On the Relationship Between One-Point Frames and Degrees of Unsatisfiability of Modal Formulas

FABIO BELLISSIMA

Let L be a normal modal logic and χ_{L} the class of the frames on which it holds: χ_{L} determines, in the set F of all modal formulas, the subset Y of those formulas which are true in every frame of χ_{L}. From Y we can obtain the set $\neg Y$ of the negation of the formulas of Y, and then \bar{Y} and $\bar{\neg}$; i.e., the complements of Y and $\neg Y$ in σ.

Up to this point the situation is like that of the Classical Propositional Calculus, where we have the sets T of the tautologies, $\neg T$ (formulas that are false under each valuation), \bar{T} (false under at least one valuation), and $\overline{\neg T}$ (true under at least one valuation). Moreover, the truth-functionality of the classical connectives entails that these sets are the only sets of formulas that can be determined by taking into account the possible truth value of a formula with respect to the models of a given class, when we analyze the situation only by means of the words "for all", "there exists", "true", and "false" referred to the models of the class. In fact we can consider all the models of the Classical Propositional Calculus to be built on a single frame with a single point: so the words "for all" and "there exists" can be referred only to the valuations.

In the case of a modal logic the situation is more involved; a formula ψ is true in a class χ_{L} of frames if: for each frame $\boldsymbol{A} \in \chi_{L}$, each valuation V on \boldsymbol{A}, and each point a of $\boldsymbol{A},\langle\boldsymbol{A}, V\rangle \vDash \psi[a]$. By interchanging "for all" with "there exists", or commuting the quantifier referring to the valuations with that referring to the points, or interchanging \vDash with $\not \vDash$, we get many different sets of formulas determined by χ_{L}. These sets, which will be called U-sets (see Definition 2.1), indicate different degrees of unsatisfiability of a formula with respect to χ_{L}.

The first aim of this paper is to determine necessary and sufficient conditions which a class χ_{L} must satisfy in order that some U-sets coincide. Through
this analysis we find that all these conditions concern, roughly speaking, the behaviour of the two frames $\boldsymbol{A}_{0}=\langle\{a\}, \phi\rangle$ and $\boldsymbol{A}_{1}=\langle\{a\},\{\langle a, a\rangle\}\rangle$ with respect to the frames of χ_{L}.

Now, a problem much present in the literature is that of investigating which semantical properties of a class of frames are expressible by sets of modal formulas. On the other side, the properties (expressed in terms of \boldsymbol{A}_{0} and \boldsymbol{A}_{1}) that we have used in our analysis (see Definition 2.8) seem to be of some interest in themselves. So the second problem we deal with regards the possibility of expressing syntactically these semantical properties.

1 Background material The modal language considered in this paper has an infinite set of propositional letters $p_{0}, p_{1}, p_{2}, \ldots$, a propositional constant \perp (the falsum), the connectives \wedge and \neg, and the modal operator \square. We write \square^{n}, $n<\omega$, instead of $\square \square \ldots n$ times, while v, \supset, \equiv, and \diamond are defined as usual. Let ψ be a modal formula: we define the modal degree of ψ (in symbols $d g(\psi)$) as follows:

```
\(d g(p)=d g(\perp)=0\), for propositional letters \(p\)
\(d g(\neg \psi)=d g(\psi)\)
\(d g(\psi \wedge \phi)=\max \{d g(\psi), d g(\phi)\}\)
\(d g(\square \psi)=d g(\psi)+1\).
```

A normal modal logic is a set of modal formulas that (i) does not contain \perp, (ii) contains all classical tautologies, (iii) contains all the formulas of the form $\square(\psi \supset \phi) \supset(\square \psi \supset \square \phi)$, and that is closed under (iv) modus ponens, (v) necessitation, and (vi) the formation of substitution instances. Since in this paper we only deal with normal modal logics, the words "normal" and "modal" are often omitted; moreover we identify a logic with each set of its axioms. The names of logics that aren't new are those of [5].

The semantic structures are frames and models. Frames are ordered couples $\langle A, R\rangle$ of a nonempty domain $A=\left\{a_{0}, a_{1}, \ldots\right\}$ (elements of A are called points) with a binary relation R on A (frames are denoted by $\boldsymbol{A}, \boldsymbol{B}$, etc.). Two frames \boldsymbol{A} and \boldsymbol{B} are isomorphic if they are isomorphic as ordered sets; we shall identify isomorphic frames. Models are ordered couples $\langle\boldsymbol{A}, V\rangle$ with \boldsymbol{A} a frame and V a valuation; i.e., a function from the set of propositional letters into the power-set of A. We write $V^{-1}(a)$ to represent the set $\{p: a \in V(p)\}$. The wellknown Kripke truth-definition defines the notion $\langle\boldsymbol{A}, V\rangle \vDash \psi[a]$, for a model $\langle\boldsymbol{A}, V\rangle, a \in A, \psi$ a modal formula. Then $\boldsymbol{A} \vDash \psi[a]$ means that for every V on \boldsymbol{A} $\langle\boldsymbol{A}, V\rangle \vDash \psi[a] ;\langle\boldsymbol{A}, V\rangle \vDash \psi$ means that for every a of $A\langle\boldsymbol{A}, V\rangle \vDash \psi[a]$; and $\boldsymbol{A} \vDash \psi$ means that for every a of $A \boldsymbol{A} \vDash \psi[a]$. We write $T h(\boldsymbol{A})$ to represent the set $\{\psi: \boldsymbol{A} \vDash \psi\}$, and, if Γ is a set of formulas, we write $\boldsymbol{A} \vDash \Gamma$ instead of $\Gamma \subseteq \operatorname{Th}(\boldsymbol{A})$.

Let $\langle A, R\rangle$ be a frame and $A^{\prime} \subseteq A$. We define $\overline{\bar{A}}^{\prime} / \boldsymbol{A}$ to be the frame $\langle B, R\rangle$ in which

$$
\begin{aligned}
B= & \left\{a \in A: \text { for some } a^{\prime} \in A^{\prime} a^{\prime} R^{*} a\right\} \cup A^{\prime} \text { (where } R^{*} \text { is the transitive closure } \\
& \text { of } R)
\end{aligned}
$$

and

$$
R^{\prime}=R \cap B \times B
$$

In such a frame we refer to B as $\overline{\bar{A}}^{\prime}$. We define a frame to be undecomposable if there aren't two nonempty subsets $A^{\prime}, A^{\prime \prime} \subseteq A$ such that $\overline{\bar{A}}^{\prime} \cap \overline{\bar{A}}^{\prime \prime}=\phi$ and $\overline{\bar{A}}^{\prime} \cup \overline{\bar{A}}^{\prime \prime}=A . \boldsymbol{B}$ is a subframe of \boldsymbol{A}, in symbols $\boldsymbol{B} \subseteq \boldsymbol{A}$, if there is $A^{\prime} \subseteq A$ such that $\boldsymbol{B}=\overline{\bar{A}}^{\prime}\left|\boldsymbol{A} . \overline{\bar{A}}^{\prime}\right|\langle\boldsymbol{A}, V\rangle$ is the model $\left\langle\overline{\bar{A}}^{\prime} / \boldsymbol{A}, V^{\prime}\right\rangle$ where, for each $a \in A^{\prime}$, $V^{\prime-1}(a)=V^{-1}(a)$. We use, and sometimes without mention, the following
Proposition 1.1 (Generation Theorem) For all $a \in A^{\prime}$ and all formulas ψ

$$
\begin{aligned}
& \overline{\bar{A}}^{\prime} /\langle\boldsymbol{A}, V\rangle \vDash \psi[a] \text { iff }\langle\boldsymbol{A}, V\rangle \vDash \psi[a] \\
& \overline{\bar{A}}^{\prime} / \boldsymbol{A} \vDash \psi[a] \text { iff } \boldsymbol{A} \vDash \psi[a] .
\end{aligned}
$$

For L a logic, we set $\chi_{L}=\{\boldsymbol{A}: \boldsymbol{A} \vDash L\}$. A class χ of frames is axiomatizable if $\chi=\chi_{L}$ for some L. We write, for Γ a set of formulas, $\chi \vDash \Gamma$ if, for each \boldsymbol{A} of $\chi, \boldsymbol{A} \vDash \Gamma$. L is complete (with respect to χ_{L}) if $L \vdash \psi$ iff $\chi_{L} \vDash \psi$. Since in our paper we only deal with axiomatizable classes of frames, which are closed under subframes and disjoint unions of frames, then we may consider, without loss of generality, undecomposable frames only.

2 Basic definitions and results

Definition 2.1 We define a U-set of a logic L as a set of formulas of one of the following two kinds:
(i) $\{\psi: Q A, Q V, Q a,\langle\boldsymbol{A}, V\rangle \# \psi[a]\}$
(ii) $\{\psi: Q A, Q a, Q V,\langle\boldsymbol{A}, V\rangle \# \psi[a]\}$
where Q stands for "for all" or "there exists", $\boldsymbol{A} \in \chi_{L}, V$ is a valuation on \boldsymbol{A}, $a \in A$, and \# stands for \vDash or $\not \models$.

Of the 32 sets of formulas we get in this way, only 24 are a priori different from one another, since two equal consecutive quantifiers commute. Furthermore, we can easily get rid of a number of relations among the U-sets of a logic L which are immediate consequences of their respective definitions and do not depend on L. First, let

$$
Y=\{\psi: Q A, Q V, Q a,\langle\boldsymbol{A}, V\rangle \# \psi[a]\}
$$

be a U-set of type (i). By reading Q^{\prime} as "for all" if Q is "there exists" and vice versa, and $\#^{\prime}$ as $\not \#^{\prime}$ if \# is \vDash and vice versa, we have that

$$
\begin{aligned}
& \left\{\psi: Q A, Q V, Q a,\langle\boldsymbol{A}, V\rangle \#^{\prime} \psi[a]\right\}=\{\psi: \neg \psi \in Y\}=\neg Y \\
& \left\{\psi: Q^{\prime} A, Q^{\prime} V, Q^{\prime} a,\langle\boldsymbol{A}, V\rangle \#^{\prime} \psi[a]\right\}=\{\psi: \psi \notin Y\}=\bar{Y} \\
& \left\{\psi: Q^{\prime} A, Q^{\prime} V, Q^{\prime} a,\langle\boldsymbol{A}, V\rangle \# \psi[a]\right\}=\{\psi: \neg \psi \notin Y\}=\neg \bar{\neg} .
\end{aligned}
$$

The same holds if the U-set is of type (ii). Four our purpose it is therefore enough to consider only six U-sets for each given L, since any other U-set will be related to one of these by some "Boolean" connection like the ones above. The reason for our choice of the six U-sets will soon be clear. The definition is as follows:
Definition 2.2 Let L be a logic. We set:

$$
L_{\alpha}=\{\psi: \forall \boldsymbol{A}, \forall V, \forall a\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\}
$$

($L_{\alpha}=\left\{\psi: \chi_{L} \vDash \psi\right\}$ and $L_{\alpha}=L$ iff L is complete)

$$
\begin{aligned}
& L_{\beta}=\{\psi: \forall \boldsymbol{A}, \exists a, \forall V\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\} \\
& L_{\gamma}=\{\psi: \forall \boldsymbol{A}, \forall V, \exists a\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\} \\
& L_{\delta}=\{\psi: \exists \boldsymbol{A}, \forall V, \forall a\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\} \\
& L_{\varepsilon}=\{\psi: \exists \boldsymbol{A}, \exists a, \forall V\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\} \\
& L_{\theta}=\{\psi: \exists \boldsymbol{A}, \forall V, \exists a\langle\boldsymbol{A}, V\rangle \vDash \psi[a]\}
\end{aligned}
$$

(remember that $\boldsymbol{A} \in \chi_{L}, V$ is a valuation on \boldsymbol{A} and $a \in A$).
With this choice the following inclusions hold for every L :

$$
L_{\alpha} \subseteq L_{\beta} \subseteq L_{\gamma} \subseteq L_{\delta} \subseteq L_{\varepsilon} \subseteq L_{\theta}
$$

The only nontrivial inclusion is $L_{\gamma} \subseteq L_{\delta}$, which will be shown in Corollary 2.7.
Definition 2.3 We set $\boldsymbol{A}_{0}=\langle\{a\}, \phi\rangle$ and $\boldsymbol{A}_{1}=\langle\{a\},\{\langle a, a\rangle\}\rangle$. Let a be a point of a frame \boldsymbol{A}. We define a as strongly terminal if $\overline{\overline{\{a\}}} / \boldsymbol{A}=\boldsymbol{A}_{0}$, as weakly terminal if $\overline{\overline{\{a\}}} / \boldsymbol{A}=\boldsymbol{A}_{1}$, and as terminal if it is weakly or strongly terminal.

Lemma 2.4 Let \boldsymbol{B} be a frame such that $\boldsymbol{A}_{0} \nsubseteq \boldsymbol{B}$, let V be a valuation on \boldsymbol{A}_{1}, and let V^{\prime} be the valuation on \boldsymbol{B} such that, for all $b \in B, V^{\prime-1}(b)=V^{-1}(a)$, where a is the point of \boldsymbol{A}_{1}. Then for all $b \in B$ and all formulas ψ

$$
\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \vDash \psi[b] \text { iff }\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \psi .
$$

Proof: By induction on the construction of ψ. If $\psi=p$ then the statement holds by definition of V^{\prime}. The induction steps for \wedge and \neg are trivial. Let $\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \square \psi$. Since $a R a$ we have $\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \psi$; by hypothesis for each $b \in B$ it holds $\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \vDash \psi[b]$ and then $\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \vDash \square \psi$. On the other side let $\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \vDash$ $\square \psi[b]$; from $\boldsymbol{A}_{0} \nsubseteq \boldsymbol{B}$ it follows that there is $b^{\prime} \in B b R b^{\prime}$. Then $\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \vDash \psi\left[b^{\prime}\right]$, $\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \psi$, and $\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \square \psi$.

Corollary 2.5 (from [5]) For every frame $\boldsymbol{A}, \operatorname{Th}(\boldsymbol{A}) \subseteq \operatorname{Th}\left(\boldsymbol{A}_{0}\right)$ or $\operatorname{Th}(\boldsymbol{A}) \subseteq$ $\operatorname{Th}\left(\boldsymbol{A}_{1}\right)$. Then, for every $L, \boldsymbol{A}_{0} \in \chi_{L}$ or $\boldsymbol{A}_{1} \in \chi_{L}$.

Proof: Trivial.
Corollary 2.6 For every L, L_{δ} is one of the following sets of formulas: $\operatorname{Th}\left(\boldsymbol{A}_{0}\right)$, $\operatorname{Th}\left(\boldsymbol{A}_{1}\right)$, or $\operatorname{Th}\left(\boldsymbol{A}_{0}\right) \cup \operatorname{Th}\left(\boldsymbol{A}_{1}\right)$.

Proof: If $\boldsymbol{A}_{0} \in \chi_{L}$ and $\boldsymbol{A}_{1} \notin \chi_{L}$ then, by Corollary 2.5, for each $\boldsymbol{A} \in \chi_{L}, \operatorname{Th}(\boldsymbol{A}) \subseteq$ $T h\left(\boldsymbol{A}_{0}\right)$ and then $L_{\delta}=T h\left(\boldsymbol{A}_{0}\right)$. Analogously, if $\boldsymbol{A}_{1} \in \chi_{L}$ and $\boldsymbol{A}_{0} \notin \chi_{L}$ then $L_{\delta}=$ $\operatorname{Th}\left(\boldsymbol{A}_{1}\right)$, and, if $\boldsymbol{A}_{0}, \boldsymbol{A}_{1} \in \chi_{L}, L_{\delta}=\operatorname{Th}\left(\boldsymbol{A}_{0}\right) \cup \operatorname{Th}\left(\boldsymbol{A}_{1}\right)$. By Corollary 2.5 no other cases are possible.

Corollary 2.7 For every $L, L_{\gamma} \subseteq L_{\delta}$.
Proof: If $\psi \in L_{\gamma}$ and $\boldsymbol{A}_{0}\left[\boldsymbol{A}_{1}\right]$ belongs to χ_{L}, as $\operatorname{Card}\left(\boldsymbol{A}_{0}\right)\left[\operatorname{Card}\left(\boldsymbol{A}_{1}\right)\right]=1$, we obtain $\boldsymbol{A}_{0} \vDash \psi\left[\boldsymbol{A}_{1} \vDash \psi\right]$. Then, from Corollary 2.5, it follows $\psi \in L_{\delta}$.

As we observed in the introduction, almost all the conditions of identity among $L_{\alpha}-L_{\theta}$ are expressible in terms of $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}$. For the sake of brevity we give the following

Definition 2.8 Let \boldsymbol{A} be a frame. We write:
$\operatorname{Cond}_{0}(\boldsymbol{A})$ if $\boldsymbol{A}_{0} \subseteq \boldsymbol{A}$
$\operatorname{Cond}_{1}(\boldsymbol{A})$ if $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}$
$\operatorname{Cond}_{01}(\boldsymbol{A})$ if $\boldsymbol{A}_{0} \subseteq \boldsymbol{A}$ or $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}$
$\operatorname{Cond}_{2}(\boldsymbol{A})$ if $\boldsymbol{A}_{0}=\boldsymbol{A}$ or $\boldsymbol{A}_{0} \nsubseteq \boldsymbol{A}$.
Let Cond be one among Cond $_{0}-$ Cond $_{2}$. We say that χ_{L} satisfies Cond if, for each $\boldsymbol{A} \in \chi_{L}, \operatorname{Cond}(\boldsymbol{A})$, and we say that Cond is syntactically expressible if there is a set Γ of formulas such that χ_{L} satisfies Cond iff $\chi_{L} \vDash \Gamma$.

Throughout the paper we shall determine which cases among Cond $_{0}-$ Cond $_{2}$ are syntactically expressible.

3 Identities among $L_{\delta}, L_{\varepsilon}, L_{\theta} \quad$ We show that all the identities among $L_{\delta}, L_{\varepsilon}$, and L_{θ} depend on Cond_{2} (Theorem 3.1) and that Cond_{2} is expressible by the formula $\square\urcorner \square \perp$ (Theorem 3.2).
Theorem 3.1 For every L we have:
(a) if χ_{L} satisfies Cond $_{2}$ then $L_{\delta}=L_{\varepsilon}=L_{\theta}$
(b) if χ_{L} does not satisfy Cond $_{2}$ then $L_{\delta} \neq L_{\varepsilon} \neq L_{\theta}$.

Proof: (a) We have seen that $L_{\delta} \subseteq L_{\epsilon} \subseteq L_{\theta}$; so we have only to show that Cond $_{2}$ implies $L_{\theta} \subseteq L_{\delta}$. Suppose $\psi \in L_{\theta}$; this means that there exists a frame $\boldsymbol{B}=\langle B, R\rangle$ of χ_{L} such that for each V on B there is a $b \in B\langle\boldsymbol{B}, V\rangle \vDash \psi[b]$. If $\boldsymbol{B}=\boldsymbol{A}_{0}$ then, since $\operatorname{Card}\left(\boldsymbol{A}_{0}\right)=1$, we have, for each $V,\langle\boldsymbol{B}, V\rangle \vDash \psi$ and then $\psi \in L_{\delta}$. If $\boldsymbol{B} \neq \boldsymbol{A}_{0}$, from $\boldsymbol{A}_{\mathbf{0}} \nsubseteq \boldsymbol{B}$ and Lemma 2.4 we obtain that for each V on $\boldsymbol{A}_{1}\left\langle\boldsymbol{A}_{1}, V\right\rangle \vDash \psi$. Then, with \boldsymbol{A}_{1} belonging to $\chi_{L}\left(T h(\boldsymbol{B}) \subseteq \operatorname{Th}\left(\boldsymbol{A}_{1}\right)\right.$ and $\left.\boldsymbol{B} \in \chi_{L}\right)$ we have $\psi \in L_{\delta}$.
(b) Suppose χ_{L} does not satisfy Cond $_{2}$. First we show $L_{\delta} \neq L_{\varepsilon}$. Let \boldsymbol{B} be a frame of χ_{L} such that $\boldsymbol{B} \neq \boldsymbol{A}_{0}$ and $\boldsymbol{A}_{0} \subseteq \boldsymbol{B}$. Then (we assume \boldsymbol{B} to be undecomposable) there are two points b, b^{\prime} of \boldsymbol{B} such that b^{\prime} is strongly terminal and $b R b^{\prime}$. So $\diamond \square \perp \in L_{\varepsilon}$. On the other side we have, for each $L, \diamond \square \perp \notin L_{\delta}$ because, for every $\boldsymbol{A}, \boldsymbol{A} \not \vDash \diamond \square \perp$. In fact $\boldsymbol{A} \vDash \diamond \square \perp[a]$, for a point a, implies that there is a strongly terminal point a^{\prime} which belongs to \boldsymbol{A}, and then $\boldsymbol{A} \not \nexists \diamond \square \perp\left[a^{\prime}\right]$. Finally we show that $L_{\varepsilon} \neq L_{\theta}$, showing that $\overline{\neg L}_{\varepsilon} \neq \overline{\neg L}_{\theta}$. Let us consider the formula $\psi=\psi_{1} \vee \psi_{2}$ where

$$
\psi_{1}=\neg p \wedge \square \perp \quad \text { and } \quad \psi_{2}=\neg \square \perp \wedge(\diamond \square \perp \supset \diamond(p \wedge \square \perp))
$$

For every $L, \psi \in \overline{\neg L}_{\epsilon}$, i.e., for each \boldsymbol{A} and a of \boldsymbol{A} there exists V such that $\langle\boldsymbol{A}, V\rangle \vDash \psi[a]$. In fact: (i) if a is strongly terminal, $a \notin V(p)$ implies $\langle\boldsymbol{A}, V\rangle \vDash$ $\psi_{1}[a]$; (ii) if a is not strongly terminal and there aren't strongly terminal points a^{\prime} such that $a R a^{\prime}$, then $\boldsymbol{A} \not \forall \diamond \square \perp[a]$ and then $\boldsymbol{A} \vDash \psi_{2}[a]$; (iii) if a is not strongly terminal and there is a strongly terminal point a^{\prime} such that $a R a^{\prime}, a^{\prime} \in V(p)$ implies $\langle\boldsymbol{A}, V\rangle \vDash \psi_{2}[a]$. Now we show that if χ_{L} does not satisfy Cond ${ }_{2}$ then $\psi \notin \bar{L}_{\theta}$; i.e., there exists \boldsymbol{A} of χ_{L} such that for each V there is $a\langle\boldsymbol{A}, V\rangle \not \models \psi[a]$. Let $\boldsymbol{A} \in \chi_{L}, \boldsymbol{A} \neq \boldsymbol{A}_{0}, \boldsymbol{A}_{0} \subseteq \boldsymbol{A}$ and let a be a point of \boldsymbol{A} such that $\boldsymbol{A} \vDash \diamond \square \perp[a]$. Now let Y be the set of the strongly terminal points of \boldsymbol{A} : for each V on \boldsymbol{A}, if, for a b of $Y, b \in V(p)$, then $\langle\boldsymbol{A}, V\rangle \not \forall \psi_{1}[b]$, and, from $\left.\boldsymbol{A} \not \forall\right\urcorner \square \perp[b]$ it follows that $\langle\boldsymbol{A}, V\rangle \not \models \psi[b]$, while if, for each $b \in Y, b \notin V(p)$, then $\langle\boldsymbol{A}, V\rangle \nexists \diamond(p \wedge$ $\neg \square \perp)[a]$ and then, from $\boldsymbol{A} \not \vDash \square \perp[a]$, we obtain $\langle\boldsymbol{A}, V\rangle \not \models \psi[a]$.

Theorem 3.2 Cond $_{2}$ is expressible by the formula $\square \neg \square \perp$.

Proof: For each $\boldsymbol{A}, \operatorname{Cond}_{2}(\boldsymbol{A})$ iff $\boldsymbol{A} \vDash \square \neg \square \perp$. In fact $\boldsymbol{A}_{\mathbf{0}} \vDash \square \neg \square \perp$; let then $\boldsymbol{A} \neq \boldsymbol{A}_{0} . \boldsymbol{A}_{0} \subseteq \boldsymbol{A}$ iff $\boldsymbol{A} \vDash \neg \square \perp$ and, as $\boldsymbol{A} \neq \boldsymbol{A}_{0}, \boldsymbol{A} \vDash \neg \square \perp$ iff $\boldsymbol{A} \vDash \square \neg \square \perp$.

Corollary 3.3 For every complete L, χ_{L} satisfies Cond $_{2}$ iff $L \vdash \square \neg \square \perp$.
Proof: Trivial.
4 Identities among $\boldsymbol{L}_{\beta}, \boldsymbol{L}_{\gamma}, \boldsymbol{L}_{\delta} \quad$ The identities among L_{β}, L_{γ}, and L_{δ} are related to Cond $_{0}$, Cond $_{1}$, and Cond_{01} (Theorems 4.1-4.3). Contrary to Cond ${ }_{2}$, we show that these conditions aren't syntactically expressible (Theorem 4.4), while they become expressible if referred to classes of transitive frames.

Theorem 4.1 For every $L, L_{\beta}=L_{\gamma}$ iff χ_{L} satisfies Cond ${ }_{01}$.
Proof: (\Rightarrow) Let

$$
\psi=p \supset \square p .
$$

We have, for every $L, \psi \in L_{\gamma}$; this is obvious by considering ψ in the form $\neg p \vee \square p$. By hypothesis $L_{\gamma}=L_{\beta}$, then $\psi \in L_{\beta}$, but, for every \boldsymbol{A} and $a, \boldsymbol{A} \vDash \psi[a]$ iff $\{\bar{a}\} / \boldsymbol{A}$ is \boldsymbol{A}_{0} or \boldsymbol{A}_{1}.
(\Leftrightarrow) Let $\psi \in L_{\gamma}, \boldsymbol{A} \in \chi_{L}$, and a be a terminal point of $\boldsymbol{A} \cdot \overline{\overline{\{a\}}} / \boldsymbol{A}$ is \boldsymbol{A}_{0} or \boldsymbol{A}_{1} and, since $\operatorname{Card}(\overline{\overline{\{a\}}})=1, \psi \in L_{\gamma}$ implies $\overline{\overline{\{a\}}} / \boldsymbol{A} \vDash \psi$, i.e., $\boldsymbol{A} \vDash \psi[a]$. Then $\psi \in L_{\beta}$.

Theorem 4.2 For every $L, L_{\beta}=L_{\delta}$ iff χ_{L} satisfies Cond ${ }_{0}$ or it satisfies Cond ${ }_{1}$.
Proof: (\Rightarrow) By Corollary 2.5 either \boldsymbol{A}_{0} or \boldsymbol{A}_{1} belongs to χ_{L}. Let us suppose $\boldsymbol{A}_{0} \in \chi_{L}$: we show that χ_{L} satisfies Cond ${ }_{0}$. Obviously $\square \perp \in L_{\delta}$ and if, for reductio, there is a frame \boldsymbol{A} of χ_{L} such that $\boldsymbol{A}_{0} \nsubseteq \boldsymbol{A}$, then $\boldsymbol{A} \vDash \neg \square \perp$ and $\square \perp \notin L_{\beta}$. Let us now suppose $\boldsymbol{A}_{1} \in \chi_{L}$: we show that χ_{L} satisfies Cond $_{1}$. Set:

$$
\psi=(p \supset \square p) \wedge \neg \square \perp .
$$

Since $\boldsymbol{A}_{1} \vDash \psi$ we have $\psi \in L_{\delta}$; but, if there is a frame \boldsymbol{A} of χ_{L} such that $\boldsymbol{A}_{1} \nsubseteq \boldsymbol{A}$ then, for each a of \boldsymbol{A}, either a is strongly terminal, and in such a case $\boldsymbol{A} \not \nexists$ $\neg \square \perp[a]$, or it is not terminal and then there exists a^{\prime} of $\boldsymbol{A}, a^{\prime} \neq a$ and $a R a^{\prime}$; in such a case if we choose a V such that $a \in V(p)$ and $a^{\prime} \notin V(p)$, we obtain $\langle\boldsymbol{A}, V\rangle \not \vDash p \supset \square p[a]$. So we have that for every a of $\boldsymbol{A}, \boldsymbol{A} \not \forall \psi[a]$ and then $\psi \notin L_{\beta}$.
(\Leftarrow) If χ_{L} satisfies Cond $_{0}$ then $\boldsymbol{A}_{1} \notin \chi_{L}$. Therefore, by Corollary 2.6, $L_{\delta}=\operatorname{Th}\left(\boldsymbol{A}_{0}\right)$ and then Cond $_{0}$ implies $L_{\delta}=L_{\beta}$. Analogously if χ_{L} satisfies Cond $_{1}$.

Theorem 4.3 Let L be a logic such that $L \vdash \square p \supset \square \square p . L_{\gamma}=L_{\delta}$ iff χ_{L} satisfies Cond ${ }_{0}$ or it satisfies Cond ${ }_{1}$.

Proof: (\Rightarrow) If $\boldsymbol{A}_{0} \in \chi_{L}$ then the proof is the same of that of Theorem 4.2. Let $\boldsymbol{A}_{1} \in \chi_{L}$. We show that $L_{\gamma}=L_{\delta}$ implies that χ_{L} satisfies Cond ${ }_{1}$. Suppose, for reductio, that there is a frame $\boldsymbol{A}=\left\langle A, R_{A}\right\rangle$ of χ_{L} such that $\boldsymbol{A}_{1} \nsubseteq \boldsymbol{A}$. If \boldsymbol{A} contains strongly terminal points, then $\boldsymbol{A}_{0} \in \chi_{L}$. In such a case, since $\boldsymbol{A}_{0} \vDash \square \perp$ and $\boldsymbol{A}_{1} \vDash \neg \square \perp, \square \perp \in L_{\delta}$ and $\square \perp \notin L_{\gamma}$ and then $L_{\delta} \neq L_{\gamma}$. Suppose \boldsymbol{A} to be without strongly terminal points; then \boldsymbol{A} is without terminal points. We show that in such a case the frame $\boldsymbol{B}=\left\langle B, R_{B}\right\rangle$, where $B=\left\{b_{0}, b_{1}\right\}$ and $R_{B}=B \times B$, is a p-morphic image of \boldsymbol{A}.

Let w.o. be a well ordering on A. We define a function f from A into B as follows: let a_{0} be the first point of A (following w.o.) and $a_{0, n}, n<\omega$, a chain of points such that $a_{0,0}=a_{0}, a_{0, n} R_{A} a_{0, n+1}$ and $a_{0, n} \neq a_{0, n+1}$ (since \boldsymbol{A} is without terminal points such a chain exists). We set $f\left(a_{0, n}\right)=b_{0}$ if n is even, b_{1} otherwise. Let now a_{α} be the first point for which f has not been defined. If there is a point a^{\prime} such that $a_{\alpha} R_{A} a^{\prime}$ and $f\left(a^{\prime}\right)$ have been defined, then set $f\left(a_{\alpha}\right)=$ $b_{0}\left(f\left(a_{\alpha}\right)\right.$ in such a case is not essential); if not, proceed as in the case of a_{0}. It is easy to see that f is a p-morphism from \boldsymbol{A} to \boldsymbol{B}. In fact f is onto, $a R_{A} a^{\prime}$ implies $f(a) R_{B} f\left(a^{\prime}\right)$; moreover $L \vdash \square p \supset \square \square p$ implies that R_{A} is transitive and then, for each $a \in A$, there exist $a^{\prime}, a^{\prime \prime}$ such that $a R_{A} a^{\prime}, a R_{A} a^{\prime \prime}, f\left(a^{\prime}\right)=b_{0}$, and $f\left(a^{\prime \prime}\right)=b_{1}$. Therefore, as χ_{L} is closed under p-morphic images, $\boldsymbol{B} \in \chi_{L}$.

Let us consider now the formula

$$
\psi=(p \supset \square p) \wedge(\neg p \supset \square \neg p)
$$

Obviously $\boldsymbol{A}_{1} \vDash \psi$ and then $\psi \in L_{\delta}$. But, if we consider the model $\langle\boldsymbol{B}, V\rangle$, where $V(p)=\left\{b_{0}\right\}$, we have that, for each $b \in B,\langle\boldsymbol{B}, V\rangle \not \forall \psi[b]$, and then $\psi \notin L_{\gamma}$.
(\Leftarrow) Obvious from Theorem 4.2. ${ }^{1}$
Theorem 4.4 Cond $_{0}$, Cond $_{1}$, and Cond $_{01}$ aren't syntactically expressible.
Proof: First we show the theorem for Cond ${ }_{0}$. Let us consider the two frames

$$
\begin{aligned}
\boldsymbol{B} & =\langle\omega,\{\langle n, n+1\rangle, n<\omega\}\rangle \\
\boldsymbol{B}^{\prime} & =\langle\omega,\{\langle n+1, n\rangle, n<\omega\}\rangle
\end{aligned}
$$

and a formula ψ such that $d g(\psi)=m . \boldsymbol{B}^{\prime} \vDash \psi$ implies $\boldsymbol{B}^{\prime} \vDash \psi[m+1]$ and then $\boldsymbol{B} \vDash \psi$. So we have $\operatorname{Th}\left(\boldsymbol{B}^{\prime}\right) \subseteq \operatorname{Th}(\boldsymbol{B})$. Let us now suppose that there exists Γ such that $\chi_{L} \vDash \Gamma$ iff χ_{L} satisfies Cond_{0}, and consider χ_{Γ}. From $\operatorname{Th}\left(\boldsymbol{B}^{\prime}\right) \subseteq \operatorname{Th}(\boldsymbol{B})$ and $\boldsymbol{B} \notin \chi_{\Gamma}$ it follows $\boldsymbol{B}^{\prime} \nRightarrow \Gamma$. Let n be a point of \boldsymbol{B}^{\prime} such that there is a $\gamma \in \Gamma \boldsymbol{B}^{\prime} \not \models \gamma[n]$: we have $\overline{\overline{\{n\}} /} / \boldsymbol{B}^{\prime} \not \neq \boldsymbol{\neq}$. Let now

$$
\psi=\bigvee_{i \leqslant n} \diamond^{i} \square \perp
$$

Since $\overline{\overline{\{n\}}}=\{n, n-1, \ldots 0\}$, we have $\overline{\overline{\{n\}}} / \boldsymbol{B}^{\prime} \vDash \psi$. Moreover, $\boldsymbol{A} \vDash \psi$ implies $\boldsymbol{A}_{0} \subseteq \boldsymbol{A}$; then $\chi_{\{\psi\}} \vDash \Gamma$ and $\overline{\overline{\{n\}}} / \boldsymbol{B}^{\prime} \in \chi_{\{\psi\}} \subseteq \chi_{\Gamma}$, which contradicts $\overline{\overline{n n}} / \boldsymbol{B}^{\prime} \not \models \gamma$.

The proof of the theorem for Cond_{01} is the same as that for Cond $_{0}$; and the proof for Cond ${ }_{1}$ can be obtained from that given by replacing \boldsymbol{B}^{\prime} with $\boldsymbol{B}^{\prime \prime}=\langle\omega,\{\langle 0,0\rangle,\langle n+1, n\rangle, n<\omega\}\rangle$ and ψ with $\psi^{\prime}=\bigvee_{i \leqslant n} \diamond^{i}((p \supset \square p) \wedge \neg \square \perp)$.

Theorem 4.6 Suppose $L \vdash \square p \supset \square \square p$. Then
(a) χ_{L} satisfies Cond $_{0}$ iff $\chi_{L} \vDash \square \perp \vee \diamond \square \perp$
(b) χ_{L} satisfies Cond 0_{01} iff $\chi_{L} \vDash(p \supset \square p) \vee \diamond(p \supset \square p)$
(c) χ_{L} satisfies Cond d_{1} iff $\chi_{L} \vDash \diamond((p \supset \square p) \wedge \neg \square \perp)$.

Proof: (a) Suppose $\boldsymbol{A} \in \chi_{L}$ and $\boldsymbol{A} \nexists \square \perp \vee \diamond \square \perp[a]$. Then, as R is transitive, $\boldsymbol{A}_{0} \subseteq \overline{\overline{\mid a\}}} / \boldsymbol{A}$, while $\overline{\overline{\{a\}}} / \boldsymbol{A} \in \chi_{L}$. The converse is trivial.

The proofs for (b) and (c) are similar to that of (a); it is sufficient to consider that $\boldsymbol{A} \vDash p \supset \square p[a]$ iff a is terminal and $\boldsymbol{A} \vDash(p \supset \square p) \wedge \neg \square \perp[a]$ iff a is weakly terminal.

Remark: Let Cond $_{x}$ be one among Cond $_{0}$, Cond $_{1}$, and Cond $_{01}$. Theorem 4.6 does not imply that the class of the transitive frames satisfying Cond $_{x}$ is axiomatizable. Obviously this class isn't axiomatizable since it is not closed under subframes. Theorem 4.6 only implies that χ_{L} (where L is $K 4 \cup\left\{\psi_{x}\right\}$ and ψ_{x} the formula of Theorem 4.6 corresponding to Cond $_{x}$) contains every axiomatizable class of transitive frames satisfying Cond $_{x}$. By contrast, Theorem 4.5 implies that there isn't a maximum class among the axiomatizable classes which satisfy Cond $_{x}$. On the other side the connection between Cond $_{2}$ and the formula $\square\urcorner \square \perp$ is stronger: in fact $\left\{\boldsymbol{A}: \operatorname{Cond}_{2}(\boldsymbol{A})\right\}=\chi_{K \cup\{\square า \square 1\}}$. That's why $\operatorname{Cond}_{2}(\boldsymbol{A})$ iff $\boldsymbol{A} \vDash \square \neg \square \perp$, while, for \boldsymbol{A} transitive, $\operatorname{Cond}_{x}(\boldsymbol{A})$ iff for each $\boldsymbol{B} \subseteq \boldsymbol{A} \boldsymbol{B} \vDash \psi_{x}$.
Corollary 4.7 If L is a complete transitive logic, then
(a) $L_{\beta}=L_{\gamma}$ iff $L \vdash(p \supset \square p) \vee \diamond(p \supset \square p)$
(b) $L_{\beta}=L_{\delta}$ iff $L_{\gamma}=L_{\delta}$ iff $L \vdash \square \perp \vee \diamond \square \perp$ or $L \vdash \diamond(p \supset \square p) \wedge \neg \square \perp$.

Proof: Trivial.

5 Conditions of identity between L_{α} and the other U-sets

Theorem 5.1 $\quad L_{\alpha}=L_{\delta}$ iff the only (undecomposable) frame of χ_{L} is $\boldsymbol{A}_{0}\left[\boldsymbol{A}_{1}\right]$.
Proof: $L_{\alpha}=L_{\delta}$ iff, for all $\boldsymbol{A}, \boldsymbol{B} \in \chi_{L}, \operatorname{Th}(\boldsymbol{A})=\operatorname{Th}(\boldsymbol{B})$. Via Corollary 2.5, it is equivalent to say that, for all $\boldsymbol{A} \in \chi_{L}, \operatorname{Th}(\boldsymbol{A})=\operatorname{Th}\left(\boldsymbol{A}_{0}\right)$ or, for all $\boldsymbol{A} \in \chi_{L}$, $\operatorname{Th}(\boldsymbol{A})=\operatorname{Th}\left(\boldsymbol{A}_{1}\right)$. But $\operatorname{Th}(\boldsymbol{A})=\operatorname{Th}\left(\boldsymbol{A}_{0}\right)\left[\operatorname{Th}\left(\boldsymbol{A}_{1}\right)\right]$ iff each point of \boldsymbol{A} is strongly [weakly] terminal.

Theorem 5.2 $L_{\alpha}=L_{\gamma}$ iff the only (undecomposable) frames of χ_{L} are \boldsymbol{A}_{0} or \boldsymbol{A}_{1}.
Proof: (\Rightarrow) As shown in the proof of Theorem 4.1, for each $L, p \supset \square p \in L_{\gamma}$, while $\boldsymbol{A} \vDash p \supset \square p$ iff each point of \boldsymbol{A} is terminal.
(\Leftarrow) Trivial.
From Theorem 5.1 it follows that the only complete logics which satisfy $L_{\alpha}=L_{\delta}$ (and then, via Theorem 3.2, $L_{\alpha}=L_{\theta}$) are $Q_{0}=K \cup\{\square \perp\}$ and $D Z=$ $K\{(p \supset \square p) \wedge \neg \square \perp$, while Theorem 5.2 implies that the only complete logics for which $L_{\alpha}=L_{\gamma}$ are $Q_{0}, D Z$, and $Z=K \cup\{p \supset \square p\}$. The word "complete" is essential: in fact (see [7] and [2]) there are logics strictly included in $D Z$ that have its class of frames. The only result about the identity between L_{α} and L_{β} that we have obtained is the following:

Theorem 5.3 If $L_{\alpha}=L_{\beta}$ then χ_{L} satisfies Cond $_{2}$.
Proof: It is easy to see that, for each L, $\square \neg \square \perp \in L_{\beta}$. Then the result follows from Theorem 3.2.

In Example 6.2 we shall show that the converse of Theorem 5.3 is not true, while in Example 6.3 we shall show that $L_{\alpha}=L_{\beta}$, which via Theorem 5.3 and Theorem 3.1 implies $L_{\delta}=L_{\varepsilon}=L_{\theta}$, does not imply $L_{\beta}=L_{\gamma}$ or $L_{\gamma}=L_{\delta}$.

6 Examples We have seen that Q_{0} and $D Z$ are the only complete logics satisfying all the identities among U-sets. On the other side, as is obvious
a priori, K does not satisfy any identity. In fact, from all the theorems above, we have that a complete logic L does not satisfy any identity among U-sets iff $L \nmid \square \neg \square \perp$ and there is a frame of χ_{L} without any terminal point. From that we can observe that K is not the unique logic having this property: also $K 4$, for instance, has it.

Example 6.1: An interesting example (see [1], [3], and [4]) is given by the logic $G L$ (also called $K 4 W$, in the notation of [6], or G in [3]). $G L$ is $K \cup$ $\{\square(\square p \supset p) \supset \square p\}$. A frame \boldsymbol{A} belongs to $\chi_{G L}$ iff it is transitive and reverse well-founded, i.e., without infinite ascending chains. $\chi_{G L}$ satisfies Cond d_{0}, and therefore $G L_{\beta}=G L_{\gamma}=G L_{\delta}$, while from $G L \Vdash \square \neg \square \perp$ we obtain $G L_{\alpha} \neq G L_{\beta}$ and $G L_{\delta} \neq G L_{\varepsilon} \neq G L_{\theta}$. Moreover, via Corollary 2.6, $G L_{\delta}$, and therefore $G L_{\beta}$, is the logic Q_{0}. It is known that the operator \square of $G L$ can be "interpreted", under suitable conditions, as the predicate Theor of Peano Arithmetic (PA); under this interpretation $\square \perp$, i.e., the axiom of Q_{0}, is the formula which express the inconsistency of PA; so $G L_{\beta}=Q_{0}$ says the formulas "near" to being theorems are implied by the inconsistency and that $\neg \square \perp$, even if it is not a negation of a theorem, is false in each frame of $G L$.

Example 6.2: $S 4 G r z$ is $S 4 \cup\{\square(\square(p \supset \square p) \supset p) \supset p\}$. A frame \boldsymbol{A} of $S 4$ is a frame of $S 4 G r z$ iff, for each ascending chain $a_{0} R a_{1} R a_{2} R \ldots$. there exists n such that, for every $n^{\prime}, n^{\prime \prime} \geqslant n, a_{n^{\prime}}=a_{n^{\prime \prime}}$. Then $p \supset \square p \in S 4 G r z_{\beta}$ and $p \supset \square p \notin$ $S 4 G r z_{\alpha}$, while, as $\chi_{S 4 G r z}$ satisfies Cond $_{1}$ and Cond $_{2}$, all the identities among the other U-sets are satisfied. This shows that the converse of Theorem 5.3 does not hold.

Example 6.3: Let us consider the logic $S 5$. Since the relation of each frame of $S 5$ is an equivalence relation, obviously $S 5_{\alpha}=S 5_{\beta}$, and then $S 5_{\delta}=S 5_{\varepsilon}=S 5_{\theta}$. Moreover, since $S 5$ has frames without terminal points, $S 5_{\beta} \neq S 5_{\gamma} \neq S 5_{\delta}$. For the well-known relationship existing between $S 5$ and Classical Propositional Calculus, we thought that logics satisfying the same identities among U-sets satisfied by $S 5$ were "similar" to it. But we have found a logic very different from $S 5$ which does it. Consider in fact

$$
L=K \cup\{\diamond p \supset \square p, \neg \square \perp\}
$$

$\boldsymbol{A} \in \chi_{L}$ iff for each a of \boldsymbol{A} there is exactly one point $a^{\prime} a R a^{\prime} . \chi_{L}$ satisfies Cond $_{2}$ but it does not satisfy Cond_{01} and so $L_{\beta} \neq L_{\gamma} \neq L_{\delta}=L_{\varepsilon}=L_{\theta}$. Suppose now $\psi \notin L_{\alpha}$: there exists a point a of a model $\langle\boldsymbol{A}, V\rangle$ such that $\langle\boldsymbol{A}, V\rangle \nLeftarrow \psi[a]$. Let $d g(\psi)=n$ and $a_{0}, a_{1}, \ldots, a_{n}$ be the (not necessarily distinct) points of \boldsymbol{A} such that $a_{0} R, a_{1} R \ldots a_{n}$. Let now m be a point of the frame \boldsymbol{B} of Theorem 4.4 and let V^{\prime} be a valuation on \boldsymbol{B} such that, for each $s \leqslant n, V^{\prime-1}(m+s)=V^{-1}\left(a_{s}\right)$; then we have $\left\langle\boldsymbol{B}, V^{\prime}\right\rangle \not \models \psi[m]$. In this way we can find, for every b of \boldsymbol{B}, a V such that $\langle\boldsymbol{B}, V\rangle \not \models \psi[b]$. Then, as $\boldsymbol{B} \in \chi_{L}, \psi \notin L_{\beta}$ and $L_{\beta}=L_{\alpha}$.

NOTE

1. We have used the hypothesis $L \vdash \square p \supset \square \square p$ only to show that $L_{\gamma}=L_{\delta}$ and $\boldsymbol{A}_{1} \in \chi_{L}$ imply that χ_{L} satisfies Cond ${ }_{1}$. Without such a hypothesis we can only show that $L_{\gamma}=L_{\delta}$ and $\boldsymbol{A}_{1} \in \chi_{L}$ imply that, for each finite $\boldsymbol{A} \in \chi_{L}, \operatorname{Cond}_{1}(\boldsymbol{A})$.

REFERENCES

[1] Bellissima, F., "On the modal logic corresponding to diagonalizable algebra theory," Bollettino della Unione Matematica Italiana, vol. 15-B (1978), pp. 915-930.
[2] Blok, W. J., "The lattice of modal logics: an algebraic investigation," The Journal of Symbolic Logic, vol. 42 (1980), pp. 221-236.
[3] Boolos, G., The Unprovability of Consistency, Cambridge University Press, Cambridge, 1979.
[4] Magari, R., "The diagonalizable algebras," Bollettino della Unione Matematica Italiana, vol. 4, no. 12, Suppl. fasc. 3 (1975), pp. 305-313.
[5] Makinson, D., "Some embedding theorems for modal logic," Notre Dame Journal of Formal Logic, vol. 12, no. 2 (1971), pp. 252-254.
[6] Segerberg, K., An Essay in Classical Modal Logic, Uppsala, 1971.
[7] van Benthem, J. F. A. K., "Two simple incomplete modal logics," Theoria, vol. 44 (1978), pp. 25-37.

Istituto Matematico
via del Capitano 15
Siena, Italy 53100

