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Submodels and Definable Points in

Models of Peano Arithmetic
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1 Introduction In this paper we consider some definable sets and elements
in countable nonstandard models of Peano arithmetic (abbreviated by P).
Definable elements and their properties were considered by Jensen and
Ehrenfeucht [5] and McAloon [7]. We investigate other properties of these
points, and relate them to intersections of submodels of countable nonstandard
models of formal arithmetic. When in this paper we speak of nonstandard
models of Peano arithmetic we assume that they are countable.

We now introduce some terminology and notation. By LP we denote the
language of P. By M, N, . . . we denote models of Lp or simple expansions of
this language, and by M, N, . . . we denote their domains respectively. The ω
stands for the standard system of natural numbers. We shall abbreviate
a0, . . . ,an e M by ~a e M. If a e M then α denotes the name of a.

As usual, by M C e N (M <e N, M Qc N, M <c TV) we denote respectively
that TV is an end extension (elementary end extension, cofinal extension,
elementary cofinal extension) of M.

Let Γ be a set of formulas of a language L, and let A, Z? be some models
of L. A formula φ of L is a Γ-formula if φ e Γ. Assume i C ^ . Then A £ Γ i?
iff for all Γ-formulas φ of L and all ~a e A, A (= φ~a impliesZ? f= φ~a. We write
A < Γ B if "implies" is replaced by "iff" above. An element a e A is a
Γ-element (in A) iff a is defined by a Γ-formula in A. In the case of P this is
equivalent to M \= a = μxφx, φxeΓ. The set T Π Γ is sometimes denoted
byTτ.

*I presented some of my early results at the Logic Conference in Marseille, 1981 (Corollary
2.9.1). There I had a short but inspiring discussion on these matters with D. Marker, who
informed me of a generalization belonging to him and A. Wilke (Corollary 2.7.2).
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If U(x^y) ζ Γ, ~a e A and Π(x,"ί) is finitely consistent over A, then we
call Π(x,"α) a Γ-type. In most cases Γ will be one of these sets: Σ%, Π£, Δ£. We
note the following facts concerning these sets:

Proposition 1.1 Let A, B be models of P. The following are equivalent:
( D d ^4+ιB;(2)A <ΣokB;(3)A < Δ o + 1 * ; ( 4 ) A Q^B.

If M is a model of P and S QM, then S defines the least segment of M
which contains S; this is JM(S) = \x e M: (3y e S) x < y\. Ψe omit the sub-
script M if there is no ambiguity. We recall the fundamental theorem on cofinal
extensions.

Gaifman's Splitting Theorem // M, N are models of P, and M Q N, then
M <c JN(M) Qe N.

We have the following hierarchical refinement of Gaifman's Theorem:

Theorem 1.2 Let M, N be models of P, M <c K Qe N, and M <Σo JV.
ThenK<ΣokN.

Proof: Let φΫy be Σj?, "a e K, and assume N \= Ξyφcty. We can choose m e M
such that "a < m. By the Replacement Scheme in P there is a b e M such that

M h Vx<m(3yφty -> 3y <bφxy).

It is easily seen that Vx* < m(Byφlty -> 3y < bφay) is Δ/!+1, and as
M < Λ n Â  we have
- Δ f c + i -

N \= \/Ϋ<m(3yφΫy -*3y <bφlty).

Therefore, N \= 3y < bφ~ay, i.e., there is a c e K such that Â  1= φ~ac. By
the Σ£- version of the Tarski-Vaught Theorem we obtain AT < Σ o N.

K

An extended version of A. Robinson's Overspill Lemma will be used
throughout. This property might be considered as a partial saturation of
nonstandard models of P (cf. [12], [8]).

Theorem 1.3 For every k e ω, every nonstandard model M of P realizes
every recursive Σ%-type over M.

One of the main embeddability criteria is given by H. Friedman's
Theorem. As usual, SSy(M) denotes the standard system of M, i.e., the
collection of all sets of the form \x e ω: M \=φxb\ for b e M and Lp formulas
0.

Friedman's Embeddability Theorem Let M, N be countable models of P.
Then:

(a) Â  is embeddable into M iff Th3(M) C Th3(N) and SSy(M) C SSy(N).
(b)N is isomorphic to an initial segment of M iff ThΣo(N) Q ThΣo(M) and
SSy(M) = SSy(N).

We observe that by a hierarchical refinement (cf. [12], p. 268) we obtain
Σ° elementary embeddings in the theorem if Σ? and 3 are replaced by Σ£.
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2 Definable elements In this section we shall consider definable elements
in nonstandard models of P, and relate them to intersections of submodels
(of a model M of P). This enables us to characterize those models of P which
are Σj? elementary extensions of ω.

Lemma 2.1 Let M be a model of P. If φx is Σ%+i and M \= 3x0x, then
there is a Δ£+1 element d e M such that M h φd.

Proof: Let φx = lyψxy, \pxy is Γ$, and Θz = ψ((z)0, (z)^. Then θz is Π°,
since

P \~θz o(3u,V<z)(u = (z)0 Λ ι; = (z)j Λ l//Wi;).

As M \= 3xφx, we have M t= 3z0z, so let b e M be such that M h 6 = μz0z.
Then & is Π°, and d-(b)0 is Δ£+1, since

αx = \/y(y = μz^((z)0,(z)!) ^ x = O ) 0 )

βx = 3y(y = Mz<K(*)o,(*)i) A X = (y)0)

define d, and αx, ]3x are Π£+1, Σ?+i, respectively. Obviously P h α x ̂ -βx. Then
M \=φd, since M h=3>i//^.

Definition 2.2 Δ f = {x e M: x is Δ? definable in M L

In general, for any set of formulas Γ, ΓM denotes the set of all Γ-definable
elements in M. Some of these numbers were considered in [5] and [7], The
following property of Af elements is established in [5]: The code set of
Th(ω) Π Σ? belongs to SSy(M) iff Δ ^ is bounded below in M - ω. We note
that the code set S of Th(ω) Π Σ j belongs to SSy(M) iff every recursively
enumerable subset of ω belongs to SSy(M), First, if S e SSy(M), then for
any recursively enumerable A Q ω there is a Σ{ formula φx such that
A = \m e ω: ω \= ψra}, hence A = {m e ω: rφrn] e S\. AsSSy(M) is closed
under relative recursion (cf. [10]), it follows that A e SSy(M). Further, if
every recursively enumerable subset of ω belongs to SSy(M), then S e SSy(M)
since S is itself recursively enumerable. Therefore, we have the following
corollary:

Corollary 2.2.1 Every recursively enumerable subset of ω belongs to
SSy(M) iff Δ f - ω is bounded below.

By Lemma 2.1 we have also

Corollary 2.2.2 Ajf is cofinal in the set of all Σ$ elements of M.

We shall need the following lemma to describe intersections of some
submodels of M.

Lemma 2.3 Let M be a model of P and λeM.Ifλ is not Δ]?+1-definable
in M, then there is a sequence bo,bu... such that

(a) For each n e ω, λ is not Δ£+1-definable in M with parameters in
ibo,...9bnl
(b) For all Σ£+ 1 formulas φx0. . .xn, M \= φa0. . .a^ -* φb0. . . bn, where
ao,a1,. . .is an enumeration of the domain M, a0 = 0.
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Proof: We prove (a) and (b) by induction on n. Define bo = aOf and assume
bQ, . . . , bn-x have been constructed. Let

Γw = \φa0 . . . an -> φb0 . . . bn-γw: φx0 . . . xn is Σj?+1}
U ίλ ̂  μxφxb0 . . . £>«-iw: ψry is a Δ°+ 1 formula of I p !.

We prove that Γw is a type over M. So choose formulas

0, flo - & -^ 0/^o 6/i-iW, / < r,
λ =£ μxψjxbo . . . Z>rt_iW, / < s

from Γw. We may assume M 1= A 0/^o - - - 9JI\ thus

M N 3 x A 0i2o 5Λ-I^

The formula 3x A 0/^o 9m-\χ is Σ^+ 1; thus by the inductive hypothesis
i<r

M \=3x A 0/*o -bn-ix

By Lemma 2.1 it follows that there is a Δ$+1(Z?0,. . . , ̂ _j) element d such that

M h A 0/δo V i^

Assume M N λ = μxψjoxbo. . . ̂ «-î f for some y0 < 5, i.e., φjoxbo

. . . Z?w_id defines λ. Let θxy0. . . yn-X be a Δ£+1 formula of LP which defines
d, i.e., M N fif = μzθzb0 . . . ̂ Λ -i Then

αx = 3^(^ = μzθb0 . . . ̂ _jZ Λ φfoxbo . . . bn^y)

βx = Vĵ (̂  = μzθb0 . . . 6Λ_iZ -* ^ / 0 ^ 0 - kn-ιy)

define λ, and αx, βx are Σ$+ 1, Π^+i, respectively. As P \- ax o βx, it follows
that λ is Δjj!+1 definable in M with parameters in lb0, . . . , bn_x!, contradicting
our assumption on λ.

Let bne M realize the recursive Σ£+2 type Γw.

Definition 2.4 If M is a countable model of P, then

p f = n ίΛ^:τy< Σ oM,^y^M! .

Theorem 2.5 Pf = Af+1.

Proof: First we prove ^ C Δf+1. By Lemma 2.3 for each λ e M - άf+ι

there is a sequence bo,bx, . . . such that (a) and (b) of the lemma hold. Then
N = \bo,bι, . . .] is a submodel of M, and λ ̂  N, Also A/"<Σo M, since we have
the following. Assume N h= φb0. . . bn-h where 0 ^ is Σ ^ , As the mapping
f'Mi H> bi defines an isomorphism of M onto N, it follows that M \= φa0

. . . an-γ. Then, by (b) of the lemma, we have M h φbQ . . . bn-x. Therefore,
JVC 0 M ; i . e , i V < τ o M .

Now we prove Af+ί ^P^. Let W < Σ o M, and f:N = M be an isomorphism.

If β e ΔJ^n is defined, say, by a Δ?+ 1 formula φx, then M \= a = μxφx. Hence,
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N t= f~ιa = μxφx, and as y = μxφx is Δ°+1, it follows that M h / " 1 ^ = μxφx;
so fa = a. Thus α e TV, and therefore ΔJK ! £ TV.

In [5] Δ^ elements are called recursive numbers in M, By above we have
the following characterization of recursive numbers:

Corollary 2.5.1 Π [N: NQM,N^ M\ = Δf.

Theorem 2.5 enables us to find the intersection of those initial segments
of M which are Σjj! embedded in M. For that reason we introduce the following

Definition 2.6 Qjf = Π ί K: K < γ0 M, K s M \.

Recall that Π f = \x e M: x is definable in M by a Πj? formula!. This set
is considered in [7] and [5] for the case k = 1.

Theorem 2.7 // Λf is a countable model ofP, then Q% C/(Πf).

Proof: The proof of this theorem which we shall present is a variant of the
proof of Friedman's Embeddability Theorem.

Let λ e M be such that for all x e πjf, x < λ, and let α 0 ,# l 3 . . . , a0 = 0,
be an enumeration of M. We shall define a new enumeration eo,e1, . . . of M,
and find a sequence bo,bXi . . . < λ such that the map e, H Z?Z defines an
isomorphism /:M = N, N = \bo,bί,. . .} and N <eΣo M. The construction is
done by the use of the back and forth argument maintaining

(1) M (= 3 x t e 0 . . . en -> 3x < λθxb0 . . . bn, where θxΫ is an arbitrary
Σjj!+1 formula.

Define eo= bo = a0. Suppose e0, . . . , em_u b0, . . . , ̂ m_ x have been deter-
mined.

Step m = 2n + 1. Case n = 0. Then:

(1) M N 3 ^ x -> 3x < λ^x, where θx is an arbitrary Σ^+ 1 formula of LP

(with only one free variable x). So let θx be Σ^+i and assume M \= 3xθx.

Then there is a Γϊ£ formula φxy such that

(2) M \=\fx(θχo3yφxy)

(3) M N 3x^x o 3w(3x,y < w)φxy.

As the formula φw = (3x,^ < w)φxy is Π^, and as M h 3w0w, there is
an element c e M such that M \= c = μxφx; so c e Πj^ and, by the choice of λ,
c is a witness to M (= (3w < λ)φw. Therefore, by (2) and (3) it follows that
M \=(3x<λ)θx.

Case n> 0. Let em be αz with the least index / such that fl, Φ e0) . . . , em_x.
To determine Z?m consider

Γw= ί w < λ l
U {3x^xe0. . .em^3x<\θxb0. . .Z?m_1w: Oxjμ is Σg+ 11.

Obviously, Γw is a recursive set of Σ£+2 formulas of Zp. We show that Γw is a
type over Λ/.
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So let

BxiθiXi^ . . . em -> 3xf < λ0z xz Z?o . . . bm^w9 i < s,

be from Γw (we may assume that for / Φj the variables x, and xj are different).
We show that all these formulas are realized in M together with w < λ. We
may assume M N f\ 3X, 0, Λ:, £ O . . . e_m. Thus

i<s

M\=3yf\ 3xiθixie0...em_ίy;
i<s

i.e.,

M 1= 3z(3y < z)(3x0 . . . χs_x < z) f\ θiXie0 . . . em_xy.
i<s

As the above sentence is Σ°+1, we have by the inductive hypothesis

M N (3z < λ)(3^ < z)(3x0 . . . x,., < z) Λ β/*/&o b^y.

i<s

Therefore,
Λf N(3^<λ)Λ (3xi<λ)θixib0...bm_ιy;

i<s

i.e., Γw is finitely consistent. Therefore, by Theorem 1.3 Γw is realized in M
by some bm.

Step m = 2n + 2. We distinguish two cases:

Case 1. There is no c < λ such that c Φ e0, . . . , em-x and c < b( for some
i < m. Then we proceed to the next step, taking em = em-u bm = bm-v

Case 2. There is a c < λ such that c =£ ̂ 0,. . . , em_x and c < bf for some
i < m. Then Z?m is chosen to be the first such c in the enumeration ao,al9 . . ..

To find em we consider the following recursive set of Σ?+2 formulas

Γw = {w<e/}
U \3xθxe0. . .em-iw-+(3x<λ)θxb0. . .bm: θxf is Σ? + 1 1.

We show that Γw is a type over M. Assume Γw is not consistent; so there
is a / such that

M f= "13w(w<ejA /\ (3xψrxre0. . . em-ιw+(3x<λ)ψrxrb0. . .bm))
r<j

where φrxγ are Σj?+1 formulas (we may assume that the variables x0, . . . , */-i
are different). Let Γ C { 0 , 1 , . . . , / - 1! be such that

r e 7 implies Λf N (Vxr < λ)1φrxrb0 . . . bm

r $ Y implies M 1= (Ξxr < λ)ψrxrb0 . . . bm.

Observe that Y Φ φ. Let Y = {r0, . . . , rs}. Then

M N ( V w < £ ί ) V 3xrι//rxre0. . .fm_jw.
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By Replacement Scheme in P we have

M N3z(Vw<£ I -)(3x r o , . . . ,Xrs<z) V ΨrXr£o- Im-l™-
reY

As the above sentence is Σ£+ 1, by the induction hypothesis we have

M t= (3z < λ)(Vw < ft,)(3*,0, . . . , Xrs < Z) V ΦrXrto £m-lH>.

Hence, as Z?m < 6, , we have for some r e Y

contradicting our choice of Y. Therefore, Γw is a recursive Σ£ + 2 type; thus it is
realized by some em e M.

Let TV = \bo,bι, . . .}. Then N Qe M, and/(e, ) = bj defines an isomorphism
from M onto N. We show that N < Σ o M. Let φx0 . . . xw be a Σ£+i formula of

Lp, and assume Λf N φb0 . . . bn. Then for some Π$ formula φ, φ = 3xφx;
hence iV 1= 3xi//x^0 bn\ i.e., Λf 1= 3xφxfe0 . . . )%„. So M t= 3xi//xe0 . . . en.
By (1) it follows that M h (3x < λ)ψx^0 . ..*«• Therefore iV £ o 7^. As for

. , Άjr k+i

MxeN,x< λ, we have β f C /(Πf).
Another proof of the last theorem is possible. For that it suffices to prove:

Theorem 2.8 If \ e M and for all x e πjf we have x < λ, then there is a
model Mx such that Mί = M, Mx < o M9 and x < λfor all x e Mv

k

The proof of this theorem is given at the odd step of the proof of

Theorem 2.7. So let λ e M, such that for all x e πf we have x < λ, and

Mi <γθ Mi Mi — M' L e t Mibe s u c r l t h a t Mi <c M2 £<? M Such an M2 exists by

Gaifman's Splitting Theorem. Therefore, by Theorem 1.2 it follows that

M2 < Σ o M. As Th(M2) = Th(M) and as SSy(M) = SSy(M2), we may apply the

hierarchical refinement of Friedman's Embeddability Theorem, i.e., there
is N < vo M2 such that N^M. Then N < _0 Af and x < λ for all xeN.

— €Σk~ — — — eΣ^ —

Corollary 2.7.1 β* = J(Pk) = /(Δf+ 1) = /(Πf) .

Proof: By Theorems 2.5 and 2.7 we have

Π f C Δf+1 C β k C /(Πf) C/(Δf+ 1).

Corollary 2.7.2 (D. Marker, A. Wilkie) n [K: KQe M, K = M\ = J(Σ%).

Proof: We have Σ f = Γlf, so by Theorem 2.7 β 0 £ / ( Σ f ) . But Σg definable
elements are preserved under embeddings / : M -* K.

Corollary 2.7.3 For all Jceω^Ilf Cc ΣJ*+1.

Proof: By Corollaries 2.2.1 and 2.7.1.

Since /(Πj^) is a proper subset of M whenever M is a model of P (observe
that \x > μyφy: φy is Π^! is a recursive Σ£ + 2 type over M), we have also:



424 £ARKO MIJAJLOVIC

Corollary 2.7.4 For every k e ω there is a J < e Σ o M such that J = M and
JΦM. k

Now we are able to characterize Σ° extensions of natural numbers.

Theorem 2.9 The following are equivalent for all k e ω and all models M
ofP:

(a) ω <Σo M; (b) Δf+I = ω; (c) π f = ω; (d) Pk = ω; (e) Qk = ω.
k+1

Proof: According to the theorems above, it suffices to prove the equivalence
(a)o(b):

(a) -+ (b) If ω <yo M and a e Af+1, then there is a Δ£+1 formula φx such
k+i

that M \= a = μxφx. Thus Λί N 3xφx. Hence ω 1= 3x0x. So for some n e ω,
M \=φn, i.e.,α < « .

(b) -* (a) Assume Δfίn = ω. Let φ be any Σ$+i sentence and assume there
is a Πj? formula ^x such that M \= φ o 3xθx. Thus, for some b e M,
M \= b = μxθx. Hence b e Af+h i.e., b e ω. Therefore, we have proved: for any
Σj?+1 formula φx, if M \= 3xφx, then M N 0n for some n e ω.

By a hierarchical refinement of the Tarski-Vaught Lemma it follows that
ω < v o M.

Corollary 2.9.1 ω <Σo Miffn\N:NQeM,N = M\ = ω.
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