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Tense Logic and Time

JOHAN van BENTHEM

Introduction A new wave of research in tense logic is under way, investi-
gating temporal ontologies other than the traditional ones, inspired by logical
concerns different from the usual ones. Some recent papers exemplifying this
trend are [2], [3], [5], [6], and [8]. The purpose of the present paper is to
give a systematic survey of some important issues in the logical study of Time,
as well as some new results pointing at, and hopefully strengthening, the new
lines of research.

1 Traditional tense logic The pattern set by a typical tense logic in the
style of Arthur Prior has become classical in philosophical logic. Inferences
are studied using some formal logical language with certain (tense) operators,
and that language is interpreted in temporal structures through a suitable truth
definition. The motivation for the various choices made with respect to each
of these three conceptual ‘“degrees of freedom” came from various sources:
philosophical, linguistic, and also purely logical. Accordingly, criticism of
Prior’s research program has also emanated from all of these sources—for a
survey, cf. [7].

If there is a criticism of traditional tense logic behind the present paper,
it is not so much that there is anything wrong with this enterprise as that its
scope needs to be enlarged to become a truly logical study of time. Tense
logicians often introduce their structures (7,<) (“points in time”, ‘‘earlier
than”) as a matter of course: the semantic action occurs elsewhere. But, in
a systematic logical study of temporal ontology, this first act already embodies
various choices to be investigated systematically: choices of temporal individ-
uals, relations, and postulates. Shall the individuals be points, periods, or
even events? Which are the basic relations: precedence, simultaneity, overlap,
inclusion? Can fundamental temporal postulates be logically derived for these,
e.g., linear order? We possess a wealth of temporal ideas and intuitions, and
logic should help us in organizing and relating these.
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2 Revisionist tense logic Traditional tense logics have usually taken over
the scientific picture of durationless points in time, ordered by precedence
(“earlier than”, “before’). But, even assuming this basic picture, an enlightened
Priorean approach might consider various options here. An outline of the
resulting enterprise follows.

2.1 Temporal structures The traditional models are point structures <T,<),
with < a binary relation on the set 7. Prime examples are the number lines Z
(integers), Q (rationals), and R (reals). Why does one choose precedence for
a basic relation here? A “logical fable” explaining its genesis in terms of
context-dependent temporal arrangement (late/not late) inducing a context-
free temporal comparative (“later’”) may be found in [8]. We shall see later
how much mileage can be got from this analysis. Why does one choose prece-
dence as the only basic relation here? This is more difficult to motivate, at least
as soon as one takes less classical temporal structures into account, such as
Minkowski Space with the relation of “possible causal precedence”. (This
relation holds between a point and all points in the interior of its forward
light cone.) For instance, simultaneity (‘“‘space-like separation”) might then
seem equally important. The fact of the matter is, however, that even here
precedence is rich enough to allow for definitions of all other significant
(spatio-) temporal relations; cf. [9].

2.2 Temporal postulates Not every point structure qualifies as a possible
model of time. Obviously, our intuitions, however diverse, impose some basic
restrictions. These come in various kinds, some more concrete, others more
volatile.

Direct axioms Some straightforward conditions on precedence are axioms
for comparatives, derived in [8] from the context construction mentioned
above. (T, <) is to satisfy

transitivity: Vxyzx <y <z ->x<z)
irreflexivity:  Yx(Tx <x),

as well as
connectedness: Vxyz(x<y—->x<zvz<y)).

(Another way to view connectedness is as transitivity of nonprecedence.)
Structures of this kind can be represented as a linear order of point sets inside
which all points are mutually nonpreceding (‘“‘simultaneous’).

What other conditions on temporal structures could be motivated through
logic alone? Notice that all principles given here have a universal form. Perhaps
logical analysis should, at least, give us all basic temporal postulates of this
kind—the remaining, existential principles requiring knowledge about the actual
furniture of the world. One obvious strengthening of this kind would be the
following

linearity: Vxy(x <yvy <xvx=y),

i.e., simultaneity collapses into identity.
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We seem to be crossing a border here. Linearity, and indeed already con-
nectedness, exclude relativistic temporal structures as mentioned earlier. Do
we want logic to make physically restrictive choices as to the nature of time?
It seems that, beyond the above first two requirements of so-called strict partial
order, all further additions express some ‘‘dimensionality restriction” upon
time, constraining physical, rather than logical space. We mention two relevant
points from [8]:

Proposition Strict linear order is the universal theory of classical time.

Conjecture: Strict partial order is the universal theory of all finite-dimensional
Minkowski space-times.

(Actually, the universal theory of ordinary four-dimensional relativistic space-
time contains certain universal ‘‘spatial” principles, in addition to temporal
strict partial order; but this matter will not concern us here.)

Global intuitions An analysis of a concept in logical semantics need not
always result in explicit direct axioms. Our intuitions may be much more
global, and yet exact. One recurrent idea as to the kind of structure that
qualifies as a temporal model is “homogeneity’: the pattern of time is the
same everywhere. Formally, this may be captured by requiring that point
structures (T, <) be homogeneous:

for every two t,t' e T, there exists some <-automorphism of (T, <)
sending ¢ to ¢'.

Notice that both classical structures, such as Z or Q, and relativistic ones, such
as Minkowski space-time, satisfy this postulate. (In the general theory of
relativity it may fail, however.)

Homogeneity does have direct consequences, in the form of ‘“radical
choices”. For every two points will show the same precedence behaviour; and
hence we have, e.g., isolation-or-succession, discreteness-or-density: either all
points are isolated, or there exists a precedence pair (and hence all points have
temporal predecessors and successors); either all points have an immediate
predecessor (because one point has), or the ordering is dense.

Even so, very many point structures are homogeneous strict partial
orders. Can the homogeneity intuition be strengthened so as to restrict the
field to surveyable proportions? After all, space seems to satisfy a much
stronger constraint, viz., that any two pairs of distinct points can be connected
through some automorphism. And indeed, Q satisfies a similar principle,
provided that both pairs lie in the same order. On the other hand, Z fails
this test since the number of intermediate points may be different. Some
reflection shows that the proper generalization, then, is the following principle
of indistinguishability

for every two finite sequences ¢y, ..., %;; t,... &y € T with the same
type (i.e., verifying the same first-order formulas), there exists some
<-automorphism of (7, <) sending ¢, to ¢}, .. ., t, to ;.

Thus, sequences of points in time that cannot be distinguished in our language
cannot be distinguished at all. This is the familiar model-theoretic notion of
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‘homogeneity’, about which various logical results are known. Thus, nontrivial
model theory turns out to be relevant to the logical study of time. For
instance, the theorem that every countable model has an elementary extension
satisfying indistinguishability (cf. [1]) now tells us that the latter postulate
has no ‘““direct” consequences.

For an important special case, we can now classify all possible temporal
models.

Theorem The countable connected strict partial orders satisfying homo-
geneity and indistinguishability consist of linear orders of simultaneous point
sets (all of the same size), whose pattern is one of the following four: 1, Q, Z,
QoZ

Here, 1 is one single isolated point, and Q @ Z is the structure consisting of Q
(dense time at its macrolevel) with each point replaced by a copy of Z (discrete
time at its microlevel).

Proof: The linear pattern of the simultaneity sets was observed before. That
these all have the same size follows from homogeneity (plus countability).
Now, the global order is either 1, or all its points have predecessors and suc-
cessors, as was noted earlier. Moreover, it is either dense or discrete. In the
former case, the global order is a countable unbounded dense linear order,
which can only be Q, by Cantor’s Theorem. In the latter case, the global order
consists of a countable number of copies of the integers, by a standard argu-
ment. Now, either there is only one such copy Z, which is one of the above
four possibilities, or there are more, say forming a linear order L. It remains
to be shown that L must be isomorphic to the rationals, which accounts for
the fourth case of Q® Z,

Suppose that L has more than one element. By homogeneity, then, it
cannot have final points. (One has to argue about moving copies of the integers
now.) Moreover, it is dense. For if 1; < 1,, then consider 1; < 1,. Notice that,
in discrete linear orders, all pairs of points from different copies of the integers
verify the same first-order formulas. Therefore, this fact holds for (any choice
of points from) the pairs (1, 15), (15, 1,). (As we are concerned with auto-
morphisms, moving one point means rigidly moving its surrounding copy of Z.)
By indistinguishability, then, some automorphism maps 15 to 1,, leaving 1,
fixed, i.e., 1, moves between its original position and 1,. Thus, there must have
been a point between 1; and 1,. So L is again an unbounded dense linear order
that is countable, i.e., an isomorph of Q. a

Question: Give a similar characterization of countable temporal structures
without assuming connectedness.

The connection between global intuitions concerning time and notions of
classical model theory deserves further systematic exploration.

3 Revolutionary tense logic Starting from the point structures of the
preceding section, the orthodox road in tense logic goes from points to inter-
vals of time, and thence to events as intervals plus linguistic description of what
is going on during these. But, for various philosophical and linguistical reasons,
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the proper order of analysis might well be the other way around. Events form
the stock of our primary experience, periods are already abstract substrata
underlying simultaneous events, and points are ideal limiting cases of periods.
Thus, the heterodox road from events to periods to points deserves closer
scrutiny.

In this paper, the richer spatio-temporal, possibly even causal, notion of
‘event’ will not be studied. But we will consider a temporal ontology based
upon extended ‘‘periods’ as its primitive individuals. Rather than construct an
“interval tense logic”” upon the pattern of already existing Priorean models, we
will consider this new ontology by itself, noticing the new types of question it
engenders.

3.1 Temporal structures Having chosen the individuals, there arises the
choice of appropriate primitive temporal relations. As in the earlier case,
precedence seems a fundamental notion. But, moreover, the extendedness of
periods should now show up in the relational pattern. Various preferences have
been expressed in the literature on this issue, resulting in two main candidates:
inclusion and overlap. In this paper, we opt for the former. Thus, a period
structure will be a triple <{/,<,C). Prime examples are INT(Z), all closed
bounded integer intervals with total precedence and set inclusion, and
INT(Q), all open bounded rational intervals (with rational boundaries) ordered
by these same relations. For the ontological purists, the underlying point
set structure should be forgotten, of course.

There exist several definitional connections between these various primi-
tives that one could argue for. For instance, obviously,

x0y (“x overlaps y”) <> 3zzCx &z y)
(we are thinking of nonempty periods), and
xCy < Vz(z0x = z0y).

But, more debatably, inclusion might also be definable in terms of precedence.
What else is a subperiod than a devoted follower of its superior’s preferences?

XCyeoVz(z<y-z<x)& (y<z—->x<2)) )

We shall see presently which constraints would be imposed on inclusion in this
manner.

3.2 Temporal postulates An investigation of conditions on temporal
period structures is an exploration of a new world. We are not used to studying
this kind of relational pattern. Nevertheless, the general procedure of Sec-
tion 2.2 still recommends itself.

Direct axioms The minimal constraint of strict partial order remains
equally plausible for precedence among periods. As for inclusion, the partial
order axioms seem obvious: transitivity, together with

reflexivity: VYxxC x
antisymmetry: VYxy(xCyCx-—=>x=y).

As each partial order may be represented as a set inclusion structure in a
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standard way, these three conditions comprise the complete first-order theory
of set inclusion. (It may be proved, by the way, that the complete theory
of set theoretic overlap is given by symmetry: Yxy(xOy — yOx) and quasi-
reflexivity: Yxy(xOy = x0x).)

In addition to these pure principles, several mixed principles ensure
a certain integration of precedence and inclusion pattern. First, in line with
the mentioned definition of inclusion, there is a principle of monotonicity:

Vxyz(xCy<z—->x<z)
Vxyz(z<y Jx->z<x).

Also, there is a principle of convexity, stating that periods should be uninter-
rupted stretches:

Vxyzu(u Jx <y <zCTu-—>yLCu).

Further additions of an existential nature can be made, but new purely uni-
versal constraints do not suggest themselves readily. One logical explanation
for this phenomenon (and the virtue of logical philosophy is precisely that it
affords such precise answers) lies in the following result:

Theorem On the strict partial orders (I, <), the complete universal theory
of the period structures I, <,C) defined by (*) is axiomatized by transitivity
and reflexivity for inclusion, together with monotonicity and convexity.

Proof: That all four principles do follow requires an easy deduction. (E.g., for
convexity, assume that u J x <y <z C u. Suppose that v <u. Thenv <x
(by (*)), and so v <y (transitivity). The case of u <uv goes analogously.)

The other way around involves an elementary representation argument,
of which we only mention the main steps. Consider any structure (I, <,C)
such that < is a strict partial order, with C satisfying the four mentioned
conditions. First, contract the structure by identifying mutually including
periods. The contraction is a strong homomorphism respecting the former
<,C-theory; but, in addition, C is now antisymmetric. Next, represent this
structure as a set of nonempty convex sets on some underlying strict partial
order, with total precedence and set inclusion. (The method available is that
of Section 4.2.) Finally, enlarge this structure to one in which the equivalence
(*) is satisfied. (One half is automatic, thanks to monotonicity.) Now, we
make noninclusions show up in failure of “obsequiousness’” by adding suitable
points.

Now suppose that some universal principle about <,C does not follow
from our axioms. Then it fails in some model for these, by the completeness
theorem. Since this failure merely involves the existence of some recalcitrant
finite diagram, the principle fails in all extensions of the model—in particular,
in the one constructed above where (*) holds as well. O

When more than purely universal principles are considered, various candi-
dates arise, of which an exhaustive study is made in [8], leading to character-
izations of the first-order theories of INT(Z) and INT(Q). Three examples
deserve mention here. The first is

linearity*: VYxy(x<yvy<xv3zzLCx &z L y)).
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This is the obvious analogue of the earlier linearity postulate for points. Its
general validity is extremely doubtful (cf. [3]). Notice that in terms of overlap
this would be a purely universal principle. Indeed, it occurs in Kamp’s primary
axiom set for <, O.

Question: 1Is this Kamp axiom set deductively equivalent to the above
minimal postulates together with linearity *?

Passing on to higher quantifier complexity, there are two principles con-
cerning noninclusion and nonprecedence which occur in various guises in the
literature.

freedom: VYxy(xCyv3zLC x1z0y)
liberty: Vxy(x <yv3zCx3Julyzlu),
where ‘zJu’ stands for 3z' C z Ju' Cu z' <u'.

Freedom says that if x L y, then x can still be refined to some z disjoint
from y. In terms of information periods giving ranges of eventual points in
time, this is a reasonable postulate. (It also occurs, e.g., in the area of forcing
conditions in set theory.) Liberty expresses something similar for nonprece-
dence. It may also be read more positively, however, as

Vxy(VzExVu T y3z’ Cz3auw' Cu z' <u' - x <y),

i.e., “cofinal precedence implies total precedence” (cf. [5]).

In the general case, we will stick with the earlier minimal axioms on
period structures. The possible uses of freedom and liberty will become
apparent later on.

Global intuitions Again, period pictures of time may carry their own more
global connotations. Whether the earlier postulate of homogeneity still holds
is debatable: it is no longer valid in the atomic period structure INT (Z), with
its heterogeneous intervals. On the other hand, the multiparameter principle
of indistinguishability formulated in Section 2.2 seems to apply to intervals
as well.

The period ontology also inspires new global intuitions. For instance, on
this more “continuous” view of time, there is a metaphysical tendency to
postulate homogeneity in a more vertical direction: every period mirrors the
universe! Formally, this becomes a postulate of reflection:

every period i € I, when considered as the period structure {{jlj Ci &
j #i}, < ), is isomorphic to the whole structure (/,<,C).

Thus, the famous sequence of mirrors arises, ranging from the infinitely great
to the infinitely small.

“Direct” effects of reflection are harder to measure than those of homo-
geneity. Nevertheless, this principle would evidently exclude atomic, indivisible
periods.

In some sense, “vertical” reflection and ‘“‘horizontal” homogeneity seem
related. That the two intuitions are still independent is shown by the following
period structures.
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Example: Reflection does not imply homogeneity. Consider all open subinter-
vals of the rational interval (-1, +1) with the obvious precedence and inclusion.
Reflection holds; but, e.g., (-1,0) cannot be mapped automorphically onto
0,+1).

Example: Homogeneity does not imply reflection. Consider all open subinter-
vals with rational boundaries of the irrational interval (-v/2,++/2). (Notice
that none “reach” the boundaries.) Homogeneity holds; but, e.g., (-1,+1) is
not isomorphic to the whole structure, since it can be.split up completely into
two wings (—1,0), (0, +1), which the whole interval cannot.

Many matters remain to be investigated here.

Question: Classify the countable linear* period structures satisfying indis-
tinguishability and reflection.

4 Peaceful coexistence When a paradigm has been successful for as long
as the point approach, or a competitor as resilient as the period picture, it
would be a philosophical perversion to open hostilities. The task of logical
analysis is to show how the two ontologies are related, rather than to produce
ammunition for controversy. Indeed, there are two broad reasons for being
interested precisely in the interplay between points and periods. We want
to understand the connection between the “discrete” and the “continuous”
point of view in science; but also, we want to see how the former more “scien-
tific” notion relates to the latter more “common sense” view.

4.1 From points to periods Given a strict partial order (7, <), the most
obvious induced periods are the nonempty convex subsets X of T, satisfying
the following condition of uninterruptedness:

forallt,t,e X, teT,t,<t<t,onlyifte X.

Singleton sets are convex, while the latter class is closed under the formation
of intersections. The finite unions of convex sets (themselves not necessarily
convex) form a Boolean Algebra (cf. [8]). Thus, one may either opt for periods
as substrata of single events, or, allowing “repetitive events’, increase this class
in a simple, elegant way.

In general, it need not be assumed that all convex sets are substrata of
events—whence we will consider convex interval structures J = (T,<,J)
consisting of a point structure {7, <) with just some set of convex sets f. The
induced period structure P(J) then is the triple (J,<<,C), where X < Y if
VieX,t'eY, t <t (total precedence).

It may be checked that all earlier axioms for period structures are satis-
fied here. Moreover, the methods of proof in Section 4.2 below will yield as
a corollary that these are in fact all valid principles.

Theorem The minimal period principles axiomatize the complete first-
order theory of the period structures induced by convex interval structures.

Thus again, the above minimal choice turns out to have a stable motivation.
When “full” convex interval structures are considered, containing all
possible convex sets, additional validities arise. For instance, freedom and



TENSE LOGIC AND TIME 9

liberty become valid (thanks to the existence of suitable singletons), and so
does atomicity.

Question: Do these principles combined axiomatize the complete first-order
theory of full induced convex period structures?

4.2 From periods to points When periods form the primary stock of
temporal individuals, durationless points may arise as limits to which chains
of ever smaller periods converge. Upon some reflection, the appropriate con-
cept is not so much that of a “chain”, but of a “funnel”. Technically, a filter
is a set F of periods satisfying the following two conditions:

(i) if x,y € F, then there exists some z ¢ F withz C x, z C » (i.e., all pairs in
F are compatible) and
(i) ifydxeF,thenyekF.

One may think of a filter as a “‘partial point”, in some stage of approxi-
mation. Now, given any period structure < = (I,<,C), one defines its filter
representation T(A) to be the convex interval structure (T, <, ), with T the
set of filters on Jd, Fy < F, iff 3x ¢ F; 3y e F, x <y, and f equal to {{F € T|
xeFl|xell.

If T(L) really is to be a convex interval structure, two things are to be
checked:

1.{T, <) is a strict partial order. Transitivity: if F; < F, < F3, then, say,
x <yy, ¥, <zwithx € Fy,y,, ¥, € F,, z € F3. By the definition of ‘filter’, some
y € F, is included in both y,, ¥,. By monotonicity then, x <y < z, whence
x <z, by transitivity. Thus, F, < F;. Irreflexivity is proved analogously.

2. 4 consists of convex subsets of (T, <). If F; < F, < F;, then as above,
x <y <z forsomexeF,yekF,zeF; Now,ifueF,,ueFs; then we may
choose x C u, z C u, again thanks to compatibility for filters. Hence by con-
vexity, y C u; whence u € F,.

In fact, this procedure gives us a representation of period structures as
convex interval structures.

Theorem The function sending x € I to {F|x € F} is an isomorphism
between A and PT(L).

A proof of this simple result is found in [8].

One objection to the filter representation is that filters need not be finest,
or maximal, approximations to points. (In a thoroughly partial perspective,
where new periods may still be discovered extending the filter in unexpected
directions, this prudence is rather a bonus, of course.) Thus, we may also con-
sider the maximal filter representation T+(J), in which only maximal filters are
employed, which cannot be properly extended to nontrivial filters any longer.

Theorem The function sending x € I to {F|x € F} is now a homomorphism
from Jd onto PT+(J).

For a proof, compare the above reference.
It is only when freedom and liberty hold in  that this homomorphism
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is guaranteed to become an isomorphism. But then again, not all period struc-
tures of the form PT+0J ) satisfy these two constraints.

Question: Find necessary and sufficient axioms for the maximal filter repre-
sentation to succeed.

Even in this state, both representations are useful and instructive. For
instance, the filter theorem has the completeness theorem of Section 4.1 as
an immediate corollary.

Two examples of the maximal filter representation may be helpful,
involving the two prime examples of Section 3.1.

Example: T+(IN T(2)) is isomorphic to Z with its bounded convex subsets.
Thus, the construction has a fixed point in this case.

Example: T+(IN T(Q)) is isomorphic to R with all its rational points replaced
by discrete jumps (corresponding to “instantaneous changes’).

The relevant arguments are again in [8]. Finally, one ontological worry could
be that the present representations produce ever larger structures when iter-
ated. But actually, the above reference contains an assurance that stability is
attained quite soon:

PT+(J) is isomorphic to ,
T+P(J' ) need not be isomorphic to J; but
THPTYP(Y) is always isomorphic to TYP(S).

4.3 Transfer of information One obvious question now is if certain proper-
ties of, or relations between, temporal structures in one ontological realm are
preserved among their counterparts in the other ontology. Here are some rele-
vant observations.

Going from points to periods, first-order equivalence need not be re-
spected. For instance, Z and Z ® Z (i.e., two consecutive copies of Z) have the
same first-order theory of precedence, but their full convex interval structures
are not elementarily equivalent. That of Z gives each period with an upper
bound a final atom, while that of Z @ Z does not. Another example of non-
transfer concerns a global property, viz., homogeneity. As was remarked earlier
on, Z is homogeneous, while INT (Z), or its full convex interval structure is not.
But, as we shall see, transfer need not result in identical properties, of course.

Going from periods to points, transfer problems have been implicit in
the literature. Which conditions on period structures guarantee that its point
representation will have certain desired properties? Here is an example of a
target correspondence.

TH(L) is linear if and only if o itself is linear*. As for a proof, the direc-
tion from right to left follows at once by the previous type of argument. The
converse requires validity of the T+-representation however, say, with the
help of freedom and liberty. (The argument is still routine.) In the absence of
the latter, the above equivalence may not even be valid, for all we know.

An example for which one may even refute any first-order correspondence
is that of discreteness for T+(J ). For, e.g., T+(INT(Z)) was discrete, witness
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an earlier observation. But now, consider the elementarily equivalent com-
panion of INT(Z) consisting of the convex periods with end points of Z & Z.
The filter generated by the sequence (left 0, right 0), (left +1, right —1),
(left +2, right —2), etc., is maximal. But although it has successors and pre-
decessors in the T+-representation (corresponding to atomic filters in the right
and left-hand copies of Z), it has no immediate successor or predecessor, i.e.,
discreteness fails. Thus, generally, T fails to preserve elementary equivalence
of period structures.

Correspondences between first-order direct axioms at the two ontological
levels turn out to be scarce—and this is understandable, for, after all, the max-
imal filter representation transforms (simple) first-order statements about
(complex) points (viz., subsets of /) into (complex) higher-order statements
about (simple) periods.

What about transfer of global, rather than direct properties? Notably,
the maximal filter construction would seem to “‘average out” individual differ-
ences between periods, and hence homogeneity of the resulting “anonymous”
points seems plausible. But the above already provided a counterexample:
INT(Q) is homogeneous, while its maximal filter representation obviously
is not. Looking in the other direction, we note that the maximal filter repre-
sentation of INT(Z) was indeed homogeneous, whereas INT(Z) itself is not.
In fact, thinking of necessary conditions for homogeneity of T+(J), one
arrives at weaker requirements such as the following:

for each x, y e I there exists some <, C-automorphism of (/,<<,C) sending
x to some period overlapping y.

Question: Find necessary and sufficient conditions on period structures in
order that their maximal filter representation be homogeneous.

In this way, global intuitions on point structures may, indirectly, exert their
influence on period structures after all.

4.4 Ontological duality Temporal structures may be related in various
ways, and these relations are interesting just because our minimal postulates
leave room for quite a variety of point or period structures. In the realm of
the latter, one obvious relation is the following: As we learn about more
events, our stock of underlying periods increases. (Again, this is a logical
fable, of course.) Say, we pass from I; to [,. Moreover, our knowledge about
the original stock may increase; say, because new precedence or inclusion
judgments are made. Thus, <, is a positive extension of J; if

11Q12,<1§<2f11 and l_:_lgl_:__z TII

The earlier representations yield counterparts for such relations in the opposite
ontology. For instance, if J, is a positive extension of {;, then the relation
E of extension between maximal filters in T+(Jl) and TH(« ») has the following
properties. E has domain I,, since every maximal filter in J{, still remains a
filter in £, (C-relationships remaining valid), and hence can be extended to
a maximal filter in {,. Moreover, E is homomorphic in the sense of preserving
precedence, the reason now being the continuing validity of <-relationships,
in combination with the definition of precedence among filters.
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Another way to view this situation is to consider the restriction map from
I, to I, as a function from the range of E to its domain. Thus, this function
is a partial map from TH(L,) onto TH(L,) which is an anti-homomorphism in
the sense that precedence of images implies precedence of originals. (Notice
that the restrictions need not be an ordinary homomorphism.)

Example: The obvious contraction map from Q©® Z (cf. Section 2.2) to its
“macro-structure” Q is an anti-homomorphism that is not a homomorphism.
Indeed, Q cannot be a homomorphic image of the discrete structure Q@ Z at
all, as it fails to verify the positive sentence

Axdy(x <y aVzz<xvz=xvz=yvy<z)).

Restriction to /; need by no means be a total function. For one thing,
the I;-part of a maximal filter in <{, need not be maximal in ,. For another,
it need not even be a filter: previously disjoint periods may have received a
common subperiod in the positive extension.

Finally, the partial restriction map has the following continuity property.
Inverse images of distinguished convex sets in T¥(,) (induced by some period
in I;) are the intersections of distinguished convex sets in T+(<12) with the
domain of the mapping.

Thus, from periods to points, an analogy exists between positive exten-
sions and partial continuous anti-homomorphisms. A check upon its accuracy
is provided by changing perspective once again.

Assume that some function of the above kind runs from the point struc-
ture 7, = (T,, <,, I to I, = (T, <y, 4. Then there is a canonical map from
the period structure P(J;) to P(J,), sending each X € o, to its inverse image
in of,. (For convenience, T, is supposed to be the whole domain of the func-
tion here.) It is easily checked that this canonical map preserves inclusion (by
the nature of inverse images), as well as precedence (by the anti-homomor-
phism clause and the definition of total precedence), while it is also one-to-one.
Thus, we have retrieved (an embedding into) a positive extension.

Proposition There exists an exact duality between positive extension
among period structures and anti-homomorphic surjective continuous maps
among point structures.

Similar correspondences may be developed for other important relations
in the two ontologies, as the need for them arises.

5 Illustrations It is precisely the interplay between the two temporal
ontologies which proves useful in applications of the above logical considera-
tions. In line with the dual motivation of the present enterprise, we will
consider a more philosophical as well as a more linguistic example, the first
derived from [6], the second from [3]. Afterwards, one rather programmatic
case will be presented of a more physical nature, inspired by [9].

5.1 From private to public time Bertrand Russell’s interest in the connec-
tions between common sense notions and those of science led him to consider
event or period structures as more typical of the former, reserving point struc-
tures for the latter view of time. His reconstruction of the genesis of (scientific)
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public time was this. There is a growing sequence of private experiences <y,
4, ..., which are all joined together into some common fund of experience,
and the latter is then represented as a point structure, much in the way of
our maximal filter representation. (For precise references, and the full story,
cf. Thomason’s paper [6], which, however, uses a representation by Dedekind
Cuts.)

One way to make this more vivid is as follows. {, is the period structure
of one person’s experience. Next comes a second person with her private
experience, and the two (if compatible) are joined into the extension .
All of the first person’s precedence and inclusion judgments are preserved in
this way, but the second may have added some of her own to the common
part. Thus, £, becomes a positive extension of {,, in the sense of Section 4.4.
The process repeats itself, to form a positive extension chain 4; € Jd, & .. ..
The creation of public time then amounts to the formation of the point repre-
sentation of the union of this chain: THU ;).

But there are also private times, obtained by representing finite stages
JA; at once. What is the relation between these private times TH(L;) and the
public time created above? Although Russell himself did not consider this
question, it seems a fairly natural one.

The ontological duality of the preceding sections tells us how to formulate
an answer. As it turns out, the two roads ‘“‘private experience, public expe-
rience, public time” and “private experiences, private times, public time’ are
related, but not equivalent. Consider the earlier ascending chain. As it grows,
anti-homomorphic connections are established between the corresponding
private times, as in Section 4.4. The picture is as follows.
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In the time chain, partial anti-homomorphisms run from above to below. Thus,
the obvious limit construction upon the time chain consists in considering all
“histories”. That is, starting with a point at some level, one may trace its
various subsequent developments along the anti-homomorphism into the next
larger time structure, etc. Thus, points in the limit will be functions ¢ from time
structures to points in them, starting from some finite stage, such that every
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two subsequent stages (i + 1), ¢(i) are connected by the relevant morphism.
(Such a functional structure is usually known as an inverse limit.) Precedence
will come out naturally by setting ¢ < ¢' if, at some stage i (and hence always
higher up), (i) <; £'().

Evidently, each such function ¢ creates a maximal filter in public time.
But this construction need not exhaust the latter domain. For there may be
maximal filters on U ; whose restrictions to levels i need not be maximal,
or even filters. (The reason is as in an earlier similar observation.) Thus, public
time in Russell’s sense consists of a core, constituted by successive private
times, surrounded by a more global hull of points in time arising from the
structure of public experience in its entirety.

5.2 Representation of temporal discourse Another meeting place of com-
mon sense pictures and more scientific world views is contemporary formal
semantics. It was especially Hans Kamp who has developed an approach in
which the tenses of natural language provide systematic clues for an event or
period representation of discourse, only to be connected later on with the
usual point structures of standard tense logic. The guiding idea then is that,
modulo some technicalities, a simple piece of tensed discourse is actually true
if its event representation can be embedded into the convex bounded open
real intervals.

Just when is a finite period structure thus embeddable? (Discourse repre-
sentations are always finite objects.) This question fits in well with the previous
concerns of this paper. (Evidently, it is just one of a whole family of logical
questions arising in the discourse representation perspective.)

For a start, if a period structure is embeddable in the prescribed sense,
then all minimal period postulates of Section 3 will be valid, universal sentences
being preserved under transition to submodels. There are additional validities,
however. Already for pure inclusion, there is now ‘“one-dimensionality’’ (or
“planarity”):

Vxyz(Bxyz v Byxz v B;xy) @))

where ‘B, yz’ (“betweenness”) stands for ‘Vu(y E u & zC u)>x C u). A
pure precedence addition is the related “comparability”:

Vxy(Vz(y <z->x<2)vVz(x <z—->y <z))
Vxy(Vz(z <y =z <x)vVz(z<x-=>z<y)). )

Finally, a new mixed universal postulate occurs, akin to the connectedness of
Section 2:

Vaxyzix <y <z-=>VYu@x<uvu<zvyLu)). 3)
Notice that convexity already follows from this principle.

Conjecture: Validity of the minimal period postulates in conjunction with (1),
(2), (3), is a necessary and sufficient condition for a temporal period structure
to be embeddable into the Kamp real interval structure.

Actually, a proof of the pure precedence part of this result can easily be given,
but it has been omitted here because of its combinatorial complexity.
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All axioms occurring in the above were universal ones, and this is no
accident.

Observation: A finite period structure can be embedded into the convex
open bounded interval structure of the reals iff it verifies the latter’s universal
first-order theory.

Thus, we are asking in effect for a completeness theorem; and we realize that
old themes from philosophical logic may arise in perfectly natural ways in new
semantic settings.

5.3 Space-time from events After these more philosophical and linguistic
examples, one would also expect some illumination as to the foundations of
physics. Actually, this direction of research has not been developed yet within
the present perspective. Hence we can only offer a suggestion illustrating which
kind of problem could possibly benefit from the theory advanced in this paper.

In [9], there is a description of Leibniz’ project for constructing both
time and space out of a primary spatio-temporal event structure, provided
with a primitive relation of possible causal precedence. Briefly, the idea is this:
Precedence is a connected strict partial order (a form of connectedness is
referred to as “‘Leibniz’ Postulate’), representable as a linear sequence (“time”)
of simultaneity classes (‘“‘spaces”), just as in Section 2 above. Winnie points
out that inside these spaces all point sequences satisfy the same precedence
statements, and hence no structure is left to define a nontrivial geometry over
them. Thus, Leibniz’ project fails for classical Newtonian time. Only when
different principles are adopted for the primary causal structure, so the story
continues, say along the lines of Robb’s “Causal Theory” of space-time, a
construction can indeed be found producing the familiar Minkowski space-
time of special relativity.

Now, the period perspective might provide a way out for Leibniz’ project
after all, for the earlier period structures can be reinterpreted as event struc-
tures, with spatio-temporal inclusion, without any difficulty. Even the postu-
lates considered above would remain equally plausible. Thus, Leibniz’ project
could start from a period, rather than a point structure, utilizing its double
precedence/inclusion structure to escape from Winnie’s refutation.

Question: Extract a viable chronometry and geometry from period struc-
tures, by producing suitable definitions for simultaneity, betweenness, and
equidistance.

This task will not exactly be easy. For instance, the notion of betweenness
from Section 5.2 (provably) produces only the following geometrical prin-
ciples:

Vxyz(Bxyz = Bxzy)
Vxy Byxy
Vxyzuv((Bxyz & Byuv & B;uv) ~ Byuv),

which is nowhere near even the minimal logic of this notion.
But then, perhaps the above approach is not quite the correct point of
view. Classical (or Minkowski) space-time is a mathematical construct at the
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point, rather than the period level. Thus, it would be sufficient to have only
punctual representations T+({) come out similar to these space-times. Whether
this leaves any advantages over Winnie’s direct approach in terms of points
and precedence only, remains to be seen.

Conclusion This paper has aimed to show how logic can contribute in
exploring the variety of temporal ontology. In the process, many types of
logical questions emerged, some advanced, some elementary, but most of them
outside the scope of traditional tense logic. The guiding philosophical interest
has been, not in a clash of temporal paradigms, but in a study of their inter-
relations. But there is also a more ambitious philosophical goal in the back-
ground. Contemporary philosophical logic has two main faces: one directed
toward the philosophy of language, the other toward the philosophy of science.
The subject of time occurs in both these traditions, once as tense logic (cf. [4]),
then again as the philosophy of time (cf. [9]). This unfortunate separation has
not been taken for granted here; both interests appeared in this paper. In the
end, one would hope, the two traditions will be joined in one integrated logic
of time.
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