On Certain Lattices of Degrees of Interpretability

PER LINDSTRÖM

1 Preliminaries All theories S, T, A, B, etc., considered in what follows are primitive recursive (Craig's theorem). A, B, etc., are reflexive extensions of Peano arithmetic P. We write $S \vdash X$ or $X \dashv S$, where X is a set of sentences, to mean that $S \vdash \phi$ for every $\phi \in X$. Thus $S \dashv T$ means that S is a subtheory of T. S is an X-subtheory of $T, S \dashv_{X} T$, if $S \vdash \phi$ implies $T \vdash \phi$ for every $\phi \in X . S \leqslant T$ will be used to indicate that S is (relatively) interpretable in $T . S<T$ iff $S \leqslant T \nless S$ and $S \equiv T$ iff $S \leqslant T \leqslant S$. $X \upharpoonright k=\{n \in X: n \leqslant k\}$. Thus A is reflexive iff $A \vdash \operatorname{Con}_{A i n}$ for every $n . A$ is essentially reflexive if every extension of A in the language of A is reflexive. ϕ^{i} is ϕ if $i=0$ and $\neg \phi$ if $i=1$. Terminology and notation not explained here are standard (cf. [1]).

All proofs below of the existence of interpretations are applications, directly or indirectly, of the following basic result established by Feferman [1]:

Lemma 1 If $P \dashv T$ and $\sigma(x)$ numerates S in T, then $S \leqslant T+$ Con $_{\sigma}$.
This is proved by showing that the denumerable case of the Henkin completeness proof can be formalized in P.

For any formula $\sigma(x)$, let $\sigma^{*}(x)$ be the formula

$$
\sigma(x) \wedge \operatorname{Con}_{\sigma(y) \wedge y \leqslant x}^{y}
$$

This definition and the following lemma are again due to Feferman [1].

Lemma 2

(i) If $P \dashv T$ and $\sigma(x)$ binumerates S in T and for every $n, T \vdash$ Con $_{S i n}$, then $\sigma^{*}(x)$ binumerates S in T.
(ii) $P \vdash$ Con $_{\sigma^{*}}$.

Proof: (i) is obvious. To prove (ii) we argue in P as follows: If Con $_{\sigma}$, then Con $_{\sigma^{*}}$. So suppose $\neg \operatorname{Con}_{\sigma}$. Then there is a z such that $\neg \operatorname{Con}_{\sigma(x) \wedge x \leqslant z}$. Let z_{0} be the least such z. Then $\operatorname{Con}_{\sigma(x) \wedge x<z_{0}}$ and $\sigma^{*}(x) \rightarrow \sigma(x) \wedge x<z_{0}$. Thus $\operatorname{Con}_{\sigma^{*}}$ in this case too.

The following key lemma is all but stated explicitly in the work of Feferman [1] and Orey [6]. It was resurrected and formulated explicitly by Hájek [3].

Lemma $3 \leqslant A$ iff $A \vdash$ Con $_{S i n}$ for every n.

Proof: Suppose first $S \leqslant A$. Then for every n, there is an m such that $S \upharpoonright n \leqslant A \upharpoonright m$. But then, by Theorem 6.4 of [1], $P \vdash \operatorname{Con}_{A \upharpoonright m} \rightarrow$ Con $_{S i n}$, whence $A \vdash$ Con $_{S t n}$, since A is reflexive. This proves "only if". To prove "if" suppose $A \vdash \operatorname{Con}_{\operatorname{Sin}}$ for all n. Let $\sigma(x)$ be any formula binumerating S in A. Then, by Lemma 2(i), $\sigma^{*}(x)$ binumerates S in A. Hence, by Lemma 1 and Lemma 2(ii), $S \leqslant A$.

One immediate consequence of Lemma 3 is the following (cf. [6]):
Lemma 4 (Orey's compactness theorem) $\quad S \leqslant A$ iff $S \upharpoonright k \leqslant A$ for every k.
If $P+\phi \leqslant A$ and ϕ is Π_{1}^{0}, then $A \vdash \phi$. Hence, by Lemma 3, we get (cf. [2], [3], [4]):

Lemma $5 \quad A \leqslant B$ iff $A \dashv_{\Pi_{1}^{0}} B$.
A sentence ϕ is X-conservative over T if $T+\phi \dashv_{X} T$. Thus, by Lemma 5, $A+\phi \leqslant A$ iff ϕ is Π_{1}^{0}-conservative over A. In the following, Γ is either Σ_{n+1}^{0} or Π_{n+1}^{0} and $\widetilde{\Gamma}$ is the dual of Γ. By an obvious modification of the proof of Theorem 1 [5] (due to Guaspari [2]), we get

Lemma 6 Suppose $P \dashv T$ and let X be any r.e. set. Then there is a Γ formula $\eta(x, y)$ such that for all k and ϕ,
(i) if $k \in X$, then $T+\phi \vdash \neg \eta(\bar{k}, \bar{\phi})$
(ii) if $k \notin X$, then $\eta(\bar{k}, \bar{\phi})$ is $\breve{\Gamma}$-conservative over $T+\phi$.

A set X of sentences is said to be monoconsistent with T if $T+\phi$ is consistent for every $\phi \in X$.

Lemma $7 \quad$ Suppose $P \dashv T$ and X is r.e. and monoconsistent with T. Then there is $a \Gamma$ sentence $\psi \notin X$ which is Γ-conservative over T.
Proof: Let $\eta(x, y)$ be as in Lemma 6 and let ψ be such that $P \vdash \psi \leftrightarrow$ $\eta(\bar{\psi}, \overline{0=0})$. If $\psi \in X$, then, by Lemma $6(\mathrm{i}), T \vdash \neg \eta(\bar{\psi}, \overline{0=0})$, whence $T \vdash \neg \psi$, which is impossible. Thus $\psi \notin X$. But then, by Lemma 6(ii), ψ is as desired.

2 Degrees of interpretability Throughout the rest of this paper T is a consistent primitive recursive essentially reflexive extension of P, e.g., P or $Z F$, and A, B, etc., are extensions of T in the language of T. Thus A, B, etc., are essentially reflexive. Clearly \equiv (mutual interpretability) is an equivalence relation. Its equivalence classes $\{B: B \equiv A\}$ will be called degrees (of interpretability) and will be written a, b, etc. $d(A)$ is the degree of A. Let $a \leqslant b$
mean that $A \leqslant B$ for $A \in a$ and $B \in b$. Finally let D_{T} be the partially ordered set of degrees thus defined.

We now define the operations \downarrow and \uparrow on theories as follows. Let

$$
\begin{aligned}
A^{T} & =T \cup\left\{\text { Con }_{A \upharpoonright n}: n \epsilon \omega\right\}, \\
A \downarrow B & =\{\phi \vee \psi: \phi \epsilon A \& \psi \in B\}, \\
A \uparrow B & =A^{T} \cup B^{T} .
\end{aligned}
$$

Thus $\operatorname{Th}(A \downarrow B)=\operatorname{Th}(A) \cap \operatorname{Th}(B)$, where $\operatorname{Th}(A)=\{\phi: A \vdash \phi\}$. The following lemma is then an immediate consequence of Lemma 3.

Lemma 8

(i) $A \leqslant B$ iff $A^{T} \dashv B$. Thus $A^{T} \equiv A$ and $A \leqslant B$ iff $A^{T} \dashv B^{T}$.
(ii) $A \leqslant B, C$ iff $A \leqslant B \downarrow C$.
(iii) $A, B \leqslant C$ iff $A \uparrow B \leqslant C$ iff $A \uparrow B \dashv C$.

For $A \in a$ and $B \in b$, let $a \cap b=d(A \downarrow B)$ and $a \cup b=d(A \uparrow B)$. By Lemma $8, \cap$ and \cup are well-defined, $a \cap b$ is the glb of a and b, and $a \cup b$ is the lub of a and b. Thus we have proved part of the following (cf. [4]):

Theorem $1 \quad D_{T}$ is a distributive lattice.
To prove distributivity it suffices, by Lemma 8 , to verify that

$$
A^{T} \downarrow(B \uparrow C) \dashv \vdash\left(A^{T} \downarrow B^{T}\right) \uparrow\left(A^{T} \downarrow C^{T}\right)
$$

But this follows at once from the next lemma whose proof is obvious.

Lemma 9

(i) For every k, there is an m such that

$$
P \vdash \operatorname{Con}_{(A \downarrow B) \upharpoonright m} \rightarrow \operatorname{Con}_{A \upharpoonright k} \vee \operatorname{Con}_{B \upharpoonright k}
$$

(ii) For every m, there is a k such that

$$
P \vdash \operatorname{Con}_{A \upharpoonright k} \vee \operatorname{Con}_{B \upharpoonright k} \rightarrow \operatorname{Con}_{(A \downarrow B) \upharpoonright m}
$$

In [8] Švejdar introduced the lattice V_{T} consisting of all degrees of the form $d(T+\phi)$. By Theorem 11 of [5] or Theorem 3 of [4], $V_{T}=D_{T}$.

Clearly D_{T} has a minimal element $0=d(T)$ and a maximal element 1 , the common degree of all inconsistent theories. Suppose T is Σ_{1}^{0}-sound and $a, b<1$. Then $A \uparrow B$, where $A \in a$ and $B \in b$, is consistent and so $a \cup b<1$. However, if T is not Σ_{1}^{0}-sound, this is not necessarily true. In fact we have the following (cf. [4]):

Theorem $2 T$ is not Σ_{1}^{0}-sound iff there are degrees $a_{i}<1$ such that $a_{0} \cup a_{1}=1$ (and $a_{0} \cap a_{1}=0$).

To prove this we first prove the following simple but sometimes useful lemma (cf. [4]):

Lemma 10 If X is r.e. and monoconsistent with Q, then there is a true Π_{1}^{0} sentence ψ such that $\psi, \neg \psi \notin X$.

Proof: Let $R(k, m)$ be a primitive recursive relation such that $X=$ $\{k: \exists m R(k, m)\}$ and let $\rho(x, y)$ be a $P R$ binumeration of $R(k, m)$. Let ψ be such that

$$
Q \vdash \psi \leftrightarrow \forall z(\rho(\bar{\psi}, z) \rightarrow \exists u \leqslant z \rho(\overline{\urcorner \psi}, u))
$$

It is then easily verified that ψ is as desired.
Lemma 11 Suppose X is r.e. and monoconsistent with P and let θ be any true Π_{1}^{0} sentence. There are then Π_{1}^{0} sentences θ_{i} such that
(i) $P \vdash \theta_{0} \vee \theta_{1}$
(ii) $P \vdash \theta_{0} \wedge \theta_{1} \rightarrow \theta$
(iii) $\theta_{i}^{j} \notin X, i, j=0,1$.

Proof: We may assume that if $\phi \in X$ and $P \vdash \phi \rightarrow \psi$, then $\psi \in X$. By Lemma 10, there is a true Π_{1}^{0} sentence $\psi \notin X$. Thus, if necessary replacing θ by $\psi \wedge \theta$, we may assume that $\theta \notin X$. Let θ be $\forall y \gamma(y)$, where $\gamma(y)$ is $P R$. Next let $\delta_{0}(x)$ and $\delta_{1}(x)$ be the formulas

$$
\begin{aligned}
& \forall z\left(\neg \gamma(z) \rightarrow \exists u \leqslant z \operatorname{Prf}_{Q}(x, u)\right), \\
& \forall z\left(\operatorname{Prf}_{Q}(x, z) \rightarrow \exists u<z \neg \gamma(u)\right) .
\end{aligned}
$$

Then
(1) $P \vdash \delta_{0}(x) \vee \delta_{1}(x)$,
(2) $P \vdash \delta_{0}(x) \wedge \delta_{1}(x) \rightarrow \theta$.

Let $X_{i}=\left\{\phi: \delta_{i}\left(\overline{\phi^{i}}\right) \in X\right.$. Suppose $Q \vdash \neg \phi$. Then, since $P \vdash$ Con$_{Q}, P \vdash \delta_{0}(\bar{\phi}) \rightarrow \theta$, whence $\delta_{0}(\bar{\phi}) \notin X$, whence $\phi \notin X_{0}$. Moreover, θ being true, $P \vdash \neg \delta_{1}(\overline{\urcorner \phi})$, whence $\phi \notin X_{1}$. Thus $X_{0} \cup X_{1}$ is monoconsistent with Q. But then, by Lemma 10, there is a sentence ψ such that $\psi^{i} \notin X_{0} \cup X_{1}, i=0,1$. Let θ_{i} be $\delta_{i}(\overline{\urcorner \psi})$. Then $\theta_{i} \notin X$ and (i) and (ii) follow at once from (1) and (2). Finally, by (i), $\neg \theta_{i} \notin X$.

Proof of Theorem 2: Suppose T is not Σ_{1}^{0}-sound and let θ be a true Π_{1}^{0} sentence such that $T \vdash \neg \theta$. Let θ_{i} be as in Lemma 11 with $X=\operatorname{Th}(T)$ and let $a_{i}=$ $d\left(T+\theta_{i}\right)$. Then $a_{i}<1$ and $a_{0} \cap a_{1}=0$. By Lemma 5 and Lemma 11(ii), $\left(T+\theta_{0}\right) \uparrow\left(T+\theta_{1}\right) \vdash \theta$. Since $T \vdash \neg \theta$, it follows that $a_{0} \cup a_{1}=1$.

By Theorem 2, if T is Σ_{1}^{0}-sound, then no degree, except trivially 0 and 1 , has a complement, whereas if T is not Σ_{1}^{0}-sound, some do. The existence of pseudocomplements will be discussed later (Theorem 7).

It is easily seen that no $a<1$ is meet-irreducible. For suppose $A \in a$ and let $X=\{\phi: Q+\phi \leqslant A\}$. Then X is r.e., since Q is finite, and monoconsistent with Q. Thus, by Lemma 10 , there is a ψ such that $\psi^{i} \notin X$. Let $a_{i}=d\left(A+\psi^{i}\right)$. Then $a<a_{i}$ and $a_{0} \cap a_{1}=a$. The question arises if there are join-irreducible degrees $a \notin\{0,1\}$. That the answer is negative follows from Theorem 3 (cf. [4]):

Theorem 3 Suppose $b<1$ and $a_{k} \leqslant a<b \not b_{k}$ for $k \leqslant n$. Then there are degrees c_{i} such that $a<c_{i}<b$ and $a_{k} \nless c_{i} \not b_{k}$ for $i=0,1$ and $k \leqslant n$, $c_{0} \cap c_{1}=a$, and $c_{0} \cup c_{1}=b$.

Proof: Let $a_{n+1}=b, b_{n+1}=a, A \in a, B \in b, A_{k} \in a_{k}$, and $B_{k} \in b_{k}$. By Orey's compactness theorem, there are sentences ψ_{k} such that $A_{k} \vdash \psi_{k}$ and $\psi_{k} \nless A$.

Moreover, by Lemma 3, there is an m such that $B_{k} \forall \operatorname{Con}_{B \upharpoonright m}$. Let $\beta(x)$ be a $P R$ binumeration of B and set

$$
\begin{aligned}
X= & \left\{\phi: \psi_{k} \leqslant A+\neg \phi \text { for some } k \leqslant n+1\right\} \cup \\
& \left\{\phi: B_{k} \vdash \phi \vee \operatorname{Con}_{B \upharpoonright m} \text { for some } k \leqslant n+1\right\} .
\end{aligned}
$$

Then X is r.e. and monoconsistent with P. Hence, by Lemma 11 , there are Π_{1}^{0} sentences θ_{i} such that
(1) $P \vdash \theta_{0} \vee \theta_{1}$,
(2) $P \vdash \theta_{0} \wedge \theta_{1} \rightarrow \operatorname{Con}_{\beta}$,
$\theta_{i}^{j} \notin X, i, j=0,1$.
Let $d_{i}=d\left(A+\theta_{i}\right)$. Then $a \leqslant d_{i}$ and $a_{k} \nless d_{i}$, since $\neg \theta_{i} \notin X$. Also, by (1), $d_{0} \cap d_{1}=a$. By (2) and Lemmas 1 and $5, d_{0} \cup d_{1} \geqslant b$. Now set $c_{i}=d_{i} \cap b$. Then $a \leqslant c_{i} \leqslant b$. Also $a_{k} \nless c_{i}$ and so, in particular, $c_{i}<b$. Suppose $c_{i} \leqslant b_{k}$. Then $B \downarrow\left(A+\theta_{i}\right) \leqslant B_{k}$. But $\theta_{i} \vee \operatorname{Con}_{B \backslash m}$ is Π_{1}^{0} and provable in $B \downarrow\left(A+\theta_{i}\right)$. Hence, by Lemma $5, B_{k} \vdash \theta_{i} \vee \operatorname{Con}_{B \vdash m}$, contradicting (3). Thus $c_{i} \not b_{k}$, whence $a<c_{i}$. Clearly $c_{0} \cap c_{1}=a$. Finally, by distributivity, $c_{0} \cup c_{1}=b \cap\left(d_{0} \cup d_{1}\right)=b$.

Let

$$
\operatorname{COMPL}_{a, b}=\{c: \text { there is a } d \text { such that } c \cap d=a \text { and } c \cup d=b\} .
$$

As is well-known, since D_{T} is distributive, to each $c \in C O M P L_{a, b}$, there is a unique $c^{*} \in \operatorname{COMP} L_{a, b}$ such that $c \cap c^{*}=a$ and $c \cup c^{*}=b$. In fact

$$
B A_{a, b}=\left(\operatorname{COMPL}_{a, b}, \cap, \cup,{ }^{*}\right)
$$

is a Boolean algebra.
Corollary 1 If $a<b<1$, then $B A_{a, b}$ is a denumerable atomless Boolean algebra. Thus if $c<d<1$, then $B A_{a, b}$ and $B A_{c, d}$ are isomorphic.
Proof: We need only show that $B A_{a, b}$ is atomless. Suppose $c \in C O M P L_{a, b}$ and $a<c$. Then, by Theorem 3, there is a $d \in C O M P L_{a, b}$ such that $c \nless d \not c^{*}$. Let $e=c \cap d$. Then $e \in \operatorname{COMPL}_{a, b}$ and $a<e<c$.

Let $[a, b]=\{c: a \leqslant c \leqslant b\},[a, b)=\{c: a \leqslant c<b\}$, and let $(a, b]$ and (a, b) be defined in the obvious way. It is now natural to ask if $\operatorname{COMPL}_{a, b}=[a, b]$ provided that $a<b<1$. We are going to show that the answer is negative. We define the relations \ll_{j} and \ll_{m} as follows: $a \ll_{j} b$ iff $a<b$ and for every c, if $a \cup c \geqslant b$, then $c \geqslant b ; a \ll_{m} b$ iff $a<b$ and for every c, if $b \cap c \leqslant a$, then $c \leqslant a$.

Theorem 4

(i) If $0<a \not a_{k}, k \leqslant n$, then there is $a b$ such that $0<b \ll_{j}$ a and $b \notin a_{k}$ for $k \leqslant n$.
(ii) If $a_{k} \not a<1, k \leqslant n$, then there is $a b$ such that $a \ll_{m} b<1$ and $a_{k} \notin b$ for $k \leqslant n$.

Part (ii) of the theorem is proved in [4].
Proof of (i) : Let $A \in a$ and $A_{k} \in a_{k}$. By Lemma 5, there is a Π_{1}^{0} sentence θ such that $A \vdash \theta$ and $A_{k} \forall \theta$. Let $X=\bigcup\left\{\operatorname{Th}\left(A_{k}+\neg \theta\right): k \leqslant n\right\}$. Then X is r.e. and
monoconsistent with $T+\neg \theta$. Hence, by Lemma 7, there is a Π_{1}^{0} sentence $\psi \notin X$ such that ψ is Σ_{1}^{0}-conservative over $T+\neg \theta$. Let $B=T+\psi \vee \theta$ and $b=d(B)$. Then $0<b \not a_{k}$ and $b \leqslant a$. Suppose $b \cup c \geqslant a$. Let $C \in c$. Then, by Lemma 5, there is an m such that $T+\psi+\operatorname{Con}_{C \uparrow m} \vdash \theta$, whence $T+\neg \theta+\psi \vdash \neg \operatorname{Con}_{C \vdash m}$, whence, by the choice of $\psi, T+\neg \theta \vdash \neg \operatorname{Con} C \mid m$, whence $C \vdash \theta$. Thus $c \geqslant b$ and so $c=c \cup b \geqslant a$.

From Lemmas 3 and 9 we get at once the following:
Lemma $12 A \downarrow B \leqslant C$ iff for every $n, A \leqslant C+\neg$ Con $_{B \upharpoonright n}$.
Our next lemma is an immediate consequence of Lemma 5.
Lemma 13 If $A \leqslant B$ and σ is Σ_{1}^{0}, then $A+\sigma \leqslant B+\sigma$.
If σ is Σ_{1}^{0}, let $a[\sigma]$ be the degree of $A+\sigma$, where $A \in a$. By Lemma 13, $a[\sigma]$ is well-defined. Let $a\left[\Sigma_{1}^{0}\right]=\bigcup\left\{a[\sigma]: \sigma\right.$ is $\left.\Sigma_{1}^{0}\right\}$.
Lemma 14 The following conditions are equivalent:
(i) For every c, if $b \cap c \leqslant a$, then $c \leqslant a$.
(ii) $a\left[\Sigma_{1}^{0}\right] \cap[b, l)=\phi$.

Proof: Suppose (i) holds. Let σ be a Σ_{1}^{0} sentence such that $b \leqslant a[\sigma]$. Let $A \in a$ and $B \in b$. Then $B \downarrow(A+\neg \sigma) \leqslant A$. But then, by (i), $A+\neg \sigma \leqslant A$. But $\neg \sigma$ is Π_{1}^{0}. Hence $A \vdash \neg \sigma$ and so $a[\sigma]=1$.

Next, suppose (ii) holds. Let c be such that $b \cap c \leqslant a$. Let $A \in a$, etc. Then, by Lemma $12, B \leqslant A+\neg$ Con $_{C \uparrow m}$. But $\neg \operatorname{Con}_{C \uparrow m}$ is Σ_{1}^{0}. Hence, by (ii), $A \vdash \operatorname{Con}_{C \upharpoonright m}$. But this holds for every m and so $c \leqslant a$.

Proof of Theorem 4(ii): Let $A \in a$ and $A_{k} \in a_{k}$. By Orey's compactness theorem, there are sentences ψ_{k} such that $A_{k} \vdash^{\star} \psi_{k} \notin A$. Let $X=\left\{\phi: \psi_{k} \leqslant A+\neg \phi\right.$ for some $k \leqslant n\}$. Then X is r.e. and monoconsistent with A. But then, by Lemma 7, there is a Σ_{1}^{0} sentence $\sigma \notin X$ such that σ is Π_{1}^{0}-conservative over A. Let $B=A+\neg \sigma$ and $b=d(B)$. Then $a_{k} \nless b<1$. Suppose now ϕ is Σ_{1}^{0} and $b \leqslant a[\phi]$. Then $A+\phi \vdash \neg \sigma$, whence $A+\sigma \vdash \neg \phi$, whence $A \vdash \neg \phi$, i.e., $a[\phi]=1$. Now apply Lemma 14.

We write $a \ll^{*} b$ to mean that there is a Π_{1}^{0} sentence θ such that $B \vdash \theta$ and $A+\neg \theta \leqslant A$, where $A \in a$ and $B \in b$. The above proof of Theorem 4(ii) yields a degree b such that $a \ll^{*} b$. It is also easily shown that $a \ll^{*} b$ implies $a \ll_{m} b$. This leads to the question of whether or not the converse is true. This is answered negatively in the following:

Corollary 2 For every $a<1$, there is a buch that $a \ll_{m}$ b but not $a \ll *$.
Proof: Let $A \in a, X=\left\{\phi: a \ll_{m} d(A+\phi)\right\}$, and $Y=\left\{\phi: a \ll^{*} d(A+\phi)\right\}$. By Lemma 3, $\{\phi: A+\phi \leqslant B\}$ is Π_{2}^{0}. Hence, by Lemma $14, X$ is Π_{3}^{0}. But, by Corollary 3 of [5], Y is a complete Σ_{3}^{0} set and so is not Π_{3}^{0}. Finally, as mentioned above, $Y \subseteq X$. It follows that $X \nsubseteq Y$. Let $\psi \in X-Y$ and let $b=d(A+\psi)$. Then b is as desired.

It is of some interest to note that if A is consistent and $\alpha(x)$ is a $P R$ binumeration of A, then $d(A) \ll * d\left(P+\operatorname{Con}_{\alpha}\right)$. This follows from Lemma 1 and the fact, proved by Feferman [1], that $A+\neg \operatorname{Con}_{\alpha} \leqslant A$.

Theorem 4 can be relativized as follows.

Corollary 3

(i) If $a<b$, then there is $a c$ such that $a<c<b$ and for every $d \geqslant a$, if $c \cup d \geqslant b$, then $d \geqslant b$
(ii) If $a<b$, then there is $a c$ such that $a<c<b$ and for every $d \leqslant b$, if $c \cap d \leqslant a$, then $d \leqslant a$.

Proof: (i) By Theorem 4(i), there is an $e \nless a$ such that $e \ll_{j} b$. Let $c=e \cup a$. If $d \geqslant a$ and $d \cup c \geqslant b$, then $e \cup a \cup d \geqslant b$, whence $e \cup d \geqslant b$, whence $d \geqslant b$. The proof of (ii) is similar.

Corollary 3 can be applied to obtain information on $\operatorname{COMPL}_{a, b}$ as follows.
Corollary $4 \quad$ Suppose $a \leqslant c<d \leqslant b$. Then there are c_{0}, d_{0} such that $c<c_{0} \leqslant$ $d_{0}<d$ and $\operatorname{COMPL}_{a, b} \cap\left(\left(c, c_{0}\right] \cup\left[d_{0}, d\right)\right)=\phi$.
Proof: First note that
(1) $\operatorname{COMPL}_{a, b} \cap[c, d] \subseteq \operatorname{COMPL}_{c, d}$.

By Corollary 3(i), there is a c_{1} such that $c<c_{1}<d$ and if $c \leqslant e$ and $c_{1} \cup e \geqslant d$, then $e \geqslant d$. By Corollary 3(ii), there is a d_{1} such that $c<d_{1}<d$ and if $e \leqslant d$ and $e \cap d_{1} \leqslant c$, then $e \leqslant c$. Let $c_{0}=c_{1} \cap d_{1}$ and $d_{0}=c_{1} \cup d_{1}$. Then, by (1), c_{0} and d_{0} are as desired.

Let G be a set of degrees. Then c is isolated from G in (a, b) if $c \in(a, b)$ and to any a_{0}, b_{0} such that $a \leqslant a_{0}<c<b_{0} \leqslant b$, there are a_{1}, b_{1} such that $a_{0} \leqslant a_{1}<c<b_{1} \leqslant b_{0}$ and $G \cap\left[a_{1}, b_{1}\right]=\phi$.

Corollary 5 If $c \in[a, b]-\operatorname{COMPL}_{a, b}$, then c is isolated from $\operatorname{COMPL}_{a, b}$ in (a, b).

Proof: Let c be as assumed and suppose $a \leqslant a_{0}<c<b_{0} \leqslant b$. By Corollary 4, there is an a_{1} such that $a_{0} \leqslant a_{1}<c$ and $\operatorname{COMPL}_{a, b} \cap\left[a_{1}, c\right]=\phi$. By Theorem 3, there are $c_{i}, i=0,1$, such that $c<c_{i}<b_{0}$ and $c_{0} \cap c_{1}=c$. It suffices to show that $\operatorname{COMPL}_{a, b} \cap\left[a_{1}, c_{i}\right]=\phi$ for $i=0$ or $i=1$. Suppose not and let $d_{i}, i=0,1$, be counterexamples. Then $d_{0} \cap d_{1} \in \operatorname{COMPL}_{a, b} \cap\left[a_{1}, c\right]$, contrary to the choice of a_{1}.

Theorem 4(i) suggests the problem if to any $a<1$, there is a b such that $a \ll_{j} b<1$. The dual of this is obviously false. We show that the answer is negative.

Theorem $5 \quad$ There is a degree $a<1$ such that if $a \leqslant b<1$, then there is a $c<b$ such that $a \cup c=b$.
Proof: If T is not Σ_{1}^{0}-sound, this is obvious, by Theorem 2 . So suppose T is Σ_{1}^{0}-sound. Let $\tau(x)$ be a $P R$ binumeration of T and let $a=d\left(T+\right.$ Con $\left._{\tau}\right)$. Then $a<1$. Suppose now $a \leqslant b<1$. Let $\beta(x)$ be a $P R$ binumeration of a theory of degree b. Next let ϕ be such that

$$
P \vdash \phi \longleftrightarrow \forall z\left(\operatorname{Prf}_{\tau}(\bar{\phi}, z) \rightarrow \exists u \leqslant z \operatorname{Prf} f_{\beta}(\overline{70=0}, u)\right)
$$

Finally let $\hat{\phi}$ be the sentence

$$
\forall z\left(\operatorname{Prf}_{\beta}(\overline{70=0}, z) \rightarrow \exists u<z \operatorname{Prf}(\bar{\phi}, u)\right)
$$

Then, by standard arguments,
(1) $T \nvdash \phi$,
(2) $P \vdash \phi \vee \hat{\phi}$,
(3) $P \vdash \phi \wedge \hat{\phi} \rightarrow \operatorname{Con}_{\beta}$.

Clearly $P \vdash \neg \phi \rightarrow \operatorname{Pr}_{\tau}(\bar{\phi})$. Since $\neg \phi$ is Σ_{1}^{0}, it follows, by Corollary 5.5 of [1], that $P \vdash \neg \phi \rightarrow \operatorname{Pr}_{\tau}(\overline{\urcorner \phi})$. Thus

$$
\begin{equation*}
P \vdash \operatorname{Con}_{\tau} \rightarrow \phi \tag{4}
\end{equation*}
$$

Let $d=d(T+\hat{\phi})$. Then, since $\hat{\phi}$ and Con $_{\tau}$ are Π_{1}^{0}, it follows from (3), (4), and Lemma 1 that $a \cup d \geqslant b$. Suppose $a \leqslant d$. Then $T+\hat{\phi} \vdash \operatorname{Con}_{\tau}$. Hence, by (2) and (4), $T \vdash \phi$, contradicting (1). Thus $a \nexists d$. Now let $c=d \cap b$. Then $c<b$. Finally $a \cup c=(a \cup d) \cap(a \cup b)=b$.

Let $\bigcup_{G}\left(\bigcap_{G}\right)$, where G is a set of degrees, be the supremum (infimum) of G, if it exists. Somewhat surprisingly the following infinitary distributive laws hold.

Theorem 6

(i) If \bigcup_{G} exists, then $\bigcup_{G \cap b}=\bigcup_{\{a \cap b: a \in G\} \text {. }}$
(ii) If \bigcap_{G} exists, then $\bigcap_{G \cup b}=\bigcap\{a \cup b: a \in G\}$.

To prove (ii) we need the following:
Lemma $15 A \uparrow B \geqslant C$ iff for every $\left(\Sigma_{1}^{0}\right)$ sentence θ and every m, if $A^{T}+\neg \operatorname{Con}_{C \upharpoonright m} \dashv_{\Sigma_{1}^{0}} T+\theta$, then $B \vdash \neg \theta$.
Proof: Suppose first $A \uparrow B \geqslant C$. Let θ and m be such that $A^{T}+\neg \operatorname{Con}_{C r m} \dashv_{\Sigma_{1}^{0}}$ $T+\theta$. There is a k such that $A^{T}+\operatorname{Con}_{B \upharpoonright k} \vdash$ Con $_{\text {Cim }}$. It follows that $T+\theta \vdash$ \neg Con $_{B \upharpoonright k}$, whence $B \vdash \neg \theta$. This proves "only if". To prove "if" suppose $A \uparrow B \ngtr C$. Then there is an m such that for every $k, A^{T}+$ Con $_{B \upharpoonright k} \forall \operatorname{Con}_{C r m}$. But then, by Theorem 5 of [5], there is a Σ_{1}^{0} sentence θ such that $A^{T}+$ $\neg \operatorname{Con}_{C \upharpoonright m} \dashv_{\Sigma_{1}^{0}} T+\theta$ and $T+\theta \not \forall \neg \operatorname{Con}_{B \upharpoonright k}$ for every k. Since $\neg \theta$ is Π_{1}^{0}, it follows that $B \forall \neg \theta$ and so the proof is complete.
Proof of Theorem 6: (i) Let $c=\bigcup_{G}$. It suffices to show that for every d, if $a \cap b \leqslant d$ for every $a \in G$, then $c \cap b \leqslant d$. Let $B \in b$, etc. If $A \downarrow B \leqslant D$ for every A with $d(A) \in G$, then, by Lemma $12, A \leqslant D+\neg$ Con $_{B \backslash n}$ for every such A and every n. But then for every $n, C \leqslant D+\neg$ Con $_{B \upharpoonright n}$. Hence, again by Lemma 12, $C \downarrow B \leqslant D$.
(ii) Let $c=\bigcap_{G}$. It suffices to show that if $d \leqslant a \cup b$ for $a \in G$, then $d \leqslant c \cup b$. Again let $B \in b$, etc. Suppose $D \leqslant A \uparrow B$ for every A such that $d(A) \in G$. Then, by Lemma 15 , for all such A, every m, and every Σ_{1}^{0} sentence θ, if $B^{T}+$ $\neg \operatorname{Con}_{D+m} \dashv_{\Sigma_{1}^{0}} T+\theta$, then $A \vdash \neg \theta$. But then for every m and every Σ_{1}^{0} sentence θ, if $B^{T}+\neg$ Con $_{D \uparrow m} \dashv_{\Sigma_{1}^{0}} T+\theta$, then $C \vdash \neg \theta$. Hence, again by Lemma 15 , $D \leqslant C \uparrow B$.

The following corollaries are immediate.

Corollary 6

(i) If $d=\bigcup\{b: b \cap a \leqslant c\}$, then $d \cap a \leqslant c$.
(ii) If $d=\bigcap\{b: b \cup a \geqslant c\}$, then $d \cup a \geqslant c$.

Corollary 7

(i) If $a \nless c$, then there is $a d<1$ such that if $a \cap b \leqslant c$, then $b \leqslant d$.
(ii) If $c \nless a$, then there is $a d>0$ such that if $a \cup b \geqslant c$, then $b \geqslant d$.

By (i) of our next result, to every $c<1$, there is an $a>c$ which has no pseudocomplement relative to c.

Theorem 7

(i) If $c<1$, then there is an $a>c$ such that $\{b: b \cap a \leqslant c\}$ has no supremum.
(ii) If $0<c<1$ and there is a Π_{1}^{0} sentence θ such that $c=d(T+\theta)$, then there is a degree $a<c$ such that $\{b: b \cup a \geqslant c\}$ has no infimum.

The proof of Theorem 7 is deferred to the end of the paper. All examples, known so far, of degrees a_{i}, c_{i} such that $\bigcup\left\{b: b \cap a_{0} \leqslant c_{0}\right\}$ and $\bigcap\{b: b \cup$ $\left.a_{1} \geqslant c_{1}\right\}$ exist can be obtained in a straightforward manner from Lemma 14 and the proof of Theorem 4(i).

Let $A[X]=\{d(A+\phi): \phi \in X\}$ and $a[X]=\bigcup\{A[X]: A \in a\}$. (For $X=\Sigma_{1}^{0}$ this definition of $a[X]$ is equivalent to the one given earlier.) By the proof of Theorem 11 of [5], $A\left[\Sigma_{2}^{0}\right]=A\left[\Pi_{2}^{0}\right]=\{d(B): B \vdash A\}$ and so $a\left[\Sigma_{2}^{0}\right]=a\left[\Pi_{2}^{0}\right]=$ [$a, 1]$. Moreover, by Lemma 13, $a\left[\Sigma_{1}^{0}\right]=A\left[\Sigma_{1}^{0}\right]$ for $A \in a$ and, by Theorem 11 of [5], $A\left[\Sigma_{1}^{0}\right]=\left\{d(A \cup X): X\right.$ r.e. and $\left.\subseteq \Sigma_{1}^{0}\right\}$.

If A is Σ_{1}^{0}-sound and $b<1$, then there is a $c \in A\left[\Pi_{1}^{0}\right]$ such that $b \leqslant c<1$ (cf. also Corollary 14 below). By contrast we have the following:
Corollary $8 \quad$ To every $b>a$, there is $a c \in a\left[\Sigma_{1}^{0}\right]-\{1\}$ such that $a\left[\Sigma_{1}^{0}\right] \cap$ $[b \cup c, l)=\phi$.

Proof: Let $A \in a$ and $B \in b$. There is a Π_{1}^{0} sentence θ such that $B \vdash \theta$ and $A \nvdash \theta$. Let $C=A+\neg \theta$ and $c=d(C)$. Now let d be any degree such that $(b \cup c) \cap d \leqslant a$. Then $b \cap d \leqslant c$. Hence, by Lemma $12, d \leqslant c$ and so $d=$ $(b \cup c) \cap d \leqslant a$. Now apply Lemma 14.

Corollary 9 If $a<b$, then there is $a c$ such that $a \leqslant c<b$ and for every $d \leqslant a$ and every $e \in d\left[\Sigma_{1}^{0}\right]$, if $c \leqslant e$, then $b \leqslant e$.
Proof: Let c be as in Corollary 3(ii). Suppose $d \leqslant a$ and $c \leqslant d[\sigma]$, where σ is Σ_{1}^{0}. Let $f=b \cap d(D+\neg \sigma)$, where $D \in d$. Then $f \leqslant b$ and $f \cap c \leqslant d[\sigma] \cap$ $d(D+\neg \sigma) \leqslant d \leqslant a$. Hence $f \leqslant a \leqslant c$ and so $f=f \cap c \leqslant d$. Thus, by Lemma 12, $D+\neg \sigma \leqslant D+\neg$ Con $_{B \upharpoonright n}$, whence, $\neg \sigma$ being $\Pi_{1}^{0}, D+\sigma \vdash$ Con $_{B \upharpoonright n}$. But this holds for every n and so $b \leqslant d[\sigma]$.
Corollary 10 If $c \in(a, b)-a\left[\Sigma_{1}^{0}\right]$, then c is isolated from $a\left[\Sigma_{1}^{0}\right]$ in (a, b).
The proof of this is the same as that of Corollary 5 except that Corollary 4 is replaced by Corollary 9 .

Corollary 9 suggests the question if to any $a<1$, there is a $b>a$ such that $a\left[\Sigma_{1}^{0}\right] \cap(a, b]=\phi$. The following result answers this in the negative.
Theorem 8 If $A \in a<b \nless b_{k}$ for $k \leqslant n$, then there is a degree $c \in A\left[\Pi_{1}^{0}\right] \cap$ $A\left[\Sigma_{1}^{0}\right] \cap(a, b]$ such that $c \nless b_{k}$ for $k \leqslant n$.
Proof: We may assume that $a \leqslant b_{k}$. Let $B \in b, B_{k} \in b_{k}$, and $B_{n+1}=A$. Next let
$X=\bigcup\left\{\operatorname{Th}\left(B_{k}\right): k \leqslant n+1\right\}$. By Lemma 6, there is a $P R$ formula $\eta(x, z)$ such that
(1) if $\phi \in X$, then $A^{T}+\phi \vdash \neg \exists z \eta(\bar{\phi}, z)$,
(2) if $\phi \notin X$, then $\exists z \eta(\bar{\phi}, z)$ is Π_{1}^{0}-conservative over $A^{T}+\phi$.

There is a $P R$ formula $\delta(u)$ such that $B \vdash \forall u \delta(u)$ and $B_{k} \nvdash \forall u \delta(u)$. Let θ be such that

$$
P \vdash \theta \leftrightarrow \forall u(\neg \delta(u) \rightarrow \exists z<u \eta(\bar{\theta}, z))
$$

Finally let χ be the sentence

$$
\exists z(\eta(\bar{\theta}, z) \wedge \forall u \leqslant z \delta(u))
$$

Then
(3) $P \vdash \chi \longleftrightarrow \exists z \eta(\bar{\theta}, z) \wedge \theta$,
(4) $P+\theta+\neg \exists z \eta(\bar{\theta}, z) \vdash \forall u \delta(u)$.

We now show that
(5) $\theta \notin X$.

Suppose $\theta \in X$ and let k be such that $B_{k} \vdash \theta$. Then, by (1), $A^{T}+\theta \vdash \neg \exists z \eta(\bar{\theta}, z)$. But then, by (4) and since $A^{T} \dashv B_{k}, B_{k} \vdash \forall u \delta(u)$, contrary to hypothesis.

Since θ is Π_{1}^{0}, (5) implies that $A<A+\theta \notin B_{k}$. By (3), $A+\theta \dashv A+\chi$. Since χ is Σ_{1}^{0}, we have $A+\chi \leqslant A^{T}+\chi$. By (5) and (2), $\exists z \eta(\bar{\theta}, z)$ is Π_{1}^{0}-conservative over $A^{T}+\theta$. Hence, by (3), $A^{T}+\chi \leqslant A^{T}+\theta$. Since $A^{T}+\theta-1 A+\theta$ and $A^{T}+\theta \dashv B$, it now follows that $A+\chi \equiv A+\theta \leqslant B$. Let $c=d(A+\chi)=d(A+\theta)$. Then c is as desired.

By the proof of Theorem 4(ii), to every $a<1$, there is a $b<1$ such that $a\left[\Sigma_{1}^{0}\right] \cap[b, 1)=\phi$. Nevertheless we have the following
Corollary 11 If $a<b$, then there are $a_{n} \in a\left[\Sigma_{1}^{0}\right]$ such that for every n, $a_{n}<a_{n+1}$, and $\bigcup\left\{a_{n}: n \in \omega\right\}=b$.
Proof: Let $c_{n}, n \in \omega$, be all degrees $\ngtr b$. Let $a_{0}=a$. Now suppose a_{n} has been defined and $a_{n}<b$. Since $b \nless c_{n}$, there is a degree $d \nless c_{n}$ such that $a_{n}<d<b$. By Theorem 8 , there is an $a_{n+1} \in a_{n}\left[\Sigma_{1}^{0}\right]$ such that $a_{n}<a_{n+1} \leqslant d$ and $a_{n+1} \notin c_{n}$. It follows that $a_{n+1} \in a\left[\Sigma_{1}^{0}\right]$ and $a_{n+1}<b$. Finally it is clear that $\bigcup\left\{a_{n}\right.$: $n \in \omega\}=b$.

Consider $a\left[\Sigma_{1}^{0}\right]$ as a substructure of D_{T}. It is a distributive lattice with meet \cap and join \cup. Clearly $a_{0} \cap a_{1}=a_{0} \cap a_{1}$. To find $a_{0} \cup a_{1}$, note that if σ and σ_{i} are Σ_{1}^{0} and $A+\sigma_{i} \leqslant A+\sigma, i=0,1$, then $A+\sigma_{0} \wedge \sigma_{1} \leqslant A+\sigma$. Thus if $a_{i}=d\left(A+\sigma_{i}\right)$, then $a_{0} \cup a_{1}=d\left(A+\sigma_{0} \wedge \sigma_{1}\right)$. But then it is easily verified that $b \in a\left[\Sigma_{1}^{0}\right]$ has a complement in $a\left[\Sigma_{1}^{0}\right]$ iff $b \in a\left[\Pi_{1}^{0}\right]$. Thus, from Theorem 8, we get the following corollary showing that the isomorphism type of $D_{T}^{a}=a\left[\Sigma_{1}^{0}\right] \cap$ $a\left[\Pi_{1}^{0}\right]$ is independent of a and T provided that $a<1$.

Corollary 12 If $a<1$, then D_{T}^{a} is a denumerable atomless Boolean algebra and for every $b>a, b=\bigcup\left\{c<b: c \in D_{T}^{a}\right\}$.

From (ii) of the following result, an improvement of Theorem 14 of [4]
and Corollary 4 of [5], it follows that if $a<1$, then D_{T}^{a} is a proper subset of $a\left[\Sigma_{1}^{0}\right]$.

Theorem 9

(i) If $d(A) \leqslant b<c$, then there is a degree which is isolated from $A\left[\Pi_{1}^{0}\right]$ in (b, c).
(ii) If $a<b$, then there is a degree $c \in a\left[\Sigma_{1}^{0}\right]$ which is isolated from $a\left[\Pi_{1}^{0}\right]$ in (a, b).

To prove this we need the following rather straightforward strengthening of Lemma 10 (cf. [4]).

Lemma 16 If X is r.e. and monoconsistent with Q, then there is a Π_{1}^{0} formula $\eta(x)$ such that for every n and every $f \epsilon^{n+1} 2, \bigvee\left\{\eta(\bar{k})^{f(k)}: k \leqslant n\right\} \notin X$.

Proof of Theorem 9: We prove (ii). The proof of (i) is similar but simpler. Let $A \in a$ and $B \in b$. By Theorem 8, there is a Σ_{1}^{0} sentence χ such that $A<A+$ $\chi<B$. By Orey's compactness theorem, there is a p such that $Q \dashv A \upharpoonright p$ and $A \upharpoonright p+\chi \notin A$. By Lemma 16 applied to the set $\{\phi: A \upharpoonright p+\chi \vee \phi \leqslant A+\chi \vee \neg \phi\}$, there is a Σ_{1}^{0} formula $\delta(x)$ such that:
(1) $A \upharpoonright p+\chi \vee \delta(\bar{m}) \notin A \cup\{\chi \vee \delta(\bar{n}): n<m\}$.

Let $C=A \cup\{\chi \vee \delta(\bar{n}): n \in \omega\}$ and $c=d(C)$. Then $c \in(a, b)$ and, by Theorem 11 of [5], $c \in a\left[\Sigma_{1}^{0}\right]$.

To show that c is isolated from $a\left[\Pi_{1}^{0}\right]$ in (a, b), suppose $a \leqslant c_{0}<c<$ $c_{1}(\leqslant b)$. Let $C_{i} \in c_{i}$ and let q be such that $C \upharpoonright q \nless C_{0}$ and $C_{1} \upharpoonright q \nless C$. Let ψ_{m} be the sentence $\bigwedge\{\chi \vee \delta(\bar{n}): n<m\}$ and set

$$
\begin{aligned}
& X=\left\{\phi: C \upharpoonright q \leqslant(C \downarrow(T+\neg \phi)) \uparrow C_{0}\right\}, \\
& Y=\left\{\phi:\left(C_{1} \upharpoonright q\right) \downarrow(Q+\phi) \leqslant C\right\}, \\
& Z=\left\{\phi: \exists m\left((A \upharpoonright p+\chi \vee \delta(\bar{m})) \downarrow(Q+\phi) \leqslant A+\psi_{m}+\neg \phi\right)\right\} .
\end{aligned}
$$

By (1), $X \cup Y \cup Z$ is r.e. and monoconsistent with Q. Thus, by Lemma 10, there is a Σ_{1}^{0} sentence ψ such that $\psi, \neg \psi \notin X \cup Y \cup Z$. Let $d_{0}=(c \cap d(T+$ $\neg \psi)$) $\cup c_{0}$ and $d_{1}=c_{1} \cap d(C+\psi)$. Clearly $c_{0} \leqslant d_{0} \leqslant c \leqslant d_{1} \leqslant c_{1}$. Moreover $c \notin d_{0}$, since $\psi \notin X$, and $d_{1} \notin c$, since $\psi \notin Y$. Thus $d_{0}<c<d_{1}$.

It remains to show that $a\left[\Pi_{1}^{0}\right] \cap\left[d_{0}, d_{1}\right]=\phi$. It suffices to prove that:
(2) if $A^{\prime} \in a, \theta$ is Π_{1}^{0}, and $A^{\prime}+\theta \leqslant C+\psi$, then $C \downarrow(T+\neg \psi) \nless A^{\prime}+\theta$.

Suppose (2) is false. Then there is an m such that $A+\psi_{m}+\psi \vdash \theta$. Since $A^{\prime} \equiv A$ and ψ_{m} and ψ are Σ_{1}^{0}, it follows that $A^{\prime}+\psi_{m}+\psi \equiv A+\psi_{m}+\psi$ and so $A^{\prime}+\psi_{m}+\psi \vdash \theta$. Hence $A^{\prime}+\theta \leqslant A+\psi_{m}+\psi$, whence $C \downarrow(T+\neg \psi) \leqslant A+$ $\psi_{m}+\psi$. But this is impossible, since $\neg \psi \notin Z$. This proves (2) and so concludes the proof.

Combining Corollary 9 and Theorem 9 we get
Corollary 13 If $a<b$, then there are c, d such that $a \leqslant c<d \leqslant b$ and $\left(a\left[\Pi_{1}^{0}\right] \cup a\left[\Sigma_{1}^{0}\right]\right) \cap[c, d]=\phi$.

Proof: By Theorem 9(ii), there are a^{\prime}, b^{\prime} such that $a \leqslant a^{\prime}<b^{\prime} \leqslant b$ and
$a\left[\Pi_{1}^{0}\right] \cap\left[a^{\prime}, b^{\prime}\right]=\phi$. By Corollary 9 , there is a c such that $a^{\prime} \leqslant c<b^{\prime}$ and $a\left[\Sigma_{1}^{0}\right] \cap\left[c, b^{\prime}\right)=\phi$. Now let d be such that $c<d<b^{\prime}$. Then c and d are as desired.

Next we show that Theorem 9(i) cannot be improved by replacing $A\left[\Pi_{1}^{0}\right]$ by $a\left[\Pi_{1}^{0}\right]$.

Corollary 14 If $a \leqslant b<1$, then there is a c such that $b \leqslant c<1$ and $[c, 1] \subseteq a\left[\Pi_{1}^{0}\right]$.
Proof: Let $A \in a$ and $B \in b$. Then $A^{T} \dashv B$. By Lemma 7, there is a Σ_{1}^{0} sentence σ such that σ is Π_{1}^{0}-conservative over A^{T} and $B \nVdash \sigma$. Let $c=d(B+\neg \sigma)$. Then $b \leqslant c<1$. Suppose now $d \geqslant c$ and let $D \in d$. Let $A^{\prime}=A^{T} \cup\{\neg \sigma \rightarrow \phi: \phi \in D\}$. Then $A^{\prime} \in a$. Moreover $A^{\prime}+\neg \sigma \dashv \vdash A^{T}+\neg \sigma \cup D \dashv \vdash D$. Hence $d=d\left(A^{\prime}+\neg \sigma\right)$ and so $d \in a\left[\Pi_{1}^{0}\right]$.

Let us say that the infimum \bigcap_{G} is trivial if there is a finite set $H \subseteq G$ such that $\bigcap_{G}=\bigcap_{H}$.

Theorem 10 Suppose A is consistent.
(i) There is a primitive recursive set X of Σ_{1}^{0} sentences such that $d(A)$ is the nontrivial infimum of $A[X]$.
(ii) There is a primitive recursive set Y of Σ_{1}^{0} sentences such that $A[Y]$ has no infimum.

Proof: (i) By Corollary 2, there is a B such that $d(A) \ll_{m} d(B)$ but not $d(A) \ll^{*} d(B)$. Let $X=\left\{\neg\right.$ Con $\left._{B \upharpoonright n}: n \in \omega\right\}$. Suppose $C \leqslant A+\neg$ Con $_{B \upharpoonright n}$ for every n. Then $C \downarrow B \leqslant A$ and so $C \leqslant A$. Thus $d(A)=\bigcap_{A[X] \text {. This infimum is }}$ nontrivial, since otherwise there would exist an m such that $A+\neg \operatorname{Con}_{B \mathrm{r} m} \leqslant A$, contradicting the fact that not $d(A) \ll^{*} d(B)$.

To prove Theorem 10(ii) we need:
Lemma 17 If Z is an r.e. set of Π_{1}^{0} sentences, then $A[Z]$ does not have a nontrivial infimum.

Proof: We may assume that
(1) there is no k such that $A+\psi \vdash \bigvee_{Z} \upharpoonright k$ for every $\psi \in Z$,
since otherwise $A[Z]$ would have a trivial infimum. To obtain the desired conclusion it is sufficient (and necessary) to show that $X=\left\{\phi \in \Pi_{1}^{0}: A+\psi \vdash \phi\right.$ for every $\psi \in Z\}$ is not r.e. We may assume that Z is primitive recursive. Let $\zeta(x)$ be a $P R$ binumeration of Z. Next let $\rho(x, y)$ be a $P R$ binumeration of a relation $R(k, m)$ such that $Y=\{k: \forall m R(k, m)\}$ is not r.e. Finally let $\eta(x)$ be the formula

$$
\forall z\left(\neg \rho(x, z) \rightarrow \exists u \leqslant z\left(\zeta(u) \wedge \Pi_{1}^{0}-\operatorname{true}(u)\right)\right.
$$

where $\Pi_{1}^{0}-\operatorname{true}(x)$ is a partial truth definition for Π_{1}^{0} sentences. If $k \in Y$, then clearly $\eta(\bar{k}) \epsilon X$. Suppose $k \notin Y$. Let m be such that not $R(k, m)$. Then $A+\eta(\bar{k}) \vdash \bigvee_{Z} \upharpoonright m$, whence, by (1), $\eta(\bar{k}) \notin X$. Thus $Y=\{k: \eta(\bar{k}) \in X\}$ and so X is not r.e.

Proof of Theorem 10(ii): By the proof of Theorem 8, there are primitive recursive functions $g(n)$ and $h(n)$ such that if ϕ is Π_{1}^{0} and $A<A+\phi$, then $g(\phi)$ is $\Sigma_{1}^{0}, h(\phi)$ is Π_{1}^{0}, and $A<A+g(\phi) \equiv A+h(\phi) \leqslant A+\phi$. We now define σ_{n} and ψ_{n} as follows. Let ψ_{0} be any Π_{1}^{0} sentence such that $A<A+\psi_{0}$. Next suppose ψ_{n} has been defined and $A<A+\psi_{n}$. Let θ be a Π_{1}^{0} Rosser sentence for $A+\neg \psi_{n}$. Then $A<A+\psi_{n} \vee \theta<A+\psi_{n}$. Let $\sigma_{n}=g\left(\psi_{n} \vee \theta\right)$ and $\psi_{n+1}=$ $h\left(\psi_{n} \vee \theta\right)$. Then $A+\psi_{n}>A+\sigma_{n} \geqslant A+\psi_{n+1}>A$. Now let $Y=\left\{\sigma_{n}: n \in \omega\right\}$. Then, by Lemma 17, Y is as desired.

In connection with this proof it may be remarked that if A is consistent, then there is no partial recursive function $g(n)$ such that if σ is Σ_{1}^{0} and $A<A+\sigma$, then $g(\sigma)$ is a Π_{1}^{0} sentence such that $A<A+g(\sigma) \leqslant A+\sigma$. For assuming the contrary we would have for every Σ_{1}^{0} sentence $\sigma: A+\sigma \leqslant A$ iff if $g(\sigma)$ is a Π_{1}^{0} sentence and $A+\sigma \vdash g(\sigma)$, then $A \vdash g(\sigma)$. But this is impossible, since, by Theorem 12 of [5], $\Sigma_{1}^{0} \cap\{\phi: A+\phi \leqslant A\}$ is not Σ_{2}^{0}.

Finally we are ready to give the
Proof of Theorem 7: (i) Let $C \in c$. By Theorem 10 (ii), there is a primitive recursive set $Y=\left\{\sigma_{n}: n \in \omega\right\}$ of Σ_{1}^{0} sentences such that $C[Y]$ has no infimum. Let $A=C \cup\left\{\neg \sigma_{n}: n \in \omega\right\}$ and $a=d(A)$. Then $B \downarrow A \leqslant C$ iff $B \leqslant C+\sigma_{n}$ for every n. But then, by Corollary 6(i), a supremum of $\{b: b \cap a \leqslant c\}$ would be an infimum of $C[Y]$.
(ii) Let $B=T+\neg \theta$. Then B is consistent but not Σ_{1}^{0}-sound. We now effectively define Π_{1}^{0} sentences ψ_{n} such that
(1) $B_{k}=B \cup\left\{\psi_{m}: m<k\right\}$ is consistent,
$B_{k+1} f_{\Sigma_{1}^{0}} B_{k}$.

Suppose ψ_{m} has been defined for $m<k$. Let $\beta_{k}(x)$ be a $P R$ binumeration of B_{k}. Let $\delta(x, y)$ be the formula $\beta_{k}(x) \wedge \forall z \leqslant x \neg \operatorname{Prf} f_{\beta_{k}}(y, z)$. Finally let ψ_{k} be such that $P \vdash \psi_{k} \longleftrightarrow \operatorname{Con}_{\delta(x, \overline{\urcorner \psi k})}$. Then, by a standard argument, (1) holds with k replaced by $k+1$ and $\delta\left(x, \overline{7 \psi_{k}}\right)$ is a $P R$ binumeration of B_{k}. Since B_{k} is not Σ_{1}^{0}-sound, it follows, by a result of Smoryński [7] (Application 5, p. 197) that ψ_{k} is not Σ_{1}^{0}-conservative over B_{k} and so (2) holds.

Now let $X=\left\{\psi_{m}: m \in \omega\right\}$ and $a=d(T \cup X) \cap c$. To show that a is as desired we first observe that if $\{b: b \cup a \geqslant c\}$ has an infimum, then so does $\left\{d(T+\psi): \psi\right.$ is Π_{1}^{0} and $\left.T \cup X+\psi \vdash \theta\right\}$. But the latter set has no infimum: If $T \cup X+\psi \vdash \theta$, then for some $k, B \cup X \upharpoonright k \vdash \neg \psi$. Now, by (2), there is a Σ_{1}^{0} sentence σ such that $B \cup X \vdash \sigma$ and $B \cup X \upharpoonright k \nvdash \sigma$. It follows that $T \cup X+$ $\neg \sigma \vdash \theta$ and $T+\neg \sigma \nvdash \psi$. Now apply Lemma 17. Thus a is as claimed and the proof is complete.

Theorem 7(ii) is a partial dual of Theorem 7(i). The problem of whether or not the full dual is true remains unsolved.

One major open problem, which will certainly have occurred to the reader, is this: If S is Σ_{1}^{0}-sound but T is not, then, by Theorem $2, D_{S}$ and D_{T} are not isomorphic. But supposing that S and T are both Σ_{1}^{0}-sound (true), does it follow that D_{S} and D_{T} are isomorphic?

REFERENCES

[1] S. Feferman, "Arithmetization of metamathematics in a general setting," Fundamenta Mathematica, vol. 49 (1960), pp. 33-92.
[2] D. Guaspari, "Partially conservative extensions of arithmetic," Transactions of the American Mathematical Society, vol. 254 (1979), pp. 47-68.
[3] P. Hájek, "On interpretability in set theories," Commentationes Mathematicae Universitatis Carolinae, vol. 12 (1971), pp. 73-79 and vol. 13 (1972), pp. 445-455.
[4] P. Lindström, "Some results on interpretability," Proceedings of the 5th Scandinavian Logic Symposium, 1979, Aalborg, 1979, pp. 329-361.
[5] P. Lindström, "On partially conservative sentences and interpretability," to appear.
[6] S. Orey, "Relative interpretations," Zeitschrifft für Mathematische Logik und Grundlagen der Mathematik, vol. 7 (1961), pp. 146-153.
[7] C. Smoryński, "Calculating self-referential statements," Fundamenta Mathematica, vol. 109 (1980), pp. 189-210.
[8] V. Švejdar, "Degrees of interpretability," Commentationes Mathematicae Universitatis Carolinae, vol. 19 (1978), pp. 789-813.

Department of Philosophy
University of Göteborg
S-411 36 Göteborg, Sweden

