Vector Spaces and Binary Quantifiers

MICHAŁ KRYNICKI, ALISTAIR LACHLAN
and JOUKO VÄÄNÄNEN

1 Introduction Caicedo [1] and others [3] have observed that monadic quantifiers cannot count the number of classes of an equivalence relation. This implies the existence of a binary quantifier which is not definable by monadic quantifiers. The purpose of this paper is to show that binary quantifiers cannot count the dimension of a vector space. Thus we have an example of a ternary quantifier which is not definable by binary quantifiers.

The general form of a binary quantifier is

$$
Q x_{1} y_{1} \ldots x_{n} y_{n} \phi_{1}\left(x_{1}, y_{1}\right) \ldots \phi_{n}\left(x_{n}, y_{n}\right) .
$$

An example of such a quantifier is (in addition to all monadic quantifiers) the similarity quantifier:

$$
\begin{gathered}
S x_{1} y_{1} x_{2} y_{2} \phi_{1}\left(x_{1}, y_{1}\right) \phi_{2}\left(x_{2}, y_{2}\right) \longleftrightarrow \phi_{1}(\cdot, \cdot) \text { and } \phi_{2}(\cdot, \cdot) \\
\text { are isomorphic as binary relations. }
\end{gathered}
$$

We let $\mathcal{L}(Q)$ denote the extension of first-order logic by the quantifier Q. Recall the definition of $\Delta(\mathcal{L}(Q))$ from [2]. It is proved in [4] that $\Delta(\mathcal{L}(S))$ is equivalent to second-order logic. Even monadic quantifiers can have very powerful Δ-extensions. Thus, simple syntax (such as $\mathscr{L}(Q)$) is no guarantee for simple model theory.

2 Vector spaces-the main lemma Let K be an infinite field. We shall consider vector spaces

$$
\vartheta=\langle V,+, \cdot, 0 ; K\rangle
$$

over K. Here + denotes addition of vectors, \cdot denotes multiplication of vectors by an element of the field, and 0 is the zero vector. Thus \mathcal{V} should be considered as a two-sorted structure. Let L denote the language associated with V
consisting of symbols $\underline{ \pm}, \underline{\dot{D}}, \underline{0}$ for the vector operations, a constant symbol \underline{c} for each $c \in K$, and symbols for the field operations. The linear type of an n-tuple a_{1}, \ldots, a_{n} of elements of V is the set of linear equations

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}=0
$$

satisfied by $a_{1}, \ldots, a_{n}\left(c_{1}, \ldots, c_{n} \in K\right)$.
Main Lemma Let \mathcal{V} and \mathcal{V}^{\prime} be two vector spaces over K of dimensions d and d^{\prime} respectively. Let a_{1}, \ldots, a_{n} be an n-tuple from V and $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ an n-tuple from V^{\prime} of the same linear type. Suppose

$$
n+2 \leqslant d, d^{\prime} \leqslant|K|
$$

Then there is a bijection $f: \mathscr{V} \rightarrow \mathcal{V}^{\prime}$ such that $\left(x, y, a_{1}, \ldots, a_{n}\right)$ has the same linear type in V as $\left(f x, f y, a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ in V^{\prime}, whatever $x, y \in V$.
Proof: Let H be the subspace of \mathscr{V} generated by a_{1}, \ldots, a_{n} and H^{\prime} the respective subspace of \mathcal{V}^{\prime}. Let G be a subspace of \mathscr{V} such that $\mathscr{V}=H \oplus G$ and G^{\prime} a similar subspace of \mathscr{V}^{\prime}. Note that G and G^{\prime} have dimensions of at least 2, since $d, d^{\prime} \geqslant n+2$. Let W be a maximal subset of G with respect to the property

$$
x \neq y \& x, y \in W \Rightarrow\{x, y\} \text { free. }
$$

Then every vector in G has the representation λw for unique $\lambda \epsilon K$ and $w \in W$. Let W^{\prime} be defined similarly in G^{\prime}.

From $d \leqslant|K|$ it follows that $|V|=|K|$ (recall that K is infinite). Similarly $|H|=|G|=|K|$. Clearly $|W| \geqslant|K|$. Thus $|W|=|K|$. By symmetry, $\left|W^{\prime}\right|=|W|$.

Now we shall define the mapping f. We let f be the identity on K. Let f map W one-one onto W^{\prime}. As \vec{a} and \vec{a}^{\prime} have the same linear type, we have

$$
(H, \vec{a}) \cong\left(H^{\prime}, \vec{a}^{\prime}\right)
$$

and we can let f map H isomorphically onto H^{\prime} such that $f\left(a_{i}\right)=a_{i}^{\prime}(i=1, \ldots, n)$. Now if $v \in V$, then v has a unique representation

$$
v=\lambda w+h,
$$

where $\lambda \in K, w \in W$, and $h \in H$, and we can define

$$
f(v)=\lambda f(w)+f(h)
$$

This clearly makes f onto. To prove the claim concerning linear type, let

$$
\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} z_{1}+\ldots+\mu_{n+2} z_{n}=0
$$

be an equation satisfied by $\left(b_{1}, b_{2}, a_{1}, \ldots, a_{n}\right)$ in \mathcal{V}. Let

$$
b_{i}=\lambda_{i} w_{i}+h_{i}, \quad(i=1,2)
$$

Thus

$$
\mu_{1} \lambda_{1} w_{1}+\mu_{2} \lambda_{2} w_{2}+\mu_{1} h_{1}+\mu_{2} h_{2}+\mu_{3} a_{1}+\ldots+\mu_{n+2} a_{n}=0 .
$$

As $G \cap H=\{0\}$, we must have

$$
\mu_{1} \lambda_{1} w_{1}+\mu_{2} \lambda_{2} w_{2}=0
$$

By the very definition of W, either $\mu_{1} \lambda_{1}=\mu_{2} \lambda_{2}=0$ or $w_{1}=w_{2}$ (and $\mu_{1} \lambda_{1}+$ $\mu_{2} \lambda_{2}=0$). We also have

$$
\mu_{1} h_{1}+\mu_{2} h_{2}+\mu_{3} a_{1}+\ldots+\mu_{n+2} a_{n}=0
$$

Now in any case

$$
\mu_{1} \lambda_{1} f\left(w_{1}\right)+\mu_{2} \lambda_{2} f\left(w_{2}\right)=0
$$

and

$$
\mu_{1} f\left(h_{1}\right)+\mu_{2} f\left(h_{2}\right)+\mu_{3} a_{1}^{\prime}+\ldots+\mu_{n+2} a_{n}^{\prime}=0
$$

whence

$$
\mu_{1} f\left(b_{1}\right)+\mu_{2} f\left(b_{2}\right)+\mu_{3} a_{1}^{\prime}+\ldots+\mu_{n+2} a_{n}^{\prime}=0
$$

as desired. The converse is entirely similar.
3 Equivalence of vector spaces We show that the dimension of vector spaces cannot be distinguished in certain logics.

Let Q be a binary quantifier, that is, a quantifier of type
$\left(^{*}\right) \quad Q x_{1} y_{1} \ldots x_{n} y_{n} \phi_{1}\left(x_{1}, y_{1}, \vec{z}\right) \ldots \phi_{n}\left(x_{n}, y_{n}, \vec{z}\right)$.
Let $\mathcal{L}_{\infty \omega}$ denote the infinitary language over the language L defined in Section 2. If $\phi(\vec{z})$ is a formula of type $\left(^{*}\right)$, where each $\phi_{i}\left(x_{i}, y_{i}, \vec{z}\right)$ is a quantifierfree formula of $\mathcal{L}_{\infty \omega}$, and T a linear type of m-tuples, let

$$
\pi_{K}(\phi(\stackrel{\rightharpoonup}{z}), T)
$$

be the true propositional symbol, if the statement (${ }^{* *}$) below holds, and the falsity symbol otherwise:
$(* *) \quad$ There is a vector space ϑ over K of dimension $d, m+2 \leqslant d \leqslant|K|(\vec{z}=$ $\left.\left(z_{1}, \ldots, z_{m}\right)\right)$ which satisfies $\phi(\vec{a})$ for some m-tuple \vec{a} of linear type T.

Let $\mathcal{L}_{\infty \omega}$ (Bin) be the extension of $\mathcal{L}_{\infty \omega}$ by all binary generalized quantifiers.
Elimination Lemma Suppose $\phi(\vec{x})$ is in $\mathcal{L}_{\infty_{\omega}}($ Bin $)$ and α is a cardinal exceeding the number of free variables in any subformula of $\phi(\vec{x})$. Then there is a quantifier free $\phi^{*}(\vec{x})$ in $\mathcal{L}_{\infty \omega}$ such that

$$
\forall \vec{x}\left(\phi(\vec{x}) \longleftrightarrow \phi^{*}(\vec{x})\right)
$$

holds in any vector space over K of dimension $d, \alpha+1 \leqslant d \leqslant|K|$.
Proof: The proof proceeds by induction on the length of $\phi(\vec{x})$. To prove the quantifier step, consider a formula $\phi(\vec{x})$ of type (*) above. Let $\tilde{\sigma}$ be the set of all linear types of m-tuples. If $T \in \mathscr{J}$, let $P_{T}(\vec{z})$ be the conjunction of all equations
(+) $\quad c_{1} z_{1}+\ldots+c_{m} z_{m}=0$
which belong to T as well as of all

$$
c_{1} z_{1}+\ldots+c_{m} z_{m} \neq 0
$$

such that (+) is not in T. Finally, let

$$
\phi^{*}(\stackrel{\rightharpoonup}{z})=\bigvee_{T \epsilon \mathcal{J}}\left(P_{T}(\stackrel{\rightharpoonup}{z}) \wedge \pi_{K}(\phi(\vec{z}), T)\right)
$$

To prove the claimed equivalence of $\phi(\vec{z})$ and $\phi^{*}(\vec{z})$, let ϑ^{\prime} be a vector space over K of dimension $>\alpha$. For a start, suppose \mathscr{V}^{\prime} satisfies $\phi\left(\vec{a}^{\prime}\right)$ where \vec{a}^{\prime} is an m-tuple from V^{\prime}. As it turns out in a while, we may assume the \vec{a}^{\prime} are all from V (and not from K). Let $T \in \mathcal{J}$ be the linear type of \vec{a}^{\prime}. Thus \mathcal{V}^{\prime} satisfies $P_{T}\left(\vec{a}^{\prime}\right)$. By definition, $\pi_{K}(\phi(\vec{z}), T)$ is true (take $\mathscr{V}=V^{\prime}$ in $\left({ }^{* *}\right)$). Therefore $\phi^{*}\left(\vec{a}^{\prime}\right)$ holds in V^{\prime}. For the converse, suppose V^{\prime} satisfies $\phi^{*}\left(\vec{a}^{\prime}\right)$. There are a $T \epsilon \mathcal{J}$, and an m-tuple \vec{a} as in (**). Now V satisfies $\phi(\vec{a})$ and \vec{a} and \vec{a}^{\prime} have the same linear type T. Let $f: V \rightarrow \vartheta^{\prime}$ be as in the Main Lemma. If there happened to be elements of K in \vec{a}^{\prime}, f would be fixed on them, so they would cause no trouble.

By the conclusion of the Main Lemma, the sequences (x, y, \vec{a}) and ($f x, f y, \vec{a}^{\prime}$) have the same linear type whatever $x, y \in V$. This implies

$$
\vartheta \vDash \phi_{i}(x, y, \vec{a}) \leftrightarrow \vartheta^{\prime} \vDash \phi_{i}\left(f x, f y, \vec{a}^{\prime}\right)
$$

for all $i=1, \ldots, m$ and $x, y \in V$. By the closure of Q under isomorphisms, we get

$$
\vartheta \vDash \phi(\vec{a}) \longleftrightarrow V^{\prime} \vDash \phi\left(\vec{a}^{\prime}\right) .
$$

We have already observed that $\phi(\vec{a})$ holds in \mathcal{V}. Therefore $\mathcal{V}^{\prime} \vDash \phi\left(\vec{a}^{\prime}\right)$ as desired.

Corollary $1 \quad$ Let ϕ be a sentence in $\mathcal{L}_{\infty}($ Bin $)$ and let α be a cardinal greater than the number of free variables in any subformula of ϕ. Then either ϕ is true in all vector spaces over K of dimension $d, \alpha+1 \leqslant d \leqslant|K|$, or true in none.

This result shows that $\mathcal{L}_{\infty \omega}$ (Bin) cannot distinguish two infinitedimensional vector spaces over \mathbf{R}, and $\mathcal{L}_{\omega \omega}($ Bin $)$ cannot distinguish finitedimensional vector spaces over, say, Q from the infinite dimensional one.

Proposition Suppose V and V^{\prime} are two vector spaces over an uncountable field K of different infinite dimensions. Suppose \mathbb{K} and \mathbb{K}^{\prime} are $P C\left(\mathcal{L}\left(Q_{1}\right)\right)$ classes such that $\mathcal{V} \in \mathbb{K}$ and $\mathcal{V}^{\prime} \in \mathbb{K}^{\prime}$. Then $\mathbb{K} \cap \mathbb{K}^{\prime} \neq \phi$.
Proof: By compactness there are vector spaces $\mathscr{W} \in \mathscr{K}$ and $\mathscr{W}^{\prime} \in \mathcal{K}^{\prime}$ over a field K^{\prime} such that \mathscr{W} and \mathscr{W}^{\prime} have uncountable dimension. This depends on the fact that in any vector space over an uncountable field of dimension $\geqslant n$ there are uncountably many vectors, no n of which are linearly dependent ($n \geqslant 2$). (Consider vectors with coordinates ($x, x^{2}, x^{3}, \ldots, x^{n}$) where x belongs to the field. No n of these vectors are linearly dependent because

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & \ldots \\
x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots \\
\cdot & x_{n}^{2} \\
\cdot & & \\
\cdot & & \\
x_{1}^{n} & x_{2}^{n} & \ldots
\end{array}\right|=x_{n}^{n}|l| l i<j \leqslant n i\left(x_{i}-x_{j}\right) \neq 0
$$

if x_{1}, \ldots, x_{n} are nonzero and different.) We may assume $|\mathscr{W}|=\left|\mathscr{W}^{\prime}\right|=\left|K^{\prime}\right|=$ \aleph_{1}. Thus $\operatorname{dim}(\mathscr{W})=\operatorname{dim}\left(\mathscr{W}^{\prime}\right)=\aleph_{1}$ whence $\mathscr{W} \cong \mathscr{W}^{\prime}$. This implies $\mathscr{K} \cap \mathbb{K}^{\prime} \neq \phi$.

This proposition shows that we cannot hope to separate the vector spaces, which were proved to be inseparable by binary quantifiers, by $P C$-classes of $\mathcal{L}\left(Q_{1}\right)$. Other examples have to be used if one wants to show the undefinability of $\Delta\left(\mathscr{L}\left(Q_{1}\right)\right)$ by binary quantifiers. The same applies to such extensions of $\mathcal{L}\left(Q_{1}\right)$ as $\mathcal{L}^{\text {Pos }}$ and $\mathcal{L}(a a)$. Thus we have:
Corollary 2 We can replace $\mathcal{L}_{\infty \omega}($ Bin $)$ in Corollary 1 by $\Delta\left(\mathcal{L}\left(Q_{1}\right)\right), \Delta\left(\mathcal{L}^{\text {Pos }}\right)$ and $\Delta(\mathcal{L}(a a))$.

4 Logics which can separate vector spaces The most straightforward example of a logic capable of distinguishing infinite dimensional vector spaces from finite dimensional ones is $\mathcal{L}_{\omega_{1} \omega}$: consider the sentence

$$
\bigwedge_{n<\omega} \exists x_{1} \ldots x_{n} \forall f_{1} \ldots f_{n} \in K\left(f_{1} x_{1}+\ldots+f_{n} x_{n}=0 \leftrightarrow f_{1}=\ldots=f_{n}=0\right) .
$$

This sentence is in fact in the fragment $\mathscr{L}_{H Y P}$ where $H Y P$ is the smallest admissible language containing ω. Thus we have ${ }^{1}$:

Proposition $\quad \Delta\left(\mathcal{L}\left(Q_{0}\right)\right) \nLeftarrow \mathcal{L}_{\omega \omega}($ Bin $)$.
By considering the sentences

$$
\begin{aligned}
& Q_{1} x B(x) \wedge \bigwedge_{n<\omega} \forall x_{1} \ldots x_{n} \in B \forall f_{1} \ldots f_{n} \in K \\
& \quad\left(\bigwedge_{1 \leqslant i<j \leqslant n} x_{i} \neq x_{j} \rightarrow\left(f_{1} x_{1}+\ldots+f_{n} x_{n}=0 \leftrightarrow f_{1}=\ldots=f_{n}=0\right)\right) \\
& \neg Q_{1} x B(x) \wedge \forall x \bigvee_{n<\omega}^{\bigvee} \exists x_{1} \ldots x_{n} \in B \exists f_{1} \ldots f_{n} \in K\left(x=f_{1} x_{1}+\ldots+f_{n} x_{n}\right),
\end{aligned}
$$

and bearing in mind that $\mathcal{L}_{H Y P} \leqslant \Delta\left(\mathcal{L}\left(Q_{0}, Q_{1}\right)\right)$, one gets:
Proposition $\quad \Delta\left(\mathcal{L}\left(Q_{0}, Q_{1}\right)\right) \nless \mathcal{L}_{\infty \omega}($ Bin $)$.
Corollary $3 \quad \mathcal{L}_{\omega_{1} \omega}\left(Q_{1}\right) \nless \mathcal{L}_{\infty} \omega$ (Bin).
We shall now introduce a ternary quantifier Q which is not definable in $\mathcal{L}_{\infty}($ Bin $)$. For a ternary predicate $D(x, y, z)$, constants c_{0}, c_{1}, and a unary predicate $B(x)$ consider the formulas:

$$
\begin{aligned}
& \phi_{0}(x, y, u, v) \longleftrightarrow x \neq u \wedge x \neq v \wedge y \neq u \wedge y \neq v \wedge \\
&((x=y \wedge u=v) \vee(x \neq y \wedge u \neq v \wedge \neg \exists z(D(x, y, z) \wedge D(u, v, z)) \\
&\wedge \exists z((D(x, v, z) \wedge D(u, y, z)) \vee(D(x, u, z) \wedge D(y, v, z))))) \\
& \phi_{1}(x, y, u, v) \leftrightarrow\left(\phi_{0}(x, y, u, v) \wedge(\exists z(D(x, u, z) \wedge D(y, v, z)) \rightarrow x=y)\right. \\
& \phi_{+}(x, y, z) \leftrightarrow \exists u v\left(\phi_{1}\left(c_{0}, x, u, v\right) \wedge \phi_{1}(u, v, y, z)\right) \\
& F(x) \leftrightarrow D\left(x, c_{0}, c_{1}\right) \\
& \phi(x, y, z) \longleftrightarrow x=z=c_{0} \vee\left(x=c_{1} \wedge z=y\right) \vee\left(F(x) \wedge x \neq c_{0} \wedge x \neq c_{1}\right. \\
& \wedge \exists u v\left(\phi_{0}\left(c_{1}, u, x, v\right) \wedge \phi_{0}(u, y, v, z) \wedge D\left(u, v, c_{0}\right) \wedge D\left(y, z, c_{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{+}^{1}(\lambda, x) \leftrightarrow \lambda=c_{0} \vee x=c_{0} \\
& \phi_{+}^{n}\left(\lambda_{1}, \ldots, \lambda_{n}, x_{1}, \ldots, x_{n}\right) \longleftrightarrow \exists \operatorname{uvw}\left(\phi .\left(\lambda_{1}, x_{1}, u\right)\right. \\
& \left.\wedge \phi .\left(\lambda_{2}, x_{2}, v\right) \wedge \phi_{+}(u, v, w) \wedge \phi_{+}^{n-1}\left(c_{1}, \lambda_{3}, \ldots, \lambda_{n}, w, x_{3}, \ldots, x_{n}\right)\right) \\
& \operatorname{Free}^{n}\left(x_{1}, \ldots, x_{n}\right) \longleftrightarrow \forall \lambda_{1} \ldots \lambda_{n}\left(\left(F\left(\lambda_{1}\right) \wedge \ldots \wedge F\left(\lambda_{n}\right)\right.\right. \\
& \left.\wedge \phi_{+}^{n}\left(\lambda_{1}, \ldots, \lambda_{n}, x_{1}, \ldots, x_{n}\right) \rightarrow \lambda_{1}=\ldots=\lambda_{n}=c_{0}\right) \\
& \operatorname{Fr}(B) \longleftrightarrow \bigwedge_{n<\omega} \forall x_{1} \ldots x_{n} \in B\left(\bigwedge_{1 \leqslant i<j \leqslant n} x_{i} \neq x_{j} \rightarrow \operatorname{Free}^{n}\left(x_{1}, \ldots x_{n}\right)\right) .
\end{aligned}
$$

Definition $\quad Q x y z D(x, y, z) \longleftrightarrow$ there is an uncountable set B such that $\operatorname{Fr}(B)$ holds for some choice of $c_{0} \neq c_{1}$.

Suppose now that V is a vector space over a field K. Define

$$
\begin{gathered}
D_{V}(x, y, z) \leftrightarrow \exists \lambda \in K(x=\lambda y+(1-\lambda) z) \\
\text { ("x,y and } z \text { are on the same line"). }
\end{gathered}
$$

Then for this interpretation of D and any choice of $c_{0} \neq c_{1}, \operatorname{Fr}(B)$ holds if and only if B is a free set of vectors. This shows that one can separate dimensions of vector spaces using Q.

Proposition The class of countable dimensional vector spaces is definable in $\mathcal{L}(Q)$.

Corollary $4 \quad \mathcal{L}(Q) \not \mathcal{L}_{\infty \omega}$ (Bin), that is, there is a ternary quantifier which is not definable using binary quantifiers.

Problems: Is there an ($n+1$)-ary quantifier not definable using n-ary quantifiers for $n>2$? Is $\Delta\left(\mathcal{L}\left(Q_{1}\right)\right)$ definable using binary quantifiers?

NOTE

1. Recall that $\Delta\left(\mathcal{L}\left(Q_{0}\right)\right)=\mathcal{L}_{H Y P}$.

REFERENCES

[1] Caicedo, X., Maximality and Interpolation in Abstract Logic, Ph.D. thesis, 1978.
[2] Makowsky, J., S. Shelah, and J. Stavi, " Δ-logics and generalized quantifiers," Annals of Mathematical Logic, vol. 10 (1976), pp. 155-192.
[3] Väänänen, J., "Remarks on generalized quantifiers and second order logics," Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej (1977), pp. 117-123.
[4] Väänänen, J., "A quantifier for isomorphisms," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 26 (1980), pp. 123-130.

M. Krynicki
Mathematical Institute
University of Warsaw
00-901 Warsaw, Poland
A. Lachlan
Department of Mathematics
Simon Fraser University
Burnaby, British Columbia V5A 1S6
Canada

J. Väänänen

Department of Mathematics
University of Helsinki
00100 Helsinki 10
Finland

