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Decomposable Collections of Sets

BARRY BURD*

The notion of a weave was first defined by Gaisί Takeuti as an approach
to the problem of Borel Determinateness. In a paper co-authored by Burd
and Takeuti [1] some of the game-like properties of weaves were explored.
A weave is a set-theoretic object that corresponds to a two-person game in
which each player presents a choice of moves from a set of possibilities rather
than a single move. In another paper [2] Green and Takeuti used the weave
idea to prove a theorem about Boolean polynomials.

The Green-Takeuti paper gives sufficient conditions enabling a Boolean
polynomial to be factored into a Boolean statement in which no atom appears
more than once. Consider a Boolean polynomial to be a collection of sets,
each atom being an element, each term being a set of elements. In this context
the Green-Takeuti theorem is a theorem about the decomposition of collec-
tions of sets.

In this paper we present a new proof of the Green-Takeuti theorem, and
extend the proof to cover the case where the collection of sets is infinite (i.e.,
the Boolean polynomial is infinitary). We do this using the notion of a weave.

Definition 1 Let P be a set. Let W and W' be nonempty subsets of
iP(P) - I φ ί. The pair <W,W> is a Weave of P iff both:

(1) for each set W in W, and each set W' in W, the intersection W Π Wf is a
singleton set
(2) for each element p in P, there is a set W in W and a set W' in W such that

wnw'=\p\.

The set P is called the set of Points of the weave. We denote this by
writing P = Points((W,W>). Notice that Clause 2 in the definition of a weave
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and support.
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implies that the set Points(<W,W>) = UW = UW'. Thus we will abbreviate the
notation by writing Points(W) instead of Points((W,W>).

E x a m p l e 1 : L e t W = U a 9 d \ 9 i b , c \ \ a n d l e t W = \ [ a 9 b \ 9 { c , d \ 9 l a 9 c l 9

ib9d\\ . The pair <W,W> is a Weave. The set of Points «W,W'» is \a9b9c9d\.

Definition 2 A weave <W,W> is called Normal iff for each set X C
Points (W) either

(a) there is a set W in W such that W C X, or
(b) there is a set W in W such that W' C Points (W) - X

A weave is really a two-person game. Given a weave <W,W'> with points
set P, let P be the set of possible next-moves. In order to determine the next
move, Player I votes by choosing a set W in W, and simultaneously Player II
votes by choosing a set W in W\ The intersection W Π Wf is the next move.
Let X by the set of moves which are considered a win for Player I. Then a
normal weave is one in which either Player I or Player II has a sure-fire way
of winning. Thus a normal weave is essentially a determined two-person game.

Notice that the weave of Example 1 is normal. The weave in the following
example is not normal.

E x a m p l e 2 : L e t W = { { a , d \ , i b , c \ \ a n d l e t W = l i a 9 b \ 9 { c , d \ , \ a 9 c \ \ .

As a goal we wish to prove that every normal weave can be conveniently
decomposed. We must first define the operators to be used in the decomposi-
tion.

Definition 3 Let W be a family of sets. For each / in / (an index set) let
Wz be a family of sets. We define:

(a) (disjunction) W = V̂ /W,- iff W = U/e/W,
(b) (direct disjunction) W = V/e/W/ iff W = V̂ /W,- and for each /,/ in /, if i φj9

Points (Wz ) Π Points (W;) = φ
(c) (conjunction) W = Λ/e/Wz iff W = {sets W\W = ΌieIWi9 where W> is in W,
for each / in I\ (i.e., W is the collection of all sets that may be obtained by
forming a union consisting of one set from each of the W, )
(d) (direct conjunction) W = Δ/e/W/ iff W =Λ, e/W/ and for each /,/ in /, if / Φj,
Points(W, ) Π Points(W7 ) = φ.

Example 3: Consider the weave of Example 1. In this case, W = (\a\ Δ {d {) V
({*} Δ ic\). Observe also that W = (\a\ V \d\) A (lb\ V ίc\). Both Wand
W can be decomposed into single-point sets, and the decompositions of W
and W are dual to one another. Note that this weave is normal.

Example 4: Consider the weave of Example 2. We can decompose W exactly
as we did in Example 3 (since it is the same family of sets) but now W has no
decomposition. Note that this weave is not normal.

Let p be a point, W be a set, and W be a family of sets. The expression
W V W is an abbreviation for ί W! V W, and the expression p V W is an
abbreviation for {{p \ \ V W. Similar abbreviations hold for the operator Δ.
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Definition 4 Let W be a nonempty family of sets. The set C is a Choice
Set for W iff C is a subset of Points(W) and, for each set W in W, C Π W Φφ.
The set G is a Weft of W iff G is a subset of Points(W) and, for each set W in
W, G Π W is a singleton set.

The family of choice sets for W is denoted c(W). The family of wefts
of W is denoted w/(W).

Lemma 1 // A and B are both wefts of W, and A is a subset of B, then
A=B.

Proof: Assume point b is in B - A. Since B is a subset of Points(W), there
is a set W in W such that b e W. So B Π W = \b\. But then, since b is not in
A, we have A Π W = φ. This contradicts the fact that A is a weft of W.

Let <W,W> be a weave. It is clear from the definition that every set in
W is a weft of W, and every set in W; is a weft of W. This leads to the following
corollary.

Corollary 1 // W[ and W'2 are in W, and W[ is a subset of Wi, then W[ = W2

f.
Similarly, // W\ and W2 are in W, and Wι is a subset of W2, then Wx = W2.

Lemma 2 Let <W,W> be a normal weave, Then W = w/(W), and W =

w/(Wf).

Proof. By Clause 1 in the definition of a weave, W C w/(W). We need to
show that w/(W) C W'.

Let G be a weft of W. Then there is no set W in W such that W C
Points(W) - G (because otherwise W would not meet G). Thus, by normality,
there is a set W in W such that W1 C G. But Wr and G are both wefts of W.
So, by Lemma 1, W = G.

Definition 5 Let W be a nonempty family of sets. We call W a Warp iff
there exists a nonempty family W such that the pair <W,W> is a weave. If
W exists so as to make <W, W> normal, then W is called a Normal Warp.

Observe that in Example 2, W is a normal warp, whereas W is a non-
normal warp.

Lemma 3 A warp W is normal if and only if every choice set, C,for W has
a subset G which is a weft of \N.

Proof Let X be Points (W) - C. Then C is a choice set for W if and only if
there is no set W in W satisfying W C X. By the definition of normality, this is
equivalent to the existence of a set G in W satisfying G C C. By Lemma 2,
this set G is a weft of W.

Lemma 3 is the turning point in our theory. Every collection W can be
interpreted as a DNF statement in an infinitary propositional calculus. A
choice set for W is then a selection of atoms that can be used to demonstrate
the falsehood of statement W. Lemma 3 says that W is normal iff its falsehood
can be demonstrated simply by selecting one atom from each term. The lemma
will be used many times in the proofs that follow.

The next lemma is a generalization of Lemma 2.
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Lemma 4 Let W be a warp. Then

(1) wfwf(\N)D]N,and
(2) w/w/w/(W) = w/(W).

Λ oo/: (1) If W is a set in W, and G is in w/(W), then W Π G is a singleton
set. Thus, W is a weft of w/(W). So IV is in w/w/(W).

(2) Apply the result of part (1) to the nonempty family w/(W). In so
doing we get that wfwfwf(\N) D w/(W). We need to show that "subset" holds
in the other direction.

Let X be a set in wfwfwf(\N). If W is in W, then W is in w/w/(W), by
part (1). By definition of the family w/w/w/(W), X meets each set in w/w/(W)
at one and only one point. Thus X Π JV is a singleton set.

We have just shown that each set X in w/w/w/(W) meets each set IV
in W at one and only one point. Therefore, X is in w/(W).

Consider the collection W to be an infinitary statement in disjunctive
normal form. Any choice set of W can be used to demonstrate the falsehood
of W. But if we narrow our view so as to admit only wefts of W as witnesses to
the falsehood of W, then Lemma 4 gives us the following axioms:

W->~~ W

~w = — w .
These are the negation axioms for intuitionist logic.

We are now ready to show how wefts are effected by the decomposition
operators. In essence, the next lemma is DeMorgan's law recast in the ter-
minology of weaves.

Lemma 5 Let G be any set.

(a) The set G is a weft of V/e/W, iff G is a subset of Points(VieI\Ni), and, for
each i0 in I,G Γ) Points(\Nio) is a weft o/W / Q.
(b) The set G is a weft of Δ l W W, /// G is a weft of W/o for some i0 in I. (If
such an i0 exists, it is unique.)

Proof: (a) ===>: Let G be a weft of V/e/W,-. By the definition of weft, G is
a subset of Points (V/e/W/).

Choose an element, i0, of /. The set G meets every set in Vz e/Wz at one
and only one point. Each set in W/o is a set in V/e/W7 . Therefore G meets every
set in W/o a t one and only one point. Thus G Π Points(W, 0 ) is a weft of W/o.

<==: Let G Π Points(W/Q) be a weft of WiQ (for each i0 in I). Clearly
the union U / e / (G Π Points(W/)) is a choice set for V/e/W, . Since the dis-
junction is direct, this union is in fact a weft of V/e/Wz . Since G is a subset of
Points (V/e/Wz ), this union is precisely the set G.

(b) =Ξ>: Let G be a weft of Δ/e/W,. Since Points(Δ/e/W/) = U / e /

Points(W/), there is an element /0 in / such that G Π Points(W, o) Φ φ. We
must show that this element i0 is unique.

Assume, on the contrary, that G meets two disjoint sets, Wio in W/o,
and Wiχ in \Niv By definition of conjunction, there is a set W in Δ, e/W/ such
that W = Wio U Wil U Other sets. So G meets W at more than one point, con-
tradicting the fact that G is a weft of Δ/e/W/.
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Now choose any set Wi(j in W/o. Find a set W in Δ/e/Wz such that
W = ^/ 0

 U O t n e r s e t s We know that G intersects W at one and only one point.
By the uniqueness of/0, this point must be an element of WiQ.

We have thus shown that G intersects any set in WlQ at one and only one
point. Therefore G is a weft of W/Q.

< = : Let G be a weft of W/o. Then G C Points(W/o) so G Π P o i n t s ^ ) =
φ for each iγ Φ i0.

Every set W in Δ/e/W/ is a union of some set WjQi from W/o, and other
sets. Clearly G Π WiQ will be a singleton set, and G will meet none of the
other sets of which W is composed. Thus G Π W is a singleton set.

Corollary 2 77ze conjuncts {or disjuncts) of a warp are themselves warps.

Proof: Let W = Wj Δ W2, and choose p e Points (Wj), We must show that
some weft of Wx contains p. There is a weft, G, of W that contains p. By
Lemma 5, G is a weft of Wj or of W2. Clearly p e G e wfQNx).

Corollary 3

(a) w/(V/6/WI ) = Δ l e/w/(W/)
(b) w/(Δ/e/W/) = V /€/w/(W /).

The next lemma states a fact which must be true in order for this
structure to mimic the structure of statements in the propositional calculus.
It states that no warp W can be both a direct disjunction and a direct con-
junction of families of sets. In the statement of the lemma we assume that
the various disjunctions and conjunctions are nonvacuous. For example, if
W = Vfg/W,-, we are assuming that / has more than one element, and that W/ is
nonempty, for each / in / .

Lemma 6

(a) Let W = Vz e/W, . Then there is no collection ίW*! / e/ such that W =

Δ/e/w;
(b) Let W = Δ/€/Wf. Then there is no collection ίW, \ieI such that W = V/e/W,-.

Proof: Assume that W = V /̂W,- and W = Δ/e/Wf, and that both of these
expressions are nonvacuous.

Choose an / in /, and let Wf be W^ Then W is of the form W! V W2.
Similarly, choose / in / and let Wf be W*. Then W is of the form W* Δ W*.

Let W1 be a set in \NX. Then Wx is in W, so Wx is of the form W% U H/J,
where W% e Wj and W% e Wf. Thus W1 Π W% is nonempty. Let peWλΠ W$.

Similarly, let q e W2ΠW$ for two sets W2 in W2 and W% in Wj.
Since p e PointsίWj) and q e Points(W2), there is no set W in W such that

p,q e W. But p and q are both in W* U H/J, which is a set in W. This is a
contradiction.

Before we state and prove the decomposition theorem, we define the
degenerate case.

Definition 6 The warp W is called an Atom if it consists of one and only
one set, and that set is a singleton set.
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Example 5: Let W = {{a}}. Then W = w/(W) must be \\a}}. Clearly,
neither W nor W can be decomposed into smaller units.

The object now is to prove the following theorem.

Theorem Let W be a normal, nonatomic warp. Then there is an index set,
I, with cardinality greater than 1, and warp W, for each i in I, such that either
W = V / e /W /orW = Δ/e/W/.

Outline and motivation for the proof. Every warp W is naturally a disjunction-
it is a disjunction of its sets:

W = Wx v W2 v W3 v W4 v W5 v W/6

where Wb . . ,,W6 are the sets in W. The problem is that this disjunction may
not be direct. For instance, the point p may appear in both Wx and W2. In this
case we begin by "factoring out" p to get

p Δ (W/f v W/J) v W3 v . . . v W/6.

In fact, we can find a weft ip,4,A*i and factor it out, obtaining

p Δ (Wf v Wf) v q Δ (WJ v Wj) v r Δ (V? v «/J).

Now we could proceed recursively if the outermost disjunctions were all direct.
Unfortunately this is not always the case. The families W* v W* and W* v W*
may have points in common. We must show that, in such a case, the points
that these two families have in common can be factored out, and they can be
factored out of both families in the same way.

[p Δ (H>?* v H/J*) V q Δ («/J* v Wj*)] Δ W* v r Δ (W? v W/J)

Still the outermost disjunction may not be direct. We need an extra lemma to
show that any set of points which W** v W** and W* v W* have in common
can be factored out (Lemma 11).

Finally we must show that this factoring process stops after finitely many
steps.

Now we proceed with the proof of the theorem.

Lemma 7 Let S and T be nonempty subsets of Points(W) satisfying
S Π T = φ. Assume further that each weft, G, of W is either a subset of S
or a subset of T. Then wfwfQN) = \NS Δ WΓ, where S = PointsQNS) and T =
Points QNT).

Proof: Let W^ be the family of all wefts of W that are subsets of S. Similarly
define Wτ. Then w/(W) = \N'S V Wτ. By Corollary 3, wfwf(\N) = wfQN's) Δ
wfQNT). Let \NS be w/(W£) and W r be w/(W'Γ).

Corollary 4 //, in addition to the hypotheses of Lemma 7, we have that
W is normal, then W = \NS Δ WΓ.

Proof: If W is normal, then by Lemma 2W = wfwfQN).

For Lemmas 8 through 10 we assume that W is normal and is of the
form V/e/ (α, Δ W, ), where ίΛ, | / e / ! is a weft of W and, for each z Φ j , a\ Φ aj.
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Lemma 8

(1) For any J C /, the family Miej (#/ Δ W, ) is normal.
(2) For any i e /, the family Λ, Δ W, W normal.
(3) For αwy / e /, the family W, w normal.

Proof: (1) Let C be a choice set for V, e/(α, Δ W, ). Let X be U, | / £ /}. Con-
sider the set C' = C U I . This set C' is a choice set for W. Since W is normal,
there is a set G' C C' such that G' is a weft of W. The set G' - X is a subset
of C. It is also a choice set for Miej{ai Δ W, ), since X and Points(V/e/fl/ Δ W, )
have no elements in common.

Let W be a set in V, e/(Λ, Δ W, ). If we view W as a set in W, we see that
Gr Π W has at most one element. Thus (Gr -X)Γ\W has at most one element.
Therefore G1 - X is a weft of V/e/(a,- Δ W, ).

(2) This is a corollary of (1).
(3) Let C be a choice set for W, . Then C is a choice set for αz Δ W/. So

by (2), there is a set G C C such that G is a weft of α, Δ W, . But then α/ is not
in G. Thus, by Lemma 5, G is a weft of Wj .

Lemma 9 Lei Points(\N2) Π Points(\N2) = C Φ φ. If G is a weft of \N1 and
G DCΦφ, then G Γ) C is a weft of W2.

Proof: Consider the set G U \a2\. This is a choice set for aγ Δ Wt v a2 Δ W2,
which is normal. So there is a weft, G*, o f α 1 Δ W 1 v α 2 Δ W 2 satisfying
G* C G U \a2\. Since α2 is not an element of P o i n t s ^ Δ Wj), we must have
that G* - \a2\ is a weft of ax Δ Wlβ Thus G* - U 2 ! = G (by Lemma 1).

We claim that in fact G* = G. If not, then G* = G U ία 2 }. But then we
have a weft, G*, for flj Δ Wx v α2 Δ W2 that contains both # 2 and the elements
of G Π C. Let c e G Π C. Then c is in some set PV2 in W2. So both a2 and c are
in some set W* in β 2 Δ W2. Thus G* Π Ĥ f is not a singleton set. Therefore
G* = G.

This means that G is a weft o f β 1 Δ W 1 v β 2 Δ W2. So G meets every
set in a2 Δ W2 at one and only one point. Since a2 $ G, G meets every set
in W2 at one and only one point. So G Π Points(W2) is a weft of W2. But
G Π Points (W2) = G nc. Therefore G Π C is a weft of W2.

Lemma 10 Let PointsWx) Π Points(}N2) = C Φ φ. Let G be a weft of\Nv

Then either G C C or G C Points(WJ - C.

Proof: Assume that G Π C Φ φ. By the previous lemma, G Π C is a weft of
W2. By applying the lemma to the sets C and G Π C (as a weft of W2) we get
that (G Π C) Π C is a weft of W1# Thus both G Π C and G are wefts of Wx.
By Lemma 1, G Π C = G. So G C C.

Corollary 5 Z,έ?ί PointsQN^ Π Points(\N2) = CΦφ. Then Wx = Wf Δ W c f l «d
W2 = Wf Δ Wc, wAere C = PointsQNC).

Proof: This follows from Corollary 4 and Lemma 10.

Lemma 11 Let W be a normal warp of the form [(Wj v W2) Δ W3] v W4,
where W3 is not a conjunct of W4. LetPoints(Ytii) ΠPoints(VI4) = CΦφ. Then
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C C PointsQN2). Also Wt v W2 = W* Δ Wc, and W4 = Wf Δ Wc, where C =

Points We)•

Proof: We will show that C C Points(W2). The rest of the proof is similar to
the proofs of Lemmas 9 and 10, and Corollary 5.

The family W can be written in the form

(W 1 ΔW 3 )v(W 2 ΔW 3 )vW 4 .

Let G4 be a weft of W4 satisfying G4 Π C Φ φ. Then, as we have shown
in the proof of Lemma 9, G4 Π C is a weft of W1#

Let G3 be a weft of W3. The set G3 U G 4 is a choice set for W. Since
V\lί Δ W3 is part of our expression for W, we must eliminate (from G3 U G4)
either all points from G3 or all points from G4 in order to obtain a weft of W.

We claim that we cannot always eliminate G4. If we could, then every
weft of W3 would be a weft of W4. Then we could apply Corollary 4 letting
S = Points(W3) and T = Points(W4) - Points(W3). This would make W3 a con-
junct of W4, which is a contradiction.

Thus there is a set G* which is a weft of W3 and is not a weft of W. We
claim that any weft G* of W4 that meets C is a weft of W. This is because
G* U G | is a choice set for W. In order to get a weft we have to eliminate
either Gj or G | . But Gj is not a weft of W.

Our set G*, being a weft of W, must therefore be a weft of W2 Δ W3.
But C Π Points (W3) = φ. Therefore Gf is a weft of W2. Note that we have
shown this for any such set G*. Thus C C Points(W2).

Lemma 12 Let W be a warp of the form

...((((WoΔW^VWOΔWΠVW^Δ... .

Then W is not normal.

Proof There is an ordinal Γ such that W is

V/e/[W/Δ(Δ^< Γ W;)].

For i = 1,2,. . . let Q be a weft of Wf, and let C be U O < I < Γ C , . The set C is a
choice set for W.

Assume the existence of a set G C C such that G is a weft of W. We claim
that there is a unique i0 satisfying G Π Q o φ φ. (Otherwise we would have
Ci0 e C, o Π G and ciχ e Ciχ Π G. Choose H/f0 and H/* such that ci(j e WfQe Wf0

and c/j e W* e Wfr There is a set W* in Δ0</<ΓW/t containing W/f0 and R/fΓ
Then c/0 and Cχχ are both in G and in H *̂, contradicting the fact that G is a
weft of W.)

Thus, by Lemma 1, G = C/Q. But Q o is a subset of Points(Wf0), which
does not meet Points(Wz Δ Δ, < 7 <ΓW*) for any i > i0. This contradicts the fact
that G is a weft of W.

Therefore, W is not normal.

Proof of the Decomposition Theorem: The following procedure will decom-
pose any nonatomic normal warp into the nontrivial direct conjunction (or dis-
junction) of two normal warps:
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Step I. We begin with W in the form V, e j W, .

Step II. Choose a weft \ao,au . . A of W, and re-order the Wt sets so that

etc.

Thus W is in the form V/e/V/e/ W(. (where / is an index set, and // is an index
set for each / in /) . If we let Wz = VjejjiWj. ~ ί α/ 0 then W is in the form

(*) V/e/ία/ΔW,).

Step III. If the Points sets of the Wz families are pairwise disjoint, we are
done. If not, assume without loss of generality that Points(W0) Π PointsίW!) =
C Φ φ. Let α (some ordinal) be the number of families Wz satisfying
C C Points(W, ). Re-order the disjuncts in (*) so that C C Points(Wz) for all
/ < a. Then, by Corollary 5, we have W, = Wf Δ W^ for each / < a (where
C = Points(Wc)). Thus W is

Vi<tt[flf Δ Wf Δ Wc] v \Ji>a[ai Δ W,].

We can rewrite this as

(**) Vi<a[ai Δ Wf ] Δ Wc v Vi>a[ai Δ Wz ].

Step IV. Case 1. For each / > a, Points(Wz ) Π Points(Wc) is empty. Then the
disjunction in (**) to the right of \NC is direct by Lemma 11. Go back to the
beginning of Step III, this time working with all W, for / > a.

Case 2. Without loss of generality, assume that Points(Wα) Π C= K Φφ.
Re-order and renumber the disjuncts in (**) so that K C Wz for each / satisfy-
ing a < i < p. Then by Corollary 5 we have Wc = W^ Δ W^, and, for each /
between a and p, Wz = Wf Δ W#, where K - Points(W^). This gives us an
expression of the form

[. . . Δ W? vV α < / < p (α ; ΔWf)]ΔW^ vα p Δ Wp v . . ..

Now we repeat Step IV for the collection of Wz with i> p.
By Lemma 12, the repetition of Step IV, Case 2, will not cause an infinite

loop. Such a loop would lead to an expression of the form

. . . ( ( ( ( W Q Δ W , ) V W2) Δ W3) V W4) Δ . . .

This expression would not be a valid decomposition of W, since it has no
outermost connective.

This completes the proof of the theorem.

The converse of the Decomposition Theorem is clearly false. We now construct
a suitable counterexample.

Form the binary tree of finite sequences of O's and 1 's in the usual way :

• The empty sequence is the root node, and
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• For any finite sequence x, the children of x are x//0 and x//\, where // is
the concatenation operator.

Every full path on the tree represents an ω-length sequence of O's and Vs. Let
I be a set of ω-length sequences. Define an infinite game on the tree by
starting at the root node, and having Players I and II alternately move from the
current node to one of its children. Player I wins iff the resulting ω-length
sequence is in X.

Every strategy for Player I gives us a set of ω-length sequences. Let W be
a set in W iff W is the set of ω-length sequences associated with some strategy
for Player I. Similarly W is the collection of sets associated with strategies for
Player II. In a play of the game, Player I chooses a I-strategy, Player II chooses
a II-strategy, and the result is a single sequence of length ω. Thus the pair
<W,W') is a weave.

Again let x be a finite sequence of O's and 1 's. We define Ŵ  recursively:

• If x is the empty sequence, let W^ = W
• If x - y//0 or y//l, and y is of even length, then \NX is the collection of

sets W in Wy such that each sequence in W begins with x
• If x - y//0 or y\\\, and y is of odd length, then W^ is the collection of

all maximal subsets W of sets in Wy such that each sequence in W begins
with x.

Let y be a finite sequence of even length. Then Wy = \Ny//0 Vι \Ny//h If y is
of odd length, then Wy = Wy//0 Δ Wy//\. Thus W is a decomposable warp.

But W is not normal unless we accept the Axiom of Determinateness,
which states that in any infinite game with any set X (of ω-length sequences
taken to be winning for Player I) either Player I or Player II has a sure-fire
winning strategy. The Axiom of Determinateness is known to contradict the
Axiom of Choice [3]. Thus we can safely say that the weave we have con-
structed is decomposable, but not normal.
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