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On Certain Lattices of Degrees

of Interpretability

PER LINDSTROM

1 Preliminaries All theories S, T, A, B, etc., considered in what follows are
primitive recursive (Craig's theorem). A, B, etc., are reflexive extensions of
Peano arithmetic P. We write S \~ X or X H S, where X is a set of sentences, to
mean that S h φ for every φ e X. Thus S H T means that S is a subtheory of T.
S is an X-subtheory of T, S ~\χ Γ, if S h φ implies T h φ for every φ e X. S<T
will be used to indicate that S is (relatively) interpretable in T. S < T iff
S < T ^ S and S = T iff S < Γ < S. X [ k = \n e X: n < k\. Thus A is reflexive
iff yl h Coπ^to for every n. A is essentially reflexive if every extension of A in
the language of A is reflexive. φι is 0 if / = 0 and π0 if / = 1. Terminology and
notation not explained here are standard (cf. [1]).

All proofs below of the existence of interpretations are applications,
directly or indirectly, of the following basic result established by Feferman [ 1 ]:

Lemma 1 If P H T and σ(x) numerates S in T, then S<T+ Conσ.

This is proved by showing that the denumerable case of the Henkin complete-
ness proof can be formalized in P.

For any formula σ(x), let σ*(x) be the formula

σ(x) Λ Cony

σ(y)Λy<x .

This definition and the following lemma are again due to Feferman [ 1 ].

Lemma 2

(i) If P ~\ T and σ(x) binumerates S in T and for every n, T Y~ Cons\n, then
σ*(x) binumerates S in T.
(ii) P \~ Conσ*.
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Proof: (i) is obvious. To prove (ii) we argue in P as follows: If Conσ, then
Conσ*. So suppose ~\Conσ. Then there is a z such that ~\Conσ(X)NX<tZ. Letzobe
the least such z. Then Conσ(X^x<ZQ and σ*(x) -+ σ(x) Λ X < z0. Thus Conσ* in
this case too.

The following key lemma is all but stated explicitly in the work of
Feferman [1] and Orey [6]. It was resurrected and formulated explicitly by
Hajek [3].

Lemma 3 S<AiffA\~ Cons\n for every n.

Proof: Suppose first S < A. Then for every «, there is an m such that
S \ n <A \ m. But then, by Theorem 6.4 of [1], P h CoriA\m~* Cons\n> whence
A h Constn, since A is reflexive. This proves "only if". To prove "if" suppose
A h Cons\n f°r all n. Let σ(x) be any formula binumerating S in A. Then, by
Lemma 2(i), σ*(x) binumerates S in A. Hence, by Lemma 1 and Lemma 2(ii),
S<A.

One immediate consequence of Lemma 3 is the following (cf. [6]):

Lemma 4 (Orey's compactness theorem) S<:AiffStk<A for every k.

If P + φ < A and φ is Π?, then A \~ φ. Hence, by Lemma 3, we get
(cf. [2], [3], [4]):

Lemma 5 A<BiffA~\noB.

A sentence φ is X-conservative over T if T + φ~\χT. Thus, by Lemma 5,
A + φ < -4 iff φ is n?-conservative over 4̂. In the following, Γ is either Σj + 1 or
Π#+1 and Γ is the dual of Γ. By an obvious modification of the proof of
Theorem 1 [5] (due to Guaspari [2]), we get

Lemma 6 Suppose P H T and let X be any r.e. set. Then there is a Γ formula
η(x, y) such that for all k and φ,

(i) ifk e X, then T+_φ_\~ -rη(k, φ)
(ii) if k i X, then η(k, φ) is Y-conservative over T + φ.

A set X of sentences is said to be monoconsistent with T if T + φ is
consistent for every φ e X.

Lemma 7 Suppose P ~\ T and X is r.e. and monoconsistent with T. Then
there is a Γ sentence ψ 4 X which is Γ-conservative over T.

Proof: Let η(x, y) be as in Lemma 6 and let φ be such that P f~ φ <—•
η(φ, 0~Ξ~0). If φ e X, then, by Lemma 6(i), T h iη(φ, 0"Ξ"U), whence T h π φ,
which is impossible. Thus φ 4 X But then, by Lemma 6(ii), φ is as desired.

2 Degrees of interpretability Throughout the rest of this paper T is a
consistent primitive recursive essentially reflexive extension of P, e.g., P or ZF,
and A, B, etc., are extensions of T in the language of T. Thus A, B, etc., are
essentially reflexive. Clearly = (mutual interpretability) is an equivalence
relation. Its equivalence classes \B:B=A\ will be called degrees (of inter-
pretability) and will be written a, b, etc. d(A) is the degree of A. Let a < b
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mean that A < B for A e a and B e b. Finally let Dj be the partially ordered set
of degrees thus defined.

We now define the operations \ and t on theories as follows. Let

Aτ =TU {ConAtn: n e ωi,
A Φ£ = ί0v φ: φeA & ψ eB],
A \ B = ATUBT.

Thus Th(A I B) = Th(A) Π Th(B), where Th(A) = iφ\ A h φ\. The following
lemma is then an immediate consequence of Lemma 3.

Lemma 8

(i) A<BiffAτ~\B. Thus Aτ=AandA<B iff Aτ Λ Bτ.
(ii) A<B, CiffA<B IC.

(iii) A, B < C iff A ΪB<C iff A t ί H C .

For A e a and B e b, let a Π b = dG4 I 5) and α U b = dG4 t 5). By
Lemma 8, Π and U are well-defined, a Π Z? is the gib of 0 and 6, and 0 U b is
the lub of a and fc. Thus we have proved part of the following (cf. [4]):

Theorem 1 Dj is a distributive lattice.

To prove distributivity it suffices, by Lemma 8, to verify that

Aτ UBΪC)-\\- (Aτ i Bτ) t (Aτ I Cτ).

But this follows at once from the next lemma whose proof is obvious.

Lemma 9

(i) For every k, there is an m such that

P h ConiAiB)ϊm ~* ConArk v Conmk.

(ii) For every m, there is a k such that

P h ConA[k v ConB\k ~* Con{AiB)\m -

In [8] Svejdar introduced the lattice Vj consisting of all degrees of the
form d{T+ φ). By Theorem 11 of [5] or Theorem 3 of [4], Vτ = Dτ.

Clearly Dτ has a minimal element 0 = d(T) and a maximal element 1, the
common degree of all inconsistent theories. Suppose T is Σj-sound and
0, b < 1. Then A t B, where A e a and B e b, is consistent and so a U b < 1.
However, if T is not Σ?-sound, this is not necessarily true. In fact we have the
following (cf. [4]):

Theorem 2 T is not Σ\-sound iff there are degrees a\ < 1 such that
a0 U aλ - I (and α 0 Π aι = 0).

To prove this we first prove the following simple but sometimes useful lemma
(cf. [4]):

Lemma 10 If X is r.e. and monoconsistent with Q, then there is a true Π?
sentence φ such that ψ, iφ 4 X.
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Proof: Let R(k, m) be a primitive recursive relation such that X =
\k: 3mR(k, m)\ and let p(x, y) be a PR binumeration of R(k, m). Let φ be such
that

Q h φ «-* Vz(p(φ, z)^3u<z p(Tφ, u)).

It is then easily verified that ψ is as desired.

Lemma 11 Suppose X is r.e. and monoconsistent with P and let Θ be any
true Π? sentence. There are then Π?sentences 0Z such that

(i) P h 0 o v 0 i

(ii) PY-ΘQNΘ^Θ

(iii) θ(φX,iJ=0,l.

Proof: We may assume that if φ e X and P h φ -> ψ, then ψ e X By Lemma 10,
there is a true Π? sentence φ 4 X. Thus, if necessary replacing 0 by φ Λ 0, we
may assume that 0 ̂  X Let 0 be Vy 7(7), where γ(>0 isPjR. Next let δo(x) and
δ^x) be the formulas

\/z(iy(z)->3u<zPrfQ(x,u)),

\/z(PrfQ{x, z)-*3u<z -I7(κ)).

Then

(1) PhδoWvδ^),
(2) P\-δo(x)*δ1(x)-+θ.

Let Z/ = [φiδiiφt) e X\. Suppose Q h iφ. Then, since P h ConQt P H_δo(0) "* ^?

whence δo(0) φ X, whence φ φ Xo. Moreover, θ being true, P I—\δ ί(iφ), whence
φ φ Xv Thus Xo U Xx is monoconsistent with Q. But then, by Lemma 10, there
is a sentence φ such that φi φX0U Xlt i = 0,1. Let 0, be δ^πψ). Then 0, ̂ Z
and (i) and (ii) follow at once from (1) and (2). Finally, by (i), iθj φ X.

Proof of Theorem 2: Suppose T is not Σ?-sound and let θ be a true Π? sentence
such that T \- ~λd. Let 0, be as in Lemma 11 with X = Th(T) and let a{ =
d(T + 0/). Then a\ < 1 and α0 Π α2 = 0. By Lemma 5 and Lemma ll(ii),
(Γ+0 O ) t (T+Θx) h 0 . Since T h π 0 , it follows that a0 Uax = 1.

By Theorem 2, if Γis Σ?-sound, then no degree, except trivially 0 and 1,
has a complement, whereas if T is not Σ?-sound, some do. The existence of
pseudocomplements will be discussed later (Theorem 7).

It is easily seen that no a < 1 is meet-irreducible. For suppose A e a and
let X = {φ: Q + φ < A\. Then X is r.e., since Q is finite, and monoconsistent
with Q. Thus, by Lemma 10, there is a φ such that φι φ X. Let a\ = d(A + ψz)
Then α < αz and α0 Π βj = α. The question arises if there are join-irreducible
degrees a φ 10,1}. That the answer is negative follows from Theorem 3 (cf. [4]):

Theorem 3 Suppose b < 1 and a^ ̂  a < b ^ b^ for k < n. Then there
are degrees q such that a < Cf < b and a^ ^ cz ^ b^ for i = 0, 1 and k < n,
c0Πcι = a, and c0 U ct - b.

Proof: Let an+1 - b, bn+1 = a, A e a, B e b, A^ e a^, and B^ e b^. By Orey's
compactness theorem, there are sentences φk such that A^ H φk and φ^^A.
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Moreover, by Lemma 3, there is an m such that Bk \t ConB\m- Let β(x) be a PR
binumeration of B and set

X={φ: ψk<A + ~iφ for some k<n+ 1} U

{φ\ Bk \~ φ v CoriB\m f°Γ some /: < « + 1} .

Then X is r.e. and monoconsistent with P. Hence, by Lemma 11, there are Π?
sentences θ( such that

(1) P\-θovθu

(2) P \-θ0Nθχ-+Conβ,
(3) θμX,i,j = 0,L

Let dz = d(A + 0Z ). Then a < <2/ and <z& 1? di, since ~ι0/ ̂  X. Also, by (1),
ύ?0 Π dj = α. By (2) and Lemmas 1 and 5, d0 U dι > b. Now set cz = dz Π 5. Then
a < Ci < b. Also #& ̂ ξ cz and so, in particular, cz < Z?. Suppose c, < Z?̂ . Then
^ I (yl + 0, ) < Bk. But βj v CoriBtm is Π? and provable in B I 04 + 0, ). Hence,
by Lemma 5, Bk hθ/V CoπB\m> contradicting (3). Thus cz ^ bk, whence a < cz .
Clearly c 0 Π cί = a. Finally, by distributivity, c0 U cγ = b Γ) (d0U dλ) = Z?.

Let

COMPLab = {c: there is a d such that c Πd = a and c U J = b\ .

As is well-known, since Dγ is distributive, to each c e COMPLab, there is a
unique c* e COMPLa j , such that c Π c * = f l and c U c* = Z?. In fact

BAatb=(COMPLatb9Ci,Ό,*)

is a Boolean algebra.

Corollary 1 // a < b < i, r/zê  BAat is a denumerable atomless Boolean
algebra. Thus if c <d < 1, #ze« BAa ^ andBAcd we isomorphic.

Proof: We need only show that BAab is atomless. Suppose c e COMPLajj and
a <c. Then, by Theorem 3, there is a d e COMPLa ^ such that c^d*&c*. Let
e = c Dd. Then e e COMPLab and α < e < c.

Let [a, b] = \c: a<c<b], [a,b) = \c: a<c<b\, and let (0, b] and (a, b)
be defined in the obvious way. It is now natural to ask if COMPLab = [a, b]
provided that a < b < 1. We are going to show that the answer is negative. We
define the relations « / and « m as follows: a « / b iff a < b and for every c,
ifaUc>b, then c > b\ a « m biffa<b and for every c, if b Π c < a , then
c<a.

Theorem 4

(i) If 0<a*£ ak, k<n, then there is a b such that 0 <b « 7 a and b ^ αfc/br
Λ<w.
(ii) If ak*£a< 1, k <n, then there is a b such that a « m b < 1 and ak^b for
k<n.

Part (ii) of the theorem is proved in [4].

Proof of (i): Let A e a and Ak e ak. By Lemma 5, there is a Π? sentence θ such

that A h 0 and Ak \t θ. Let X = U \Th(Ak + iθ): k<n\. Then X is r.e. and
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monoconsistent with Γ+ iθ. Hence, by Lemma 7, there is a Π? sentence φ i X
such that φ is Σ?-conservative over T + iθ. Let B = T + φ v θ and b = d(5).
Then 0 < b ^ί ajς and b <a. Suppose /?Uc>fl. Let C e c. Then, by Lemma 5,
there is an m such that T + ψ + Conc\m l~ #> whence Γ + ~ι0 + ι// I—iCo^m*
whence, by the choice of φ, T + iθ I—\Conc\m, whence C \~ θ. Thus c > b
and so c = c U Z? > a.

From Lemmas 3 and 9 we get at once the following:

Lemma 12 4̂ φ i? <C iff for every n, A < C + iCoriB\n-

Our next lemma is an immediate consequence of Lemma 5.

Lemma 13 If A <B and σ is Σ?, ίλew A + σ < £ + σ.

If σ is Σj, let a[σ] be the degree of A + σ, where 4̂ e α. By Lemma 13,
fl[σ] is well-defined. Let α[Σ?] = | J U[σ]: σ is Σ?}.

Lemma 14 77ze following conditions are equivalent:

(i) For every c, ίfb Π c < α, then c < <z.
(ii) α[Σ?] n [&,;> = £

Proof: Suppose (i) holds. Let σ be a Σj sentence such that 6 <α[σ]. Let A e a
undB eb. Then B l(A+-\σ)<A. But then, by(ϊ),A +πσ<A ButπσisΠ?.
Hence ̂ 4 I—iσ and so a[σ] = 1.

Next, suppose (ii) holds. Let c be such that b Π c < α. Let i eα, etc.
Then, by Lemma 12, B <A + -iCoftcrm But ~iConcιm is Σj. Hence, by (ii),
4̂ h Concern- But this holds for every m and so c < a.

Proof of Theorem 4(ii): Let A e a and ̂  e <z#. By Orey's compactness theorem,
there are sentences φ^ such that A^ \~^φk ^ A. Let X = \φ: φ^ < A + π0 for
some /:<«}. Then X is r.e. and monoconsistent with A. But then, by Lemma 7,
there is a Σ? sentence o 4 X such that σ is Π?-conservative over ,4. Let
B = A+~\o and b = d(B). Then a^^b < 1. Suppose now φ is Σjand 6 <α[0].
Then yl + φ I—iσ, whence A + σ I—iφ, whence 4̂ I—\φ, i.e., α[0] = 1. Now
apply Lemma 14.

We write a «* b to mean that there is a Π? sentence 0 such that B \~ θ
and yl + ~iθ <* A, where i eα and B e b. The above proof of Theorem 4(ii)
yields a degree b such that α « * b. It is also easily shown that a « * 6 implies
α « m 6. This leads to the question of whether or not the converse is true. This
is answered negatively in the following:

Corollary 2 For every a< 1, there is a b such that a « m b but not a « * b.

Proof: Let A e a, X = \φ: a « m d(A + φ)\, and Y = {φ: a « * d(A + 0)1. By
Lemma 3, {0: A + φ < B\ is Π£ Hence, by Lemma 14, X is Π§. But, by
Corollary 3 of [5], Y is a complete Σ§ set and so is not Π§. Finally, as mentioned
above, F C I . l t follows that X ζ£ Y. Let φ e X - Y and let 6 = d(A + ψ). Then
b is as desired.

It is of some interest to note that if A is consistent and a(x) is a PR
binumeration of A, then d(A) « * dCP + Cowα). This follows from Lemma 1
and the fact, proved by Feferman [ 1 ], that A + ~\Cona < A

Theorem 4 can be relativized as follows.
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Corollary 3

(i) If a < b, then there is a c such that a < c < b and for every d> a, if
cΌd>b, then d>b
(ii) If a < b, then there is a c such that a < c < b and for every d < b, if
c Πd <a, then d <a.

Proof: (i) By Theorem 4(i), there is an e *£a such that e « y b. Let c - e U a.
If d > a and d U c > b, then e U a U d > ft, whence e U d > ft, whence d > b.
The proof of (ii) is similar.

Corollary 3 can be applied to obtain information on COMPLab as follows.

Corollary 4 Suppose aKc <id < ft. Then there are c0, d0such that c < c 0 <
d0 < d and COMPLa>b Π ((c, c0] U [d0, d)) = φ.

Proof: First note that

(1) COMPLa>b Π [c, d] C COMPLc>d.

By Corollary 3(i), there is a cλ such that c < cλ < d and if c < e and cx U e > d,
then e > d. By Corollary 3(ii), there is a c/j such that c < dx< d and if e < d
and e Π dj < c, then e < c. Let c 0 = cλ Π d! a n d J 0 = c x U dlΦ Then, by (1), c0

and <i0 are as desired.
Let G be a set of degrees. Then c is isolated from G in (α, 5) if c e (α, 6)

and to any α0, &0

 s u c r i that a < ao< c < bo< b, there are # x, Z?x such that
a o ^ ^ i < ^ c < Z ? 1 < Z ? o and G Π [αj, Z?j] = φ.

Corollary 5 If c e [a,b] - COMPLab, then c is isolated from COMPLa>b

in {a, b).

Proof: Let c be as assumed and suppose a <<zo<c<Z?o<Z>.By Corollary 4,
there is an ax such that ao<ax<c and COMPLab Π [α1; c] = φ. By Theorem 3,
there are cz , / = 0, 1, such that c < cz < Z?o and c0 Π c1 = c. It suffices to show
that COMPLab Π [ ĵ, c/] = 0 for / = 0 or i = 1. Suppose not and let dit / = 0, 1,
be counterexamples. Then d0 Π c/j e COMPLab Π [α^c], contrary to the
choice of αj.

Theorem 4(i) suggests the problem if to any a < 1, there is a 6 such that
a « ; Z? < 1. The dual of this is obviously false. We show that the answer is
negative.

Theorem 5 There is a degree a < I such that if a < b < I, then there is a
c < Z? such that a U c = b.

Proof: If T is not Σ?-sound, this is obvious, by Theorem 2. So suppose T is
Σ?-sound. Let τ(x) be a PR binumeration of T and let a = d(T + Conτ). Then
a < 1. Suppose now α < ft < 1. Let β(x) be a Pi? binumeration of a theory of
degree b. Next let φ be such that

P\-φ*-> \/z(Prfτ(φ, z) -> 3M < ziV/^(π0 = 0, «)) .

Finally let φ be the sentence

Vz(Λ/p(-i0 = 0, z) -* 3ii < zPr/7(φ, M)) .
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Then, by standard arguments,

(1) TV-φ,
(2) P h φ v φ ,
(3) P h φ Λ φ -* Co^.

Clearly P h πφ -* JfVr(φ). Since ~iφ is Σ?, it follows, by Corollary 5.5 of [1],
that P h nφ -* iVrCiφ). Thus

(4) P h Co^zr -> φ.

Let d = d(T + φ). Then, since φ and Corcr are Π?, it follows from (3), (4), and
Lemma 1 that aΌ d> b. Suppose a < d. Then Γ + φ h Co^2r. Hence, by (2)
and (4), T h φ, contradicting (1). Thus 0 ^ d. Now let c = d Π b. Then c < 6.
Finally a U c = {a U d) Π (α U b) = 6.

Let U G\l IG), where G is a set of degrees, be the supremum (infimum)
of G, if it exists. Somewhat surprisingly the following infinitary distributive
laws hold.

Theorem 6

(i) // U G exists, then U G Γι b = \J {a Γ) b: a e G}.

(ii) // Π G exists, then Π G U Z? = Π \a U 6: a e Gi.

To prove (ii) we need the following:

Lemma 15 A \ B ^ C iff for every (Σ?) sentence Θ and every m, if
Aτ + ~\Conam~^Σ°ιT+θ, then B hn(9.

Proof: Suppose first A t B > C. Let θ and m be such that Aτ + ̂ Conc\m H Σ?
Γ + 0. There is a Λ such that Aτ + COΛ*I* h Co^crm It follows that Γ + θ h
~\ConB\k, whence B I 10. This proves "only if. To prove " i f suppose
A t B ^ C. Then there is an m such that for every k, Aτ + Conβ\k ̂  Concxm-
But then, by Theorem 5 of [5], there is a Σ? sentence θ such that Aτ +
-iConctm H Σ? Γ + 0 and Γ + θ \f--iConB\k for every k. Since nfl is Π?, it follows
that B y- ~iθ and so the proof is complete.

Proof of Theorem 6: (i) Let c = U G. It suffices to show that for every d, if
a Π b < d for every a e G, then c Π Z? < d. Let B e b, etc. If A I B <D for every
4̂ with d(^4) e G, then, by Lemma 12, A <D + ~\ConB\n for every such A and

every n. But then for every n, C < D + -\Conβ\n. Hence, again by Lemma 12,
CIB<D.
(ii) Let c = Π G. It suffices to show that if d < α U b for a e G, then d<cUb.
Again let i? e 6, etc. Suppose Z) <^4 t 2? for every A such that dG4) e G. Then,
by Lemma 15, for all such A, every m, and every Σ? sentence 0, if 2?Γ +
~λConj)\m HΣo Γ+ 0, then 4̂ I—10. But then for every m and every Σ? sentence
0, if J5Γ + - |Con m m HΣo T + 0, then C h π0. Hence, again by Lemma 15,
Z> < C t £.

The following corollaries are immediate.

Corollary 6

(i) Ifd= [}{b:b Γ)a<c\, thendΠa<c.

(ii) Ifd = f]\b:b Όa>c\, thendUa>c.
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Corollary 7

(i) Ifa^c, then there is a d < 1 such that ifaΠb^c, then b < d
(ii) Ifc^a, then there is a d> 0 such that if a U b> c, then b>d.

By (i) of our next result, to every c < 1, there is an a > c which has no
pseudocomplement relative to c.

Theorem 7

(i) If c < 1, then there is an a > c such that \b\ b C\a<c\ has no supremum.
(ii) IfO<c<l and there is a Π?sentence θ such that c = d(T+ 0), then there
is a degree a<c such that \b: b U a> c\ has no infimum.

The proof of Theorem 7 is deferred to the end of the paper. All examples,

known so far, of degrees aif ct such that \j{b\ b Π a0 < co\
 a n c * \\lb: b U

aλ > cx\ exist can be obtained in a straightforward manner from Lemma 14 and

the proof of Theorem 4(i).
Let A [X] = \d(A + φ): φ e X] and a[X) = U U [X]: A e a\. (For X = Σ?

this definition of a[X] is equivalent to the one given earlier.) By the proof of
Theorem 11 of [5], A[Σ%] = A[Π%] = id(B): B h A\ and soα[Σ§] = α[Π§] =
[α, 1 ]. Moreover, by Lemma 13,α[Σj] =y4[Σj] for A e a and, by Theorem 11
of [5],y4[Σ?] =id(A UXy.Xr.e. a n d C Σ ? ! .

If A is Σ?-sound and b < 1, then there is a c e A [Π?] such that 6 < c < 1
(cf. also Corollary 14 below). By contrast we have the following:

Corollary 8 To every b > a, there is a c e α[Σj] - ill such that α[Σ?] Π
[Z?Uc, i ) = 0.

Proof: Let ̂ 4 e α and B e b. There is a Π? sentence 0 such that i? h 0 and
4 l/ 0. Let C = ̂ 4 + -10 and c = d(C). Now let d be any degree such that
(b U c) Γ) d < a. Then b Π d < c. Hence, by Lemma 12, d < c and so d =
(Z? U c) Π <i < a. Now apply Lemma 14.

Corollary 9 If a K b, then there is a c such that a < c < Z? α«(i /or every
d < α awe? every e e ί/[Σ?], z/e < e, r/ze^ 6 < e.

Proof: Let c be as in Corollary 3(ii). Suppose d < α and c <c/[σ], where σ is
Σ?. Let / = b Π d{D + Ί σ ) , where D e i . Then f < b and / Π c < d[σ] Π
J(Z) + i σ ) < ύ ί < α . Hence / < α < c and s o / = / Π c <<i. Thus, by Lemma 12,
Z) + πσ < £) + ~λConB\n> whence, ~iσ being Π?, D + σ h Cong\n. But this holds
for every # and so Z? < d [ σ ] .

Corollary 10 If c e {a, b) - a[Σj], rΛew c w isolated from a[Σ?] iw (fl, 6).

The proof of this is the same as that of Corollary 5 except that Corollary 4
is replaced by Corollary 9.

Corollary 9 suggests the question if to any a < 1, there is a b > 0 such that
fl[Σ?] Π (α, 6] = (p. The following result answers this in the negative.

Theorem 8 If A e a < b ^ b^ for k<n, then there is a degree c e A [Π?] Π
A[Σ%] Π(α,6] swcA that c^bk fork <n.

Proof: We may assume that α < Z?̂ . Let i? e b, Bjς e b^, and ^«+i = -4. Next let
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X = U \Th(Bk): k < n + 1}. By Lemma 6, there is a PR formula η(x, z) such
that

(1) ifφeX, then Aτ+_φ \--\3zη(φ,z),
(2) if φ 4 X, then 3zη(φ, z) is Πi-conservative over A τ + φ.

There is a Pi? formula δ(w) such that B h Vwδ(w) and P^ 1/ \/uδ{u). Let 0 be

such that

Ph<9 < ^ V W ( H 6 ( K ) ^ 3 Z < M T K 0 , Z ) ) .

Finally let χ be the sentence

3z(η(θ,z)/\ \/u<zδ(u)) .

Then

(3) Pr-χ«->azrK5,z)Λ0,
(4) P + θ + -Ί3ZT?(0, Z) h VM6(M).

We now show that

(5) UX

Suppose θ e X and let fc be such that Bk h θ. Then, by (1), ΛΓ+ 0 h -Ί3zη(0, z).
But then, by (4) and since Aτ ΛB^B^ h \fuδ(u), contrary to hypothesis.

Since θ is Π?, (5) implies that A < A + θ ^ Bk. By (3), A + θ H ^ + χ.
Since χ is Σj, we have 4̂ + χ<Aτ + χ. By (5) and (2), 3zη(θ, z) is Πj-conserva-
tive over Aτ + θ. Hence, by (3), y4Γ + χ < y4r + θ. Since ΛΓ + 0 H ̂  + 0 and
^1 Γ +^ HP, it now follows that A + χ=A + θ <B. Let c = d(A +χ) = d(A + θ).
Then c is as desired.

By the proof of Theorem 4(ii), to every a < 1, there is a b < 1 such that
#[Σ?] Π [&, 1) = φ. Nevertheless we have the following

Corollary 11 If a < b, then there are an e fl[Σ?] such that for every n,

an < an+h and \j\an\ n e ω\ = b.

Proof: Let cn, n e ω, be all degrees ^b. Let a0 = a. Now suppose an has been
defined and an<b. Since b ^cn, there is a degree d^cn such that an <d <b.
By Theorem 8, there is an an+1 e an[Σ\] such that an <an+1 < J and an+1 ^ cn.
It follows that an+ί e α[Σ?] and an+1 < b. Finally it is clear that (J \an:
n e ω} = b.

Consider α[Σ?] as a substructure of Dγ. It is a distributive lattice with
meet O and join U. Clearly a0 O ax = a0 Π <2j. To find α0 U α1? note that if σ and
σz are Σ? and 4̂ + σz < A + σ, / = 0, 1, then A + σ0 Λ σt < A + σ. Thus if
0/ = dG4 + σ,-), then a0Ό ax = d(A + σ0 Λ ax). But then it is easily verified that
Z? e <z[Σ?j has a complement in α[Σ?] iff Z? e a[n?]. Thus, from Theorem 8, we
get the following corollary showing that the isomorphism type of Da

τ = a[Σ\] Π
α[Π?] is independent of a and Γ provided that a < 1.

Corollary 12 If a<l, then Da

τ is a denumerable atomless Boolean algebra

and for every b> a, b =\J {c <b: c e Da

τ\.

From (ii) of the following result, an improvement of Theorem 14 of [4]
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and Corollary 4 of [5], it follows that if a < 1, then Da

τ is a proper subset of

α[Σ?].

Theorem 9

(i) // d(A) < b < c, then there is a degree which is isolated from ^[Πj]
in {b, c).
(ii) If a < b, then there is a degree c e α[Σ?] which is isolated from β[Πj]
in (a, b).

To prove this we need the following rather straightforward strengthening
of Lemma 10 (cf. [4]).

Lemma 16 If X is r.e. and monoconsistent with Q, then there is a Π?

formula η(x) such that for every n and every fe n+12, V \t\{kγ^\ k < ft! i X.

Proof of Theorem 9: We prove (ii). The proof of (i) is similar but simpler. Let
A e a and B e b. By Theorem 8, there is a Σ? sentence χ such that A < A +
χ < B. By Orey's compactness theorem, there is a p such that Q H A t p and
A I p + χ*£A. By Lemma 16 applied to the set \φ: A [ p + χ v φ <A + χ v ~iφl,
there is a Σ? formula δ(x) such that:

(1) A tp + χv δ(rh)^A U { χ v δ(«): n<ml

Let C = ̂ 4 U {χ v δ(ή): n e ω\ and c = d(C). Then c e (a, b) and, by Theorem 11

of [5],ceα[Σ?].

To show that c is isolated from a[Yl\] in (α, b), suppose a < c0 < c <

cλ(<b). Let Q e c, and let q be such that C t q ^ Co and Cλ \ q^C. Let ψm be

the sentence /\\χv δ(n): n <m\ and set

X=\φ:C tq<(CΠT+ iφ)) t Col
7=ίφ:(C1 tq)ΠQ + Φ)<C\,
Z = {φ: 3m((A I p + χ v δ(m)) I (β + 0) < ^ + φm + πφ)K

By(l) , I U 7 U Z is r.e. and monoconsistent with β. Thus, by Lemma 10,
there is a Σj sentence ψ such that ψ, πψ ̂  X U 7 U Z. Let d 0 = (c Π d(T +
iφ)) U c 0 and dx = cx Π d(C + ψ). Clearly c 0 < <i0 < c < dx < cx. Moreover
c ^ d0, since ψ ψ X, and ύ^ ̂ ξ c, since ψ jέ 7. Thus (i0 < c < <ix.

It remains to show that α[Π?] Π [Jo, d j = φ. It suffices to prove that:

(2) if Λ' e a, θ is Π?, and^l' + θ < C+ ψ, then C Φ (Γ+ πψ) *£A' + Θ.

Suppose (2) is false. Then there is an m such that A + φm + φ h ^. Since
A' =A and ψm and ψ are Σ ?, it follows that ^4' + ψ w + ψ=^4 + ψm+\// and so
i ' + ψ m + ψ h θ . Hence A' + θ <A + φm+ φ, whence C | ( Γ + π ψ ) < y l +
φm + ψ. But this is impossible, since ~iφ 4 Z. This proves (2) and so concludes
the proof.

Combining Corollary 9 and Theorem 9 we get

Corollary 13 If a Kb, then there are c, d such that a < c < d < b and
(a[Ilo

ί]Ua[Σo

1])n[c,d)=φ.

Proof: By Theorem 9(ii), there are a, bf such that a < a' < br < b and
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α[Π?] Π [a, bf] = φ. By Corollary 9, there is a c such that a < c < b' and
α[Σ?] Π [c, ft') = 0. Now let d be such that c <d <b'. Then c and d are as
desired.

Next we show that Theorem 9(i) cannot be improved by replacing A [Πj]
byα[Π?].

Corollary 14 If a < b < 1, then there is a c such that b < c < 1 and

[c. l ]Cα[Π?].

Proof: Let A e a and B e b. Then Aτ ~\ B. By Lemma 7, there is a Σ? sentence
σ such that σ is Πi-conservative over Aτ and B \F σ. Let c = d(i? + πσ). Then
b < c < 1. Suppose now d > c and let £> e d. Let A' = Aτ U ίπσ ->0: 0 eDl.
T h e n ^ ' e α . Moreover^' + πσ H h ^ l Γ + πσ U D H h D . Hence d = d(Af + πσ)
and so d eα[Πj].

Let us say that the infimum I IG is trivial if there is a finite set H C G

such that Π G = (Ί #.

Theorem 10 Suppose A is consistent.

(i) 77zere w 0 primitive recursive set X of Σ\ sentences such that d(A) is the
nontrivial infimum of A [X].
(ii) There is a primitive recursive set Y of Σ?sentences such that A[ Y] has no
infimum.

Proof: (i) By Corollary 2, there is a B such that d(A) « m d(B) but not

d{A) « * d(B). Let X = \-iConBtn: n e ω\. Suppose C < A + ~]ConBtn for

every w. Then C I 5 <>4 and so C< A. Thus d(i4) = ΓU[X] This infimum is

nontrivial, since otherwise there would exist an m such that A + iConβ[m <^4,

contradicting the fact that not d{A) « * d(B).

To prove Theorem 10(ii) we need:

Lemma 17 // Z is an r.e. set of Π? sentences, then A[Z] does not have a
nontrivial infimum.

Proof: We may assume that

(1) there is no k such that A + ψ h y Z \ kΐor every φ e Z,

since otherwise A[Z] would have a trivial infimum. To obtain the desired
conclusion it is sufficient (and necessary) to show that X = \φ e Πj: A + φ\~φ
for every φ e Z\ is not r.e. We may assume that Z is primitive recursive. Let
ξ(x) be a Pi? binumeration of Z. Next let p(x, y) be a Pi? binumeration of a
relation i?(£, m) such that Y = {k: VmR(k, m)\ is not r.e. Finally let η(x) be the
formula

Vz(-ιp(x, z) -> 3w < Z(?(M) Λ Π?-true(ι/)) ,

where nj-true(x) is a partial truth definition for Π? sentences. If k e Y, then

clearly η(k) e X. Suppose k 4 Y. Let m be such that not R(k, m). Then

A + T7(Jt) h V z r m, whence, by (1), η(k) i X. Thus Y = \k: η(k) e X] and so

X is not r.e.
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Proof of Theorem 10(ii): By the proof of Theorem 8, there are primitive
recursive functions g(n) and h(ή) such that if φ is Π? and A <A + φ, theng(φ)
is ΣJ, h(φ) is Π?, and A < A + g(0) = A + h(φ)<A + φ. We now define σn and
φn as follows. Let ψ 0 be any Π? sentence such that A <A + ψ0. Next suppose
ψw has been defined and A < A + φn. Let θ be a Πj Rosser sentence for
A + ~iφn. Then y l < ^ 4 + ψ w v ^ < ^ 4 + ψrt. Let σ« = g{φn v θ) and ψΛ + 1 =
h(φn v β ) . T h e n ,4 + φn> A + σn>A + φn+1> A . N o w let Y = \σn: neω\.
Then, by Lemma 17, 7 is as desired.

In connection with this proof it may be remarked that if A is consistent,
then there is no partial recursive function g(n) such that if σ is Σ? and
A < A + σ, then g(σ) is a Π? sentence such that A < A + g(σ) < A + σ. For
assuming the contrary we would have for every Σ? sentence σ: A + σ <A iff
if g(σ) is a Π? sentence and 4̂ + σ Hg(σ), then A \~g(σ). But this is impossible,
since, by Theorem 12 of [5]9Σ%n {φ: A + φ <A\ is not Σ§.

Finally we are ready to give the

Proof of Theorem 7: (i) Let C e c. By Theorem 10(ii), there is a primitive
recursive set Y - \on\ n e ω\ oϊ Σ? sentences such that C[Y] has no infimum.
Let A = C U h σ Λ : Λ e ω} and α = d(A). Then 5 I ^ < C iff 5 < C + σw for
every n. But then, by Corollary 6(i), a supremum of {Z?: Z? Πa<c\ would be an
infimum of C[Y].
(ii) Let B = T+-ιθ. Then B is consistent but not Σ?-sound. We now effectively
define Π? sentences φn such that

(1) Bk=B U \φm: m<k] is consistent,
(2) Bk+1 i\ΣoBk.

Suppose φm has been defined for m<k. Let βk(x) be a PR binumeration of Bk.
Let δ(x, y) be the formula βk(x) Λ V Z < x~\Prfβk(y, z). Finally let φk be such
that P \~ φk «—•> Conδ(pC)

s=iφ^). Then, by a standard argument, (1) holds with A:
replaced by /: + 1 and δ(x, πψjt) i s a ^ binumeration of Bk. Since ^ is n o t

Σ?-sound, it follows, by a result of Smoryήski [7] (Application 5, p. 197) that
φk is not Σ?-conservative o v e r ^ and so (2) holds.

Now let X = {φm: m e ω\ and α = d(Γ U l j ί l c , To show that α is as
desired we first observe that if \b\ b Uα>c] has an infimum, then so does
id(T+ φ): ψ i s Π j a n d Γ U Z + ψ h f l l . But the latter set has no infimum: If
T U X + φ h 19, then for some U U I U h i f Now, by (2), there is a Σ?
sentence σ such that £ U X h σ and .£ U X \ k \t σ. It follows that Γ U I +
~iσ \~ θ and 71 + πσ \f~ φ. Now apply Lemma 17. Thus α is as claimed and the
proof is complete.

Theorem 7(ii) is a partial dual of Theorem 7(i). The problem of whether
or not the full dual is true remains unsolved.

One major open problem, which will certainly have occurred to the reader,
is this: If S is Σ?-sound but T is not, then, by Theorem 2, Ds and Dj are not
isomorphic. But supposing that S and T are both Σ?-sound (true), does it
follow that Ds and Dγ are isomorphic?
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