Conjunctive Normal Forms and Weak Modal Logics Without the Axiom of Necessity

SHIGEO ŌHAMA

In $S 5$ it is known that any formula can be reduced to conjunctive normal form (CNF) of degree 1; completeness easily follows from this fact (see, e.g., [5]). The purpose of this paper is to extend this method to prove completeness for very weak modal logics, and to give some applications. Twenty modal logics are dealt with here. We call them $L p q, D L p q(p=0,1$ and $q=0,2), L 3$, $D L 3$, and L_{N}, where L is one of $L 00-D L 3$. We first define L -tautologies corresponding to each $\operatorname{logic} \mathbf{L}$, where \mathbf{L} is either $L p q$ or $D L p q$, and characterize them by the set L^{*} of value-assignments having certain properties. Then, we show that $\diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$ is provable in a modal logic \mathbf{L} iff (1) C is a tautology, or (2) $A \vee B_{i}$ is an L-tautology for some i, where C, but not necessarily A or B_{i}, contains no modal operator. Completeness for $L p q$ (or $D L p q$) follows from this equivalence. For completeness of \mathbf{L}_{N}, where \mathbf{L} is either $L p q$ or $D L p q$, we shall also make use of the above equivalence for \mathbf{L}. For the remaining logics, a more direct method will be used.

The modal logics dealt with in this paper are defined in Section 1, Ltautology definitions and characterizations are given in Section 2, completeness proofs in Section 3, and applications in Section 4.

1 Weak modal logics $\quad W e$ are given a countable set, Π, of propositional variables, logical connectives, $\sim, \wedge, \vee, \rightarrow, \square$, and parentheses, (,). The other connectives and formulas are defined as usual. We shall consider modal systems obtained by adding the following axiom schemata and rules of inference to the classical logical base.

```
A1 }\square(A->B)->(\squareA->\squareB
A2 }\squareA->\diamond
```

R00 $P C \vdash A \rightarrow B \Rightarrow \vdash \square A \rightarrow \square B$
R10 $P C \vdash \bigwedge_{i=1}^{n} A_{i} \rightarrow(A \rightarrow B) \Rightarrow \vdash \square A \rightarrow \square B$, where A_{i} is an axiom
$\mathbf{R 0 2} \quad P C \vdash \bigwedge_{i=1}^{n}\left(\square A_{i} \rightarrow \square B_{i}\right) \rightarrow(A \rightarrow B), \vdash \bigwedge_{i=1}^{n}\left(\square A_{i} \rightarrow \square B_{i}\right) \Rightarrow \vdash \square A \rightarrow \square B$
$\mathbf{R 1 2} \quad P C \vdash \bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow\left(\bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow(A \rightarrow B)\right), \vdash \bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \Rightarrow$
$\vdash \square A \rightarrow \square B$, where A_{i} is an axiom
R3 $\vdash A \rightarrow B \Rightarrow \vdash \square A \rightarrow \square B$
$\mathrm{R}_{\mathbf{N}} \quad P C \vdash A \Rightarrow \vdash \square A$
$\mathrm{R} 1_{\mathrm{N}} \quad \vdash \square A$, where A is an axiom or a tautology
$\mathbf{R} \mathbf{2}_{\mathbf{N}} \quad \vdash \square(A \rightarrow B) \Rightarrow \vdash \square(\square A \rightarrow \square B)$
$\mathrm{R}_{\mathbf{N}} \quad \vdash A \Rightarrow \vdash \square A$.
In the above, $\bigwedge_{i=1}^{0} A_{i} \rightarrow A$ means A.
Now, we define the following modal logics:
$L 00=A 1, R 00: L 10=A 1, R 10: L 02=A 1, R 02$
$L 12=A 1, R 12: L 3=A 1, R 3: L 00_{N}=A 1, R 0_{N}$
$L 10_{N}=A 1, R 1_{N}: L 02_{N}=A 1, R 0_{N}, R 2_{N}$
$L 12_{N}=A 1, R 1_{N}, R 2_{N}: L 3_{N}=A 1, R 3_{N}$
$D \mathbf{L}=A 2, \mathbf{L}$, where \mathbf{L} is one of the above logics $L 00-L 3_{N}$.
$D L 00$ is Lemmon's $D 1, L 00_{N}$ is $S 0.5^{0}$, and $L 12_{N}$ is $P 2^{\circ} . L 3, L 3_{N}, D L 3$, and $D L 3_{N}$ are Lemmon's $C 2, T(C), D 2$, and $T(D)$, respectively. $T(C)$ and $T(D)$ are often called K and $D K$, respectively.

Lemma 1

1. $L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash \square(A \wedge B) \longleftrightarrow(\square A \wedge \square B)$
2. $L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash \diamond(A \vee B) \longleftrightarrow(\diamond A \vee \diamond B)$
3. $L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash \sim \diamond \sim A \leftrightarrow \square A$
4. $L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash \sim \square A \longleftrightarrow \diamond \sim A$
5. $L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash \sim \diamond A \longleftrightarrow \square \sim A$
6. $D L 00\left(\right.$ or $\left.D L 00_{N}\right) \vdash \diamond A$, where A is a tautology
7. For any formula $A, L 00\left(\right.$ or $\left.L 00_{N}\right) \vdash A \longleftrightarrow\left(\diamond A_{1} \vee \square B_{11} \vee \ldots \vee \square B_{1 n_{1}} \vee C_{1}\right) \wedge$ $\ldots \wedge\left(\diamond A_{m} \vee \square B_{m 1} \vee \ldots \vee \square B_{m n_{m}} \vee C_{m}\right)$, where C contains no modal operator.

Proof: Straightforward.
Remark: We only need axioms of the form $\square(X \rightarrow Y) \rightarrow(\square X \rightarrow \square Y)$ and $\square X \rightarrow \diamond X$, where both X and Y are Boolean combinations of subformulas of A and B in the proof. We do not claim in 7 that A_{i} and $B_{i j}$ are also in normal form or $\operatorname{deg}\left(A_{i}\right)=\operatorname{deg}\left(B_{i j}\right)=0$, since we observe here only outermost modal operators.

2 Characterization of L-tautologies Henceforth, unless otherwise specified, we use \mathbf{L} as a variable ranging over the modal logics $L p q$ and $D L p q$ ($p=0,1$ and $q=0,2$).
Definition $1 \quad$ A formula A is an \mathbf{L}-tautology iff there exist axioms A_{i} of \mathbf{L} and L-tautologies $B_{j} \rightarrow C_{j}$ such that $\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow\left(\bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow A\right)$ is a tautology, where $n_{1}=0$ if $\mathbf{L}=L 0 q$ (or $D L 0 q$) and $n_{2}=0$ if $\mathbf{L}=L p 0($ or $D L p 0)$.

Definition 1 is a definition by induction. So we can also define L-tautologies as follows: (0) each axiom of \mathbf{L} is an \mathbf{L}-tautology $(p=0)$, (1) if A_{i} is an axiom of $\mathbf{L}, B_{j} \rightarrow C_{j}$ is an L-tautology, and $\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow\left(\bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow A\right)$ is a tautology, then A is an L-tautology.

Lemma $2 A \rightarrow B$ is an Lp2 (or DLp2)-tautology iff $\square A \rightarrow \square B$ is an $L p 2$ (or DLp2)-tautology.

Proof: Since $(\square A \rightarrow \square B) \rightarrow(\square A \rightarrow \square B$) is a tautology, if $A \rightarrow B$ is an $L p 2$ (or $D L p 2$)-tautology, so is $\square A \rightarrow \square B$ by Definition 1. Suppose now $\square A \rightarrow \square B$ is an $L p 2$ (or $D L p 2$)-tautology. The proof proceeds by induction on the construction of $L p 2$ (or $D L p 2$)-tautologies: (1) if $\square A \rightarrow \square B$ is a tautology, so is $A \rightarrow B$, hence $A \rightarrow B$ is an $L p 2$ (or $D L p 2$)-tautology; (2) let

$$
\begin{equation*}
\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow\left(\bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow(\square A \rightarrow \square B)\right) \tag{a}
\end{equation*}
$$

be a tautology, where A_{i} is a formula of the form $\square(B \rightarrow C) \rightarrow(\square B \rightarrow \square C)$ or $\square B \rightarrow \sim \square \sim B$ and $B_{j} \rightarrow C_{j}$ is an $L p 2$ (or $D L p 2$)-tautology. Substitute X for each subformula of the form $\square X$ in (a) which does not occur in the scope of any other \square. Then we have tautologies $(B \rightarrow C) \rightarrow(B \rightarrow C)$ and $B \rightarrow \sim \sim B$ for $\square(B \rightarrow C) \rightarrow(\square B \rightarrow \square C)$ and $\square B \rightarrow \sim \square \sim B$, respectively, so $\bigwedge_{j=1}^{n_{2}}\left(B_{j} \rightarrow C_{j}\right) \rightarrow$ $(A \rightarrow B)$ is a tautology. Thus, $A \rightarrow B$ is an $L p 2$ (or $D L p 2$)-tautology, since $B_{j} \rightarrow C_{j}$ is an $L p 2$ (or $D L p 2$)-tautology.

Definition 2 Let Φ be the set $\Pi \cup\{\square A \mid A$ is a formula $\}$, where Π is the set of propositional variables $p_{1}, p_{2}, \ldots \bar{V}$ is the usual extension of $\{\mu \mid \mu: \Phi \rightarrow 2\}$ for $\sim, \wedge, v, \rightarrow$. \mathbf{L}^{*} is the set $\{\mu \in \bar{V} \mid$ for any L-tautology $A \mu(A)=1\}$.

Lemma 3 (Characterization lemma) A is an \mathbf{L}-tautology iff for any μ in \mathbf{L}^{*}, $\mu(A)=1$.

Proof: Let A be an L-tautology. Then for any μ in $\mathbf{L}^{*}, \mu(A)=1$, by the definition. Now, assume A is not an L-tautology. We construct μ in \mathbf{L}^{*} such that $\mu(A)=0$. It is sufficient to consider the case of $D L 12$ since the others are special cases of this one. We adopt the convention of association to the right for omitting parentheses. Thus, $A_{1} \rightarrow A_{2} \rightarrow \ldots \rightarrow A_{n}$ means $A_{1} \rightarrow\left(A_{2} \rightarrow \ldots \rightarrow\right.$ $\left(A_{n-1} \rightarrow A_{n}\right)$. .). We say B is a K-formula iff B is of the form $\square\left(B_{1} \rightarrow B_{2}\right) \rightarrow$ $\square B_{1} \rightarrow \square B_{2}$. If B is a K-formula $\square\left(B_{1} \rightarrow B_{2}\right) \rightarrow \square B_{1} \rightarrow \square B_{2}$, then let $S F(B)=$ $\square\left(B_{1} \rightarrow B_{2}\right)$. Assume the given formula A is a Boolean combination of p_{1}, \ldots, p_{t}, $\square B_{1}, \ldots, \square B_{m}$, and let $\square A_{1}, \ldots$, $\square A_{n}$ be an enumeration of $\square T$, $\square \sim T$, $\square B_{1}, \ldots, \square B_{m}$, where T is a fixed tautology, and let Z be the set of $\square\left(B_{i_{1}} \rightarrow\right.$ $\ldots \rightarrow B_{i_{k}}$) such that $k \geqslant 2, B_{i_{j}}$ is one of A_{1}, \ldots, A_{n}, and $B_{i_{j}} \neq B_{i_{h}}$ if $j \neq h$. Now let $A S=\{B \mid B$ is a K-formula such that $S F(B)$ in $Z\}$.

It is clear $A S$ is a finite set. Let $\left\{\square A_{i}^{\prime} \mid i=1,2, \ldots, r\right\}$ be the set of formulas such that both $\square A_{i}^{\prime}$ and $\square \sim A_{i}^{\prime}$ occur among $\square A_{1}, \ldots, \square A_{n}$, and let $\left\{B_{1}^{(j)} \rightarrow\right.$ $\left.\ldots \rightarrow B_{q j}^{(j)} \mid j=1,2, \ldots, s\right\}$ be the set of $D L 12$-tautologies such that $\square B_{k}^{(j)}$ occurs among $\square A_{1}, \ldots, \square A_{n}$ and $B_{h}^{(j)} \neq B_{i}^{(j)}$ if $h \neq i\left(k=1,2, \ldots, q_{j}\right)$. Since A is not a $D L 12$-tautology,

$$
\bigwedge_{i=1}^{r}\left(\square A_{i}^{\prime} \rightarrow \diamond A_{i}^{\prime}\right) \rightarrow \bigwedge_{B \in A S} B \rightarrow \bigwedge_{j=1}^{s}\left(\square B_{1}^{(j)} \rightarrow \square\left(B_{2}^{(j)} \rightarrow \ldots \rightarrow B_{q_{j}}^{(j)}\right)\right) \rightarrow A
$$

is not a tautology. So, there exists some μ^{\prime} in \bar{V} such that

$$
\begin{aligned}
& \mu^{\prime}\left(\bigwedge_{i=1}^{r}\left(\square A_{i}^{\prime} \rightarrow \diamond A_{i}^{\prime}\right)\right)=\mu^{\prime}\left(\bigwedge_{B \in A S} B\right)= \\
& \mu^{\prime}\left(\bigwedge_{j=1}^{s}\left(\square B_{1}^{(j)} \rightarrow \square\left(B_{2}^{(j)} \rightarrow \ldots \rightarrow B_{q_{j}}^{(j)}\right)\right)\right)=1 \text { and } \mu^{\prime}(A)=0 .
\end{aligned}
$$

Let $\square A_{n+1}, \ldots$ be an enumeration of all the formulas of the form $\square B$ except $\square A_{1}, \ldots, \square A_{n}$. Now, let

$$
\mu(B)= \begin{cases}\mu^{\prime}(B) & \text { if } B \text { is } p_{i} \text { or } \square A_{j}(1 \leqslant i \leqslant t, 1 \leqslant j \leqslant n) \\ e_{i} & \text { if } B \text { is } p_{i}(i>t)\left(e_{i}=0 \text { or } 1\right)\end{cases}
$$

The next step is an extension of μ to formulas of the form $\square A_{j}$, for $j \geqslant n+1$. There are two cases to consider. In both we assume that μ is defined for all $i<j$.

Case 1. $\mu^{\prime}(\square T)=0$. Put $\mu\left(\square A_{j}\right)=0(j \geqslant n+1) . \mu^{\prime}\left(\square A_{j}\right)=0$ for $j \leqslant n$, since $A_{j} \rightarrow T$ is a $D L 12$-tautology and $\mu^{\prime}\left(\square A_{j} \rightarrow \square T\right)=1$. Hence, for all $j, \mu\left(\square A_{j}\right)=0$. This fact and the definition of $D L 12$-tautologies imply that μ belongs to $D L 12^{*}$ and $\mu(A)=0$.
Case 2. $\mu^{\prime}(\square T)=1$. For $j \geqslant n+1$,
(1°) if there exists some $i<j$ such that $\sim A_{i} \leftrightarrow A_{j}$ is a tautology and $\mu\left(\square A_{i}\right)=1$, then let $\mu\left(\square A_{j}\right)=0$,
(2 ${ }^{\circ}$) if there exist $i_{1}, \ldots, i_{k}<j$ such that $\bigwedge_{q=1}^{k} A_{i_{q}} \rightarrow A_{j}$ is a DL12-tautology and $\mu\left(\bigwedge_{q=1}^{k} \square A_{i_{q}}\right)=1$, then let $\mu\left(\square A_{j}\right)=\begin{gathered}q=1 \\ =1,1\end{gathered}$
(3 ${ }^{\circ}$) if there exist $i_{1}, \ldots, i_{k}<j$ such that $\bigwedge_{q=1}^{k-1} A_{i_{q}} \rightarrow A_{j} \rightarrow A_{i_{k}}$ is a DL12tautology, $\mu\left(\bigwedge_{q=1}^{k-1} \square A_{i_{q}}\right)=1$, and $\mu\left(\square A_{i_{k}}^{q=1}\right)=0$, then let $\mu\left(\square A_{j}\right)=0$,
(4 ${ }^{\circ}$) otherwise, let $\mu\left(\square A_{j}\right)=e_{j}$.
If both $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$ hold for some j, we cannot define $\mu\left(\square A_{j}\right)$, since on the one hand $\mu\left(\square A_{j}\right)$ must be 0 , by (1°), and on the other hand, it must be 1 , by $\left(2^{\circ}\right)$. The same situation occurs if both $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ hold. So we must show that at most one of $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$ holds, and similarly that at most one of $\left(2^{\circ}\right)$ and (3°) holds.

If $A_{i_{1}} \rightarrow \ldots \rightarrow A_{i_{k}}$ being a $D L 12$-tautology implies $\mu\left(\square A_{i_{1}} \rightarrow \ldots \rightarrow\right.$ $\left.\square A_{i_{k}}\right)=1$ for all $i_{1}, \ldots, i_{k}<j$, then at most one of $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$ holds. For assume that $\sim A_{i} \leftrightarrow A_{j}$ is a tautology, $\bigwedge_{q=1}^{k} A_{i_{q}} \rightarrow A_{j}$ is a $D L 12$-tautology, and $\mu\left(\square A_{i}\right)=\mu\left(\bigwedge_{q=1}^{k} \square A_{i_{q}}\right)=1$, for some $i, i_{1}, \ldots, i_{k}<j$. Then, $A_{i} \wedge \bigwedge_{q=1}^{k} A_{i_{q}} \rightarrow \sim T$ is a $D L$ 12-tautology, since $\sim A_{j} \wedge A_{j} \rightarrow \sim T$ and $\left(A_{i} \rightarrow \sim A_{j}\right) \wedge\left(\bigwedge_{q=1}^{k} A_{i_{q}} \rightarrow A_{j}\right) \rightarrow$ $\left(A_{i} \rightarrow \bigwedge_{q=1}^{k} A_{i_{q}} \rightarrow \sim A_{j} \wedge A_{j}\right)$ are tautologies.
$\mu\left(\square A_{i} \rightarrow \bigwedge_{q=1}^{k} \square A_{i_{q}} \rightarrow \square \sim T\right)=1$ by the hypothesis and $\mu\left(\square A_{i}\right)=$ $\mu\left(\bigwedge_{q=1}^{k} \square A_{i_{q}}\right)=1$ by the assumption, so we have $\mu(\square \sim T)=1$. This contradicts $\mu(\square T \rightarrow \sim \square \sim T)=1$ and $\mu(\square T)=1$. Furthermore, if $A_{i_{1}} \rightarrow \ldots \rightarrow A_{i_{k}}$ being a $D L 12$-tautology implies $\mu\left(\square A_{i_{1}} \rightarrow \ldots \rightarrow \square A_{i_{k}}\right)=1$ for all $i_{1}, \ldots, i_{k}<j$, then at most one of $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ holds. For assume that $\bigwedge_{q=1}^{k_{1}} A_{i_{q}} \rightarrow A_{j}$ and $\bigwedge_{r=1}^{k_{2}-1} A_{i_{r}^{\prime}} \rightarrow$ $A_{j} \rightarrow A_{i_{k_{2}}}^{\prime}$ are DL12-tautologies, $\mu\left(\bigwedge_{q=1}^{k_{1}} \square A_{i_{q}}\right)=\mu\left(\bigwedge_{r=1}^{k_{2}-1} \square A_{i_{r}^{\prime}}\right)=1$, and $\mu\left(\square A_{i_{k_{2}}^{\prime}}\right)=0$, for some $i_{1}, \ldots, i_{k_{1}}, i_{1}^{\prime}, \ldots, i_{k_{2}}^{\prime}<j$. Then, $\bigwedge_{q=1}^{k_{1}} A_{i_{q}} \rightarrow \bigwedge_{r=1}^{k_{2}-1} A_{i_{r}^{\prime}}^{\prime} \rightarrow A_{i_{k_{2}}^{\prime}}^{\prime}$ is a DL12-tautology, since $\left(\bigwedge_{q=1}^{k_{1}} A_{i_{q}} \rightarrow A_{j}\right) \wedge\left(A_{j} \rightarrow \bigwedge_{r=1}^{k_{2}-1} A_{i_{r}^{\prime}} \rightarrow A_{i_{k_{2}}}\right) \rightarrow\left(\bigwedge_{q=1}^{k_{1}} A_{i_{q}} \rightarrow\right.$ $\left.\bigwedge_{r=1}^{k_{2}-1} A_{i_{r}}^{\prime} \rightarrow A_{i_{k_{2}}}^{\prime}\right)$ is a tautology. $\mu\left(\bigwedge_{q=1}^{k_{1}} \square A_{i_{q}}\right)=\mu\left(\bigwedge_{r=1}^{k_{2}-1} \square A_{i_{r}^{\prime}}\right)=1$ by the assumption, so we have $\mu\left(\square A_{i_{k}^{\prime}}\right)=1$, by the hypothesis. But this contradicts $\mu\left(\square A_{i}^{\prime} k_{2}^{\prime}\right)=0$ in $\left(3^{\circ}\right)$. If both $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ hold, then we can put $\mu\left(\square A_{j}\right)=0$ without any difficulty. If none of $\left(1^{\circ}\right)-\left(3^{\circ}\right)$ hold, we may put $\mu\left(\square A_{j}\right)=e_{j}\left(e_{j}=0\right.$ or 1) without any restriction. Thus, μ is well-defined.

We will now show by induction on the construction of $D L 12$-tautologies that μ is in $D L 12^{*}$. For any axiom of the form $\square B \rightarrow \sim \square \sim B$, let $\square B$ be $\square A_{h}$ and $\square \sim B$ be $\square A_{k}$ in the enumeration of the formulas of the form $\square C$. If $h, k \leqslant n$, then $\mu(\square B \rightarrow \sim \square \sim B)=\mu^{\prime}(\square B \rightarrow \sim \square \sim B)=1$. Now let $n<h$ or $n<k$. If $h<k$ and $\mu\left(\square A_{h}\right)=1$, then $\mu\left(\square A_{k}\right)=0$, by $\left(1^{\circ}\right)$, since $\sim A_{h}=\sim B \leftrightarrow \sim B=A_{k}$. For the case $\mu\left(\square A_{h}\right)=0$, it is trivial that $\mu\left(\square A_{h} \rightarrow \sim \square A_{k}\right)=1$. If $k<h$ and $\mu\left(\square A_{k}\right)=1$, then $\mu\left(\square A_{h}\right)=0$ by $\left(1^{\circ}\right)$, since $\sim A_{k}=\sim \sim B \longleftrightarrow B=A_{h}$. For an axiom of the form $\square\left(B_{1} \rightarrow B_{2}\right) \rightarrow\left(\square B_{1} \rightarrow \square B_{2}\right)$, we have $\mu\left(\square\left(B_{1} \rightarrow B_{2}\right) \rightarrow\right.$ $\left.\left(\square B_{1} \rightarrow \square B_{2}\right)\right)=1$ by an argument similar to the one for $\square B \rightarrow \sim \square \sim B$ except that we use $\left(2^{\circ}\right)$ or $\left(3^{\circ}\right)$ instead of $\left(1^{\circ}\right)$. Let B be a $D L 12$-tautology. Then there exist $B_{i}, B_{1 j}, B_{2 j}, C_{k}$, and D_{k} such that $\bigwedge_{i=1}^{n_{1}}\left(\square B_{i} \rightarrow \sim \square \sim B_{i}\right) \rightarrow \bigwedge_{j=1}^{n_{2}}\left(\square\left(B_{1 j} \rightarrow B_{2 j}\right) \rightarrow\right.$ $\left.\left(\square B_{1 j} \rightarrow \square B_{2 j}\right)\right) \rightarrow \bigwedge_{k=1}\left(\square C_{k} \rightarrow \square D_{k}\right) \rightarrow B$ is a tautology, where each $C_{k} \rightarrow D_{k}$ is a $D L$ 12-tautology and $\mu\left(\square B_{i} \rightarrow \sim \square \sim B_{i}\right)=\mu\left(\square\left(B_{1 j} \rightarrow B_{2 j}\right) \rightarrow\left(\square B_{1 j} \rightarrow \square B_{2 j}\right)\right)=1$. And $\mu\left(\square C_{k} \rightarrow \square D_{k}\right)=1$, by $\left(2^{\circ}\right)$ or (3°), since $C_{k} \rightarrow D_{k}$ is a $D L 12$-tautology.

Corollary $\quad \diamond T$ is a DL12-tautology but not a DL10-tautology.
Proof: $(\square T \rightarrow \sim \square \sim T) \rightarrow(\square \sim T \rightarrow \square T) \rightarrow \sim \square \sim T$ is a tautology, so $\diamond T$ is a $D L 12$-tautology. Let $\mu(\square B)=1$ for every formula B whose negation is a tautology, and otherwise let $\mu(\square B)=0$. Then μ belongs to $D L 10^{*}$ and $\mu(\diamond T)=0$. So $\diamond T$ is not a $D L 10$-tautology.

3 Completeness

Definition 3 A structure $m=\langle W, R, Q, P\rangle$ consists of
(a) a nonempty set $W \subseteq \bar{V}$,
(b) a relation $R \subseteq W \times W$,
(c) sets $Q, P \subseteq W$ such that $Q \cap P=\phi$.

If a structure $m=\langle W, R, P\rangle$, then m is such that $Q=\phi$. A structure m is called serial iff for any $\mu \in W-Q \cup P$ there exists a $\nu \in W$ such that $\mu R \nu$. A structure \mathbb{m} is an \mathbf{L}-structure iff both $P \subseteq \mathbf{L}^{*}$ and \mathcal{m} is serial if $\mathbf{L}=D L p q$.

Definition 4 Let $m=\langle W, R, Q, P\rangle$ be a structure. Then for any $\mu \in W$ and formulas A and B,
(1) if A is a propositional variable, then $\langle m, \mu\rangle \vDash A$ iff $\mu(A)=1$,
(2) for $X=\sim A, A \vee B, A \wedge B$, or $A \rightarrow B\langle m, \mu\rangle \vDash X$ is defined as usual,
(3) $\langle m, \mu\rangle \vDash \square A$ iff (i) $\mu \notin Q \cup P$ and for any ν such that $\mu R \nu,\langle m, \nu\rangle \vDash A$, or (ii) $\mu \in P$ and $\mu(\square A)=1$.

We will write:
$m \vDash A$ iff for any $\mu \in W-P\langle m, \mu\rangle \vDash A$
$\mathrm{L} \vDash A$ iff for any L -structure $m=\langle W, R, Q, P\rangle \neq A \vDash A$ $\mathrm{L}_{N} \vDash A$ iff for any L-structure $m=\langle W, R, P\rangle m \vDash A$.

In the following lemmas, C is a formula which contains no modal operator.
Lemma 4 If $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vDash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$, then either $(a) C$ is a tautology, or (b) $A \vee B_{i}$ is an L-tautology, for some $i(1 \leqslant i \leqslant n)$.

Proof: Assume neither (a) nor (b) holds. Then there exist $\mu_{0}, \mu_{1}, \ldots, \mu_{n}$ by Lemma 3 such that $\mu_{0} \neq \mu_{i}, \mu_{i} \in \mathbf{L}^{*}$ and which satisfy $\mu_{0}(C)=0$ and $\mu_{i}\left(A \vee B_{i}\right)=$ $0(1 \leqslant i \leqslant n)$.

Let $W=\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{n}\right\}, P=\left\{\mu_{1}, \ldots, \mu_{n}\right\}, Q=\phi, \mu_{0} R \mu_{i}(1 \leqslant i \leqslant n)$, and $m=\langle W, R, Q, P\rangle$. Then $\left\langle m, \mu_{0}\right\rangle \not \forall \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$. This is a contradiction. So either (a) or (b) holds. In the case where C is missing, we can choose μ_{0} such that $\mu_{0} \neq \mu_{i}$, for $i=1,2, \ldots, n$.

Remark: In Lemma $4, \diamond A$ or $\square B_{i}$ is possibly missing even if C is missing or is not tautology. If $\diamond A$ is missing then $\mathbf{L}_{N} \vDash \square B_{1} \vee \ldots \vee \square B_{n} \vee C$, and if $n=0$, then $\mathbf{L}=D L p q$.

Lemma 5 If $A \rightarrow B$ is an \mathbf{L}-tautology, then $\mathbf{L} \vdash A \rightarrow B$ and $\mathbf{L} \vdash \square A \rightarrow \square B$.
Proof: We proceed by induction on the construction of L-tautologies. If $\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow \bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow(A \rightarrow B)$ is a tautology, A_{i} is an axiom, and $B_{j} \rightarrow C_{j}$ is an L -tautology, then $\mathrm{L} \vdash \square B_{j} \rightarrow \square C_{j}$, by induction hypothesis, so $\mathrm{L} \vdash A \rightarrow B$, and $\mathrm{L} \vdash \square A \rightarrow \square B$, by $R 00-R 12$, respectively.

Corollary Let $\mathbf{L}=D L 00-D L 12$. If A is an \mathbf{L}-tautology, then $\mathbf{L} \vdash \diamond A$.

Proof: Assume A is an L-tautology. Then so is $\sim A \rightarrow \sim T$, where T is a given fixed tautology. By Lemma 5, Lトロ~A $\rightarrow \square \sim T$. So, $\mathbf{L} \vdash \diamond T \rightarrow \diamond A$. $\mathrm{L} \vdash \diamond A$, since $D L 00 \vdash \diamond T$, by 6 in Lemma 1 .

In the following lemmas, L_{N} means one of $L 00_{N}-D L 12_{N}$.
Lemma 6 If A is an \mathbf{L}-tautology, then $\mathbf{L}_{N} \vdash A$ and $\mathbf{L}_{N} \vdash \square A$.
Proof: Assume $\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow \bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow A$ is a tautology, A_{i} is an axiom, and $B_{j} \rightarrow C_{j}$ is an L-tautology. By induction hypothesis, $\mathrm{L}_{N} \vdash \square\left(B_{j} \rightarrow C_{j}\right)$, so $\mathrm{L}_{N} \vdash \square B_{j} \rightarrow \square C_{j}$, therefore, $\mathrm{L}_{N} \vdash A$.

$$
\mathrm{L}_{N} \vdash \square\left(\bigwedge_{i=1}^{n_{1}} A_{i} \rightarrow \bigwedge_{j=1}^{n_{2}}\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow A\right) \text { by } R 0_{N}\left(\text { or } R 1_{N}\right) \text {, so } \mathrm{L}_{N} \vdash
$$

$\bigwedge_{i=1}^{n_{1}} \square A_{i} \rightarrow \bigwedge_{j=1}^{n_{2}} \square\left(\square B_{j} \rightarrow \square C_{j}\right) \rightarrow \square A$, therefore $\mathrm{L}_{N} \vdash \square A$, by $R 0_{N}$ (or $R 1_{N}$) and $R 2_{N}$ with $\square\left(B_{j} \rightarrow C_{j}\right)$ being provable.
Corollary Let $\mathbf{L}=D L 00-D L 12$. If A is an \mathbf{L}-tautology, then $\mathrm{L}_{N} \vdash \diamond A$.
Proof: $\mathrm{L}_{N} \vdash \square A$. So $\mathbf{L}_{N} \vdash \diamond A$.
Remark: In the proof of Lemma 6, we may assume that each A_{i}, B_{j}, and C_{j}, is a Boolean combination of subformulas of A, by Lemma 3 and (\#). Furthermore, there exists a proof of $\square \bigwedge_{i=1}^{n} X_{i} \leftrightarrow \bigwedge_{i=1}^{n} \square X_{i}$ where we need only modal axioms of the form $\square(X \rightarrow Y) \rightarrow(\square X \rightarrow \square Y)$ such that both X and Y are Boolean combinations of subformulas of $\bigwedge_{i=1}^{n} X_{i}$. Thus, by induction on the construction of L-tautologies, we have a proof of $\square A$ in Lemma 6 where both X and Y occurring in each modal axiom of the form $\square(X \rightarrow Y) \rightarrow(\square X \rightarrow \square Y)$ or $\square X \rightarrow \diamond X$ are Boolean combinations of subformulas of $\square A$. We say in such a case that $\square A$ has the M-subformula property. We also have the same result for Lemma 5.

Lemma 7 If $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vDash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$, then $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vdash \diamond A \vee$ $\square B_{1} \vee \ldots \vee \square B_{n} \vee C$.

Proof: By Lemma 4, we have either (1) C is a tautology, or (2) $A \vee B_{i}$ is an L-tautology for some $i(1 \leqslant i \leqslant n)$.

If (1) holds, then trivially $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vdash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$. If (2) holds, we have three cases: (1°) If A is missing, then $\mathrm{L}_{N} \vDash \square B_{1} \vee \ldots \vee \square B_{n} \vee C$, by the Remark following Lemma 4 , and for some i, B_{i} is an L-tautology by Lemma 4. Thus, we have $\mathrm{L}_{N} \vdash \square B_{i}$ by Lemma 6. Thus, $\mathrm{L}_{N} \vdash \square B_{1} \vee \ldots \mathrm{v}$ $\square B_{n} \vee C$.
(2°) If $n=0$, then $\mathbf{L}=D L p q$, by the Remark following Lemma 4 , and A is an L-tautology. So, $\mathrm{L}\left(\right.$ or L_{N}) $\diamond \diamond A$, by the corollaries to Lemma 5 and Lemma 6.
(3°) In the remaining case, \mathbf{L} (or $\left.\mathbf{L}_{N}\right) \vdash \square \sim A \rightarrow \square B_{i}$, by Lemma 4 and Lemma 5 (or Lemma 6). Thus, $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vdash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$.
Remark: It is easily seen that there exists a proof of $\diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$ with the same property mentioned in the Remark following Lemma 6.

If a structure $m=\langle W, R, Q\rangle$ or $\langle W, R\rangle$, then m is such that $P=\phi$ or $P=Q=\phi$, respectively. m is an $L 3$-structure iff $m=\langle W, R, Q\rangle$, and m is a $D L 3$-structure iff $m=\langle W, R, Q\rangle$ and m is serial. Let L be $L 3$ or $D L 3$. $\mathrm{L} \vDash A$ iff for any L-structure $m=\langle W, R, Q\rangle, m \vDash A$, and $L_{N} \vDash A$ iff for any structure $m=\langle W, R\rangle, m \vDash A$.
Lemma $8 \quad$ Let $m_{i}=\left\langle W_{i}, R_{i}, Q_{i}\right\rangle(i \in I), W_{i} \cap W_{j}=\phi$ if $i \neq j(i, j \in I)$, and $m=\langle W, R, Q\rangle$, where $W=\bigcup_{i} W_{i}, R=\bigcup_{i} R_{i}$, and $Q=\bigcup_{i} Q_{i}$. Then, for any formula A and any $i \in I, \mu \in W_{i},\langle m, \mu\rangle \vDash A$ iff $\left\langle m_{i}, \mu\right\rangle \vDash A$.

Proof: Straightforward.
Lemma 9 Let $m_{i}=\left\langle W_{i}, R_{i}, Q_{i}\right\rangle$ and $\mu_{i} \in W(1 \leqslant i \leqslant m)$. For each m_{i}, μ_{i}, and propositional variables p_{1}, \ldots, p_{n}, there exists $m_{i}^{\prime}=\left\langle W_{i}^{\prime}, R_{i}^{\prime}, Q_{i}^{\prime}\right\rangle$ such that $\mu_{i}^{\prime} \in W_{i}^{\prime}, W_{i}^{\prime} \cap W_{j}^{\prime}=\phi$ if $i \neq j$, and $\left\langle m_{i}, \mu_{i}\right\rangle \vDash A$ iff $\left\langle\mathcal{m}_{i}^{\prime}, \mu_{i}^{\prime}\right\rangle \vDash A$, for any formula A having only propositional variables p_{1}, \ldots, p_{n}.
Proof: Straightforward.
Lemma 4' Let \mathbf{L} be L3 or DL3. If $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vDash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$, then either (1) C is a tautology, or (2) $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vDash A \vee B_{i}$ for some i.
The proof is similar to the proof of Lemma 4 except that we make use of Lemma 9.

Thus, Lemma 7 with the Remark following it hold for $L 3$ (or $L 3_{N}$) and $D L 3$ (or $D L 3_{N}$), by induction on modal degrees of formulas.

The completeness theorem follows by 7 in Lemma 1, Lemma 7, and by checking that each axiom is valid and that each rule of inference preserves validity.

Theorem Let \mathbf{L} be L00-DL3. Then $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vDash A$ iff $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vdash A$.

4 Applications

Derivability of the rule $\vdash \square A \Rightarrow \vdash A \quad S 2^{0}$ based on the $P C$ is formulated as $L 12_{N}+\{\vdash \square A \Rightarrow \vdash A\}$ in Zeman [10] and Bowen [1].

We show here the rule $\vdash \square A \Rightarrow \vdash A$ is derivable in $L 00_{N}-D L 3_{N}$. Hence, we can see this rule is redundant in the $S 2^{0}$ formulation.

Corollary Let \mathbf{L} be L00-DL3. If $\mathbf{L}_{N} \vdash \square A$, then $\mathbf{L}_{N} \vdash A$.
Proof: Suppose $\mathrm{L}_{N} \vdash \square A$. Then $\mathrm{L}_{N} \vDash \square A$. So $\mathrm{L}_{N} \vDash A$. Therefore, $\mathrm{L}_{N} \vdash A$.
Decidability First we show that it is decidable whether A is an L-tautology or not, where L is one of $L 00-D L 12$. We consider only the case of $D L 12$ as in the proof of Lemma 3. Our proof proceeds by induction on the construction of $D L 12$-tautologies and modal degrees of formulas. It is decidable whether A is
an axiom of $D L 12$ or not. Assume that for any formula A such that $\operatorname{deg}(A)<n$, we can decide whether A is a $D L 12$-tautology or not. Let A be a Boolean combination of $p_{1}, \ldots, p_{t}, \square B_{1}, \ldots, \square B_{m}$ and $\operatorname{deg}(A)=n$. Then we can construct (\#), as in the proof of Lemma 3, in a finite number of steps since $\operatorname{deg}\left(B_{1}^{(j)} \rightarrow \ldots \rightarrow B_{q_{j}}^{(j)}\right)<n$. It is easy to decide whether (\#) is a tautology or not. Thus, we can decide whether or not A is a $D L 12$-tautology. We can also decide whether or not $\mathbf{L}\left(\right.$ or $\left.\mathbf{L}_{N}\right) \vdash \diamond A \vee \square B_{1} \vee \ldots \vee \square B_{n} \vee C$ by Lemmas 4-6. For $L 3-D L 3_{N}$, we have the same result by Lemma 4^{\prime} and induction on modal degrees of formulas. So each formula in conjunctive normal form is decidable. Any formula is equivalent to its conjunctive normal form, by 7 in Lemma 1, and for any given formula we have a method for deriving its conjunctive normal form. Therefore, each logic here is decidable.

M-subformula property \quad Let \mathbf{L} be $L 00-D L 3_{N}$. We say a formula A provable in \mathbf{L} has the M-subformula property iff there exists a proof of A in \mathbf{L} such that each formula X, Y occurring in any modal axiom of the form $\square(X \rightarrow Y) \rightarrow$ ($\square X \rightarrow \square Y$) or $\square X \rightarrow \diamond X$ in the proof consists of a Boolean combination of subformulas of A. A logic L has the M-subformula property iff each formula provable in L has the M-subformula property.

Theorem Let \mathbf{L} be $L 00-D L 3_{N}$. Then \mathbf{L} has the M-subformula property.
Proof: Assume L $\vdash A$. By 7 in Lemma 1, $\mathbf{L} \vdash A \longleftrightarrow \bigwedge_{i=1}^{m}\left(\diamond A_{i} \vee \square B_{i_{1}} \vee \ldots \vee\right.$ $\square B_{i n_{i}} \vee C_{i}$). Since $\mathrm{L} \vdash A, \mathbf{L} \vdash \diamond A_{i} \vee \square B_{i_{1}} \vee \ldots \vee \square B_{i n_{i}} \vee C_{i}$, for each i. Thus, this formula has the M-subformula property by the Remark following Lemma 7. Hence, A has the M-subformula property by the Remark following the proof of Lemma 1.

REFERENCES

[1] Bowen, K. A., Model Theory for Modal Logic, Reidel Publishing Company, Amsterdam, 1979.
[2] Cresswell, M. J., '"A conjunctive normal form for S3.5," The Journal of Symbolic Logic, vol. 34 (1969), pp. 253-255.
[3] Fine, K., 'Normal forms in modal logic," Notre Dame Journal of Formal Logic, vol. 16 (1975), pp. 229-237.
[4] Fitting, M., 'Subformula results in some propositional modal logics," Studia Logica, vol. 37 (1978), pp. 387-391.
[5] Hughes, G. E. and M. J. Cresswell, An Introduction to Modal Logic, Methuen Co., Ltd., London, 1968.
[6] Kripke, S. A., "Semantical analysis of modal logic I," Zeitschrift für Mathematische Logik und Grundlagen der mathematik, vol. 9 (1963), pp. 67-96.
[7] Lemmon, E. J., 'New foundations for Lewis modal systems," The Journal of Symbolic Logic, vol. 22 (1957), pp. 176-186.
[8] Lemmon, E. J., "Algebraic semantics for modal logic I," The Journal of Symbolic Logic, vol. 31 (1966), pp.46-65.
[9] Ōhama, S., '‘S2 ${ }^{0}=P 2^{0}-\{\vdash \square \mathrm{A} \Rightarrow \vdash \mathrm{A}\}, ’$ Journal of Toyota National Technical College, vol. 15 (1982), pp. 91-96.
[10] Zeman, J. J., "Lemmon-style bases for the system $\mathrm{Sl}^{0}-\mathrm{S} 4^{0}$," The Journal of Symbolic Logic, vol. 33 (1968), pp. 458-461.

Toyota Technical College
2-1 Eisei-cho
Toyota 471, Japan

