 3.12 IfD is transitive, then
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x,y>0 t\D(x,y)->D{x+ l , j > - 1).

Proof: Let x2 = x6

 = 1, *4 = *s + 1, and x3 = 0 in (14), and the lemma follows.

Corollary 3.13 (van Benthem) IfD is transitive, then

D(x, y)-+x = 0v D(x + y, 0),

or, equivalently,

DAB-+A CBvDAφ.

Proof: Use Lemma 3Λ2y times.

Lemma 3.14 IfD is transitive, then

D(x+y,0)-»D(x,y)9

or, equivalently,

DAΦ-+DAB.

Proof: Letxj = x2 = x 6 = 0 and x5 = x3 + x 4in (14).

From Corollary 3.13 and Lemma 3.14 we see that if D is transitive, and
one point in a diagonal which is not its rightmost point is in D, then the whole
diagonal is in D. But what if the rightmost point is in DΊ The next lemma gives
an answer.

Lemma 3.15 Let D be a transitive determiner. IfD(0,x + y), and if D{u, υ)
for some u, v such that uΦO and u + v>x + y, then D(x, y).

Proof: Since u Φ 0 we may in fact suppose that u >x and υ >y. For we can
clearly assume that x Φ 0, and if we put u = x and v = u + v - x we get u > x,
υ >y, and u + υ1 = u + υ. Furthermore, by Corollary 3.13 and Lemma 3.14 it
follows that D(u',υ). This shows that the assumption that u > x and υ>y is
legitimate. Now put x3 = x4 = 0 in (14), and the lemma follows.

Now we can characterize the transitive determiners. If X, Y C ω, we let
X < Y mean that all elements of X are smaller than all elements of Y. In
particular, if X < Y and X is infinite, then Y = φ. Also, X < φ for all X.

Theorem 3.16 D is transitive iff there are subsets X,Y of ω such that
X<Y and

D(x, y)**x+yeXv(x = 0/\yeY)

(in other words, DAB 0 \A I e X v (A C B Λ \A I e Y)).

Proof: For the " i f part we use the set-theoretic formulation. Suppose that
there are X,Y C ω such that the condition of the theorem holds, and that DAB
and DBC. If Ul e X, then DAC. So suppose that A C B and \A\ e Y. Then
\A\ < LSI, so 151 i X (since X < Y). Thus B C C and U?l e 7. It follows that
i C C and hence that DAC, and we have shown that D is transitive.

Now suppose that D is transitive. Let X = \x: D(x, 0)1 and let F =
{>>: Z < 7 and£>(0,>0!. Then X < Y, and if x +y e X, then, by Lemma 3.14,
D(x, y). Suppose now that D(x, y) holds. If x Φ 0, then x + y e X,by Corollary
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3.13, so suppose that x = 0. We show that yeYorx+y=yeX.lfX<y then
y e Y by definition of Y. On the other hand, if not X < y, i.e., if y < x1 for
some x e X, then D(y, 0), so y e X. This is trivial if y = x', and follows from
Lemma 3.15 if y <x'. Thus we have shown that the desired condition holds.

This theorem gives a rather good idea of what transitive determiners look
like in the tree (draw a picture!). Also, we get the following corollaries:

Corollary 3.17 Under VAR*, transitivity and antisymmetry are equivalent
properties. Thus, under VAR*, the only transitive determiners are all and alle.

Proof: Suppose that D is transitive. VAR* implies that, in Theorem 3.16, X = φ
or X = ίOi. Thus D(x, y) implies that x = 0, which, by Lemma 3.1(c), means
that D is antisymmetric. Conversely, if D is antisymmetric, then, by Theorem
3.3(d), D is either all or alle, both of which are transitive.

Corollary 3.18 (van Ben them) The only transitive and reflexive determiners
are allAB or 1̂41 < n (for any natural number n). In particular, under VARλ the
only transitive and reflexive determiner is all.

Proof: Clearly these determiners are all transitive and reflexive. Conversely, if
D is transitive and reflexive, let n be the least x such that not D(x, 0). n exists
by Lemma 3.14 and NONTRIV. Since reflexivity means that D(0,x) for all x
we easily see that, in Theorem 3.16, X = ίO, . . ., n ~ l! and Y = [χ\ x >n\,
which gives the desired result.

The last statement of Corollary 3.18 does not hold if we assume VAR2

instead of VAR^ We may also note that transitivity can be expressed by a
universal statement with four number variables. For it is clear from the proofs
of Corollary 3.13-Theorem 3.16 that transitivity is equivalent to the conjunc-
tion of the three (universal) expressions in Corollary 3.13, Lemma 3.14, and
Lemma 3.15, respectively.

van Ben them notes in [3] that the present type of properties of deter-
miners can be regarded as inference patterns, and that results such as those of
this section answer questions which, in a sense, reverse Aristotle's approach to
logic: instead of asking which inference patterns are satisfied by certain given
logical constants, we ask which logical constants realize certain given inference
patterns. For example, for the four inference patterns

(15) DAB DAB DAB DAB
DBC DBC DAC DCB

DAC DC A DBC DAC

(transitivity) (circularity) (euclidity) (antieuclidity)

we have already obtained definite answers. Are there other interesting inference
patterns? We end this section by considering the case of inference patterns with
three set variables Ά\ 'B\ and 'C, leaving the cases of one or two set variables
to the reader. We also assume that there are two premises, and that in each
premise and conclusion two different set variables occur. The patterns (15)
comprise (up to notational variants (including changes of the order between the
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premises)) all inference patterns where the two premises share a "middle
term" which does not occur in the conclusion. If the premises do not share a
middle term, there are (up to notational variants) only two patterns, namely,

(16) DAB DAB
DBA DBA

DAC DC A.

However, it is easy to check that the second premise in (16) is redundant, so
that the patterns reduce to DAB -» DAC and DAB ̂  DC A. The second of these
implies circularity, and is thus impossible by Corollary 3.7. The first is, as was
noted in connection with Corollary 3.11, equivalent to antieuclidity.

An inventory of the remaining possibilities shows that (up to notational
variants) there are only four more inference patterns of the present type,
namely,

(17) DAB DAB DAB DAB
DAC DC A DCB DBC

DBA DBA DBA DBA

(these are the patterns where the middle term occurs in the conclusion). These
patterns resemble symmetry, and it is easy to check that, in fact, the first three
of them are all equivalent to symmetry. The fourth, however, which we may
call weak symmetry, is strictly weaker than symmetry, as is shown by the
determiner noAB and A Φ φ (note that VAR* holds for this determiner). In the
number-theoretic framework, weak symmetry becomes (with x = x3 + xΛ)

(18) D(X, Xι + X2) Λ_D(x2

 + *5> X\ + Xβ)~* D(XS + X6>x\ + xl)-

This can be simplified as follows.

Theorem 3.19 Weak symmetry is the property that

D(x, y) Λ D(y + z-u,u)-+ D(z, y).

Proof: If the property in the theorem holds, then we obtain (18) by letting
y = xx + x2, z = x5 + x6, and u = x1 + x6. Conversely, suppose that (18) holds,
and assume D(x,y) and D(y + z - u, u). Let xι be the smallest ofy, u, and let
x2-y ~X\,Xe~ u~xv Nowj> + z > u by assumption, i.e.,*! + x2 + z>X! + x6,
and so x2 + z > x6. We let x5 = z - x6. Then xs > 0, for iίx6 Φ 0, then x2 = 0
(by the definition of xί9 x2,x6), and thus z > x6. Substitution in (18) now
yields the property in the theorem.

By this theorem, weak symmetry means that if (x, y) is in D, and if some
point on the diagonal y + z is in D, then (z, y) is in D. The following corollary is
immediate.

Corollary 3.20 Under VAR*, weak symmetry is the property that

D(x, y)hy + zΦφ-> D{z, y),
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or, equivalently,

DAB NBΦΦ^DBA.

4 Monotonicity and continuity In [3] van Benthem gives a model-theoretic
proof that all doubly monotone determiners are first-order definable (in the
sense that there is a sentence ψ of first-order predicate logic in two unary
predicate symbols and identity such that B e DE(A) *> (E, A, B) t= φ), provided
that only finite models are considered. In this section we use the number-
theoretic representation of determiners to show a stronger result, namely, that
all left continuous determiners are first-order definable (definitions of mono-
tonicity and continuity follow presently). This will also give us a characteriza-
tion of the first-order definable determiners.

We begin with a few definitions. The following continuity properties are
from [3]:

(RIGHT) CONT B C B' C B" Λ DAB Λ DAB" -» DAB'.
LEFT CONT A C A1 C A" Λ DAB Λ DA"B^DA'B.
DOUBLE CONT ACA' CA" ΛBCB' C B" A DAB /\DA"B" -+DA'B'.

It is straightforward to verify that the corresponding number-theoretic versions
are

CONT x+y = xr + yf =x" +y" *y<yf < y" Λ D{X, y) Λ D(x"t y")
-*D(x',yf).

LEFT CONT x < x < x" Λ y < y' < y" Λ D(X, y) Λ D(χ;', y") -> D(x;, .y').
DOUBLE CONT x +y <x' + y' <x" + y" Λ y < / < / ' Λ 2)(x,y) Λ/)(X"J")

->Z)(JC',^').

These express various convexity properties in the tree. Thus, (right) continuity
means that if two points on a diagonal are in D, then so are all points in
between. The meaning of left and double continuity is conveniently illustrated
in Figure 2.

/ '̂ yi) ^ \ / / >;u ,7 ) \

(LEFT CONT) (DOUBLE CONT)

Figure 2.

(If (x, y) and (x", y") are in D, then so are all points in the shaded area.)

Corresponding to the three continuity properties there are three types of
monotonicity properties. We exemplify with downward (I) monotonicity, in
both versions:
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MONI B' CB Λ DAB -> DAB'
x+y=x'+y'/\x<x'/\ D(x, y) -> D{x', y').

ΦMON A' CANDAB^DA'B

x <x/\yf <y Λ D{x,y) -*D{x ,y').
ΦMONI A' CAr,B' CB NDAB ->D,4'£'

x' +y' <x+y /\x' <x A D(x,y) ->£>(*', / ) .

M0N4, means that if a point is in Z), then so are all points to the left on the
same diagonal. φMON and φMONφ can be illustrated in the tree by letting (x, y)
in the above figure be (0, 0).

The reader can check the usefulness of these "tree representations" right
away by verifying that | M 0 N | is equivalent to MONφ and |MON, whereas
DOUBLE CONT implies, but is not implied by, CONT and LEFT CONT. Also,
LEFT (DOUBLE) CONT is implied by ΦMON (φMONφ), and, if (0, 0) is in D,
the two are equivalent.

We also define upward monotonicity, MONt and tMON, as well as
tMONt, tMONI, and IMONt, in the obvious way.

In [1], right monotonicity is called simply monotonicity, and left mono-
tonicity is called (anti-)persistence. These properties are well known from
model theory and recursion theory, and Barwise and Cooper apply them in [ 1]
to the semantics of natural language. They are important in the logical theory
of determiners as well, as we shall see (cf. also [3]).

The determiner most is MONt but not tMON. Clearly most is not first-
order definable (for a proof, cf. [1]). This is no accident, since, as we shall
show, all left monotone determiners are first-order definable.

Theorem 4.1 If D is ±M0N, then D is first-order definable. More precisely,
D is definable by a universal first-order sentence, namely, a conjunction of
sentences of the form

\A -B\ <n\ι \A Γ)B\ <k

(here one of the disjuncts may be missing).

Proof: Suppose that D is |MON. Then, by NONTRIV, there are x0, y0 such
that for all x > x0 and all y > y0 not D(x,y). In fact, we may assume that
D(x0, y0). To see this, let P be the set of pairs (x, y) with the desired property.
Take (;c0, y0) in P with x0 + y0 minimal. Then (x0 - 1, y0) is not in P, so there
are x1 >x0 and^j >y0 such thsitD(xί,yί). But then, by φMON, D(xo,yo).

Now consider the columns 0, 1, . . ., y0, . . .. Define, for all /,

!

'ω, if there are arbitrarily large x such that D(x, i)
the largest x such that D(x, i), if there is such a largest x
- 1 , if there are no x such that D(x, i).

IMON now implies that the following holds: (a) if k\ = ω then the whole
column i is in D, and kj = ω for j <i; (b) if kt is a natural number then D{x, ΐ)
for allx < k(\ (c) if k( = -1 then k} = -1 for; >/; (d) if/ >/ then k\ >kj.

Now let i0 be the smallest / such that kt Φ ω. i0 exists by NONTRIV (in
fact io<yo+ 1 by our assumptions), and it follows that kf has a smallest value,
k, say. Let ix be the smallest / such that kf = k. The numbers ki(j > kf0+l >
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. . . > ki completely specify D, as shown in Figure 3 (where we have assumed
that z'0>0 and k>-\)\

Figure 3.

Also, it is clear that D can be represented as the intersection of a finite
number of determiners of the form shown in Figure 4; i.e., \A - B\ < n v
\A Π B\ Kk. This completes the proof of the theorem.

Figure 4.

Corollary 4.2 // D is \MON, then D is definable by an existential first-
order sentence, namely, a disjunction of sentences of the type

\A-B\>n /\\AΠB\>k

(where one of the conjuncts may be missing).

Proof: If D is tMON then ~D is |MON, so the result follows from
Theorem 4.1.

Note that no VAR constraints are used in these results. Indeed, it is easily
verified that, under VAR*, the only |MON determiners are no and all, and that
the only tMON determiners are some and not all
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The next result strengthens Theorem 4.1.

Theorem 4.3 Every LEFT CONT determiner is first-order definable.

Proof: The proof is a modification of the proof of Theorem 4.1. Suppose that
D is LEFT CONT, and let

x0 = the least x such that for some y, D(x, y)
yo= the leasty such thatD(x0,y)
yλ = the least y such that for some x, D{x, y)
x1 = the least x such that D{x, y{).

Thus x0 < x x and y1 < ^ 0 Now define a new determiner D1 by

D'(x, y)^Dix, y) v (xQ<x <xγ Λ yx <y <y0).

Then, in the subtree [x>xo,y>yi],D' is in fact ΦMON. There are two cases:

Case 1: For all x > x0 and all y > yι there are x > x and y' > y such that
D'(x ,y'). Then Z)' is the whole subtree [x>x0, y^yχ\.

Case 2: There are x 2 > x 0 and y2^ y\ such that for all x > x2 and all y > >̂ 2

not D'{x',y'). Then we argue exactly as in the proof of Theorem 4.1 to find, in
the subtree under consideration, the familiar pattern for Df.

This completes the description of Df (in the whole tree), and it is clear
that D' is first-order definable. But then, so is D, since D differs from Df at
most in the finite region [ X Q ^ ^ ^ ^ I ^ I ^ ^ ^ ^ O I The pattern for D may be
depicted (in Case 2) as shown in Figure 5. This completes the proof.

/ X X Vo

Figure 5.

From the proof of Theorem 4.3 one can find a general form of the first-
order definition of LEFT CONT determiners, but we content ourselves with
stating it in the case that VAR* holds.
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Theorem 4.4 Under VAR*, each LEFT CONT determiner is either all or
no, or definable as a conjunction where the first conjunct is either \A ~ B\ > 1
or \A Π B\ > 1, and the other conjuncts are of the form

\A -B\ <n\i \A ΠB\ <k

(where one of the disjuncts may be missing).

Proof: Suppose first that Z>(0, 0) holds. If D(l, 0), then, by VAR* and LEFT
CONT, D is no. Similarly, if D(0, 1), D is all. Now suppose that not £>(0, 0).
Then the cases D(l, 0) and D(0, 1) can be treated by considering subtrees as in
the proof of Theorem 4.3, which gives the desired result.

Finally, we show that Theorem 4.3 can be used to characterize the first-
order definable determiners.

Theorem 4.5 D is first-order definable iffD is a disjunction of LEFT CONT
determiners.

Proof: (outline) If D is a disjunction of LEFT CONT determiners, then D is
first-order definable by Theorem 4.3. For the converse we can use a well-known
description of monadic first-order logic with identity. It can be seen, if we bear
in mind the conditions on determiners from Section 1, that this description
(which is mentioned in [3]) yields that any first-order definable determiner can
be written as a Boolean combination of determiners of the types

\A ~B\<n,
\A ΠB\<n,
\A\<n.

In fact, the last form is superfluous, since, if DAB <-+\A\ < n, then

DAB<^ V (U -B\ =i Λ U ΠB\ =fc).

Thus, after transformation into disjunctive normal form, we get disjuncts of the
form (disregarding some "degenerate" cases)

n<\A-B\<n + k*m<\AnB\<m+ 1.

Clearly all determiners of these forms are LEFT CONT.
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