Submodels and Definable Points in Models of Peano Arithmetic

ŽARKO MIJAJLOVIĆ*

1 Introduction In this paper we consider some definable sets and elements in countable nonstandard models of Peano arithmetic (abbreviated by P). Definable elements and their properties were considered by Jensen and Ehrenfeucht [5] and McAloon [7]. We investigate other properties of these points, and relate them to intersections of submodels of countable nonstandard models of formal arithmetic. When in this paper we speak of nonstandard models of Peano arithmetic we assume that they are countable.

We now introduce some terminology and notation. By L_{P} we denote the language of P. By $\underline{M}, \underline{N}, \ldots$ we denote models of L_{P} or simple expansions of this language, and by M, N, \ldots we denote their domains respectively. The $\underline{\omega}$ stands for the standard system of natural numbers. We shall abbreviate $a_{0}, \ldots, a_{n} \in M$ by $\vec{a} \in M$. If $a \in M$ then \underline{a} denotes the name of a.

As usual, by $M \subseteq_{e} N\left(M<_{e} N, M \subseteq_{c} N, M<_{c} N\right)$ we denote respectively that N is an end extension (elementary end extension, cofinal extension, elementary cofinal extension) of M.

Let Γ be a set of formulas of a language L, and let $\underline{A}, \underline{B}$ be some models of L. A formula ϕ of L is a Γ-formula if $\phi \in \Gamma$. Assume $\underline{A} \subseteq \underline{B}$. Then $\underline{A} \subseteq_{\Gamma} \underline{B}$ iff for all Γ-formulas ϕ of L and all $\vec{a} \epsilon A, \underline{A} \vDash \phi \vec{a}$ implies $\underline{B} \vDash \phi \vec{a}$. We write $\underline{A}<_{\Gamma} \underline{B}$ if "implies" is replaced by "iff" above. An element $a \in A$ is a $\bar{\Gamma}$-element (in \underline{A}) iff a is defined by a Γ-formula in \underline{A}. In the case of P this is equivalent to $\underline{M} \vDash a=\mu x \phi x, \phi x \in \Gamma$. The set $T \cap \Gamma$ is sometimes denoted by T_{Γ}.

[^0]If $\Pi(x, \vec{y}) \subseteq \Gamma, \vec{a} \in A$ and $\Pi(x, \vec{a})$ is finitely consistent over \underline{A}, then we call $\Pi(x, \vec{a})$ a Γ-type. In most cases Γ will be one of these sets: $\Sigma_{k}^{0}, \Pi_{k}^{0}, \Delta_{k}^{0}$. We note the following facts concerning these sets:

Proposition 1.1 Let $\underline{A}, \underline{B}$ be models of P. The following are equivalent: (1) $\underline{A} \subseteq_{\Sigma_{k+1}^{0}} \underline{B}$; (2) $\underline{A}<_{\Sigma_{k}^{0}} \underline{B}$; (3) $\underline{A}<_{\Delta_{k+1}^{0}} \underline{B}$; (4) $\underline{A} \subseteq_{\Delta_{k+1}^{0}} \underline{B}$.

If \underline{M} is a model of P and $S \subseteq M$, then S defines the least segment of \underline{M} which contains S; this is $J_{M}(S)=\{x \in M:(\exists y \in S) x \leqslant y\}$. We omit the subscript M if there is no ambiguity. We recall the fundamental theorem on cofinal extensions.

Gaifman's Splitting Theorem If $\underline{M}, \underline{N}$ are models of P, and $\underline{M} \subseteq \underline{N}$, then $\underline{M}<_{c} J_{N}(M) \subseteq_{e} \underline{N}$.

We have the following hierarchical refinement of Gaifman's Theorem:
Theorem 1.2 Let $\underline{M}, \underline{N}$ be models of $P, \underline{M}<_{c} \underline{K} \subseteq_{e} \underline{N}$, and $\underline{M}<_{\Sigma_{k}^{0}} \underline{N}$. Then $\underline{K}<_{\Sigma_{k}^{0}} \underline{N}$.

Proof: Let $\phi \vec{x} y$ be $\Sigma_{k}^{0}, \vec{a} \in K$, and assume $\underline{N} \vDash \exists y \phi \vec{a} y$. We can choose $m \in M$ such that $\vec{a}<m$. By the Replacement Scheme in P there is a $b \in M$ such that

$$
\underline{M} \vDash \forall \vec{x}<\underline{m}(\exists y \phi \vec{x} y \rightarrow \exists y<\underline{b} \phi \vec{x} y)
$$

It is easily seen that $\forall \vec{x}<\underline{m}(\exists y \phi \vec{x} y \rightarrow \exists y<\underline{b} \phi \vec{x} y)$ is Δ_{k+1}^{0}, and as $\underline{M}<_{\Delta_{k+1}^{0} \underline{N}}$ we have

$$
\underline{N} \vDash \forall \vec{x}<\underline{m}(\exists y \phi \vec{x} y \rightarrow \exists y<\underline{b} \phi \vec{x} y) .
$$

Therefore, $\underline{N} \vDash \exists y<\underline{b} \phi \vec{a} y$, i.e., there is a $c \in K$ such that $\underline{N} \vDash \phi \underline{\vec{a} c}$. By the Σ_{k}^{0}-version of the Tarski-Vaught Theorem we obtain $\underline{K}<_{\Sigma_{k}^{0}} \underline{N}$.

An extended version of A. Robinson's Overspill Lemma will be used throughout. This property might be considered as a partial saturation of nonstandard models of P (cf. [12], [8]).
Theorem 1.3 For every $k \in \omega$, every nonstandard model \underline{M} of P realizes every recursive Σ_{k}^{0}-type over \underline{M}.

One of the main embeddability criteria is given by H. Friedman's Theorem. As usual, $\operatorname{SSy}(\underline{M})$ denotes the standard system of \underline{M}, i.e., the collection of all sets of the form $\{x \in \omega: \underline{M} \vDash \phi x \vec{b}\}$ for $\vec{b} \in M$ and \bar{L}_{P} formulas ϕ.

Friedman's Embeddability Theorem Let $\underline{M}, \underline{N}$ be countable models of P. Then:
(a) \underline{N} is embeddable into \underline{M} iff $T h_{\exists}(\underline{M}) \subseteq T h_{\exists}(\underline{N})$ and $\operatorname{SSy}(\underline{M}) \subseteq \operatorname{SSy}(\underline{N})$.
(b) \bar{N} is isomorphic to an initial segment of \underline{M} iff $\operatorname{Th}_{\Sigma_{1}^{0}}(\underline{N}) \subseteq \operatorname{Th}_{\Sigma_{1}^{0}}(\underline{M})$ and $\operatorname{SSy}(\underline{M})=\operatorname{SSy}(\underline{N})$.

We observe that by a hierarchical refinement (cf. [12], p. 268) we obtain Σ_{k}^{0} elementary embeddings in the theorem if Σ_{1}^{0} and \exists are replaced by Σ_{k}^{0}.

2 Definable elements In this section we shall consider definable elements in nonstandard models of P, and relate them to intersections of submodels (of a model \underline{M} of P). This enables us to characterize those models of P which are Σ_{k}^{0} elementary extensions of $\underline{\omega}$.
Lemma 2.1 Let \underline{M} be a model of P. If ϕx is Σ_{k+1}^{0} and $\underline{M} \vDash \exists x \phi x$, then there is a Δ_{k+1}^{0} element $d \in M$ such that $\underline{M} \vDash \phi \underline{d}$.

Proof: Let $\phi x \doteq \exists y \psi x y, \psi x y$ is Π_{k}^{0}, and $\theta z \doteq \psi\left((z)_{0},(z)_{1}\right)$. Then θz is Π_{k}^{0}, since

$$
P \vdash \theta z \leftrightarrow(\exists u, v \leqslant z)\left(u=(z)_{0} \wedge v=(z)_{1} \wedge \psi u v\right) .
$$

As $\underline{M} \vDash \exists x \phi x$, we have $\underline{M} \vDash \exists z \theta z$, so let $b \in M$ be such that $\underline{M} \vDash b=\mu z \theta z$. Then b is Π_{k}^{0}, and $d=(b)_{0}$ is Δ_{k+1}^{0}, since

$$
\begin{aligned}
& \alpha x \doteq \forall y\left(y=\mu z \psi\left((z)_{0},(z)_{1}\right) \rightarrow x=(y)_{0}\right) \\
& \beta x \doteq \exists y\left(y=\mu z \psi\left((z)_{0},(z)_{1}\right) \wedge x=(y)_{0}\right)
\end{aligned}
$$

define d, and $\alpha x, \beta x$ are $\Pi_{k+1}^{0}, \Sigma_{k+1}^{0}$, respectively. Obviously $P \vdash \alpha x \leftrightarrow \beta x$. Then $\underline{M} \vDash \phi \underline{d}$, since $\underline{M} \vDash \exists \exists y \psi \underline{d} y$.
Definition 2.2 $\Delta_{k}^{M}=\left\{x \in M: x\right.$ is Δ_{k}^{0} definable in $\left.\underline{M}\right\}$.
In general, for any set of formulas Γ, Γ^{M} denotes the set of all Γ-definable elements in \underline{M}. Some of these numbers were considered in [5] and [7]. The following property of Δ_{1}^{M} elements is established in [5]: The code set of $\operatorname{Th}(\underline{\omega}) \cap \Sigma_{1}^{0}$ belongs to $\operatorname{SSy}(\underline{M})$ iff Δ_{1}^{M} is bounded below in $M-\omega$. We note that the code set S of $T h(\underline{\omega}) \cap \Sigma_{1}^{0}$ belongs to $\operatorname{SSy}(\underline{M})$ iff every recursively enumerable subset of ω belongs to $\operatorname{SSy}(\underline{M})$. First, if $S \in \operatorname{SSy}(\underline{M})$, then for any recursively enumerable $A \subseteq \omega$ there is a Σ_{1}^{0} formula ϕx such that $A=\{m \in \omega: \underline{\omega} \vDash \phi \underline{m}\}$, hence $A=\{m \in \omega:\ulcorner\phi \underline{m}\urcorner \in S\}$. As $\operatorname{SSy}(\underline{M})$ is closed under relative recursion (cf. [10]), it follows that $A \in S S y(\underline{M})$. Further, if every recursively enumerable subset of ω belongs to $\operatorname{SSy}(\underline{M})$, then $S \in \operatorname{SSy}(\underline{M})$ since S is itself recursively enumerable. Therefore, we have the following corollary:

Corollary 2.2.1 Every recursively enumerable subset of ω belongs to $S S y(\underline{M})$ iff $\Delta_{1}^{M}-\omega$ is bounded below.

By Lemma 2.1 we have also
Corollary 2.2.2 Δ_{k}^{M} is cofinal in the set of all Σ_{k}^{0} elements of \underline{M}.
We shall need the following lemma to describe intersections of some submodels of \underline{M}.
Lemma 2.3 Let \underline{M} be a model of P and $\lambda \in M$. If λ is not $\Delta_{k+1^{-}}^{0}$ definable in \underline{M}, then there is a sequence b_{0}, b_{1}, \ldots such that
(a) For each $n \in \omega, \lambda$ is not Δ_{k+1}^{0}-definable in \underline{M} with parameters in $\left\{b_{0}, \ldots, b_{n}\right\}$.
(b) For all Σ_{k+1}^{0} formulas $\phi x_{0} \ldots x_{n}, \underline{M} \vDash \phi \underline{a}_{0} \ldots \underline{a}_{n} \rightarrow \phi \underline{b}_{0} \ldots \underline{b}_{n}$, where a_{0}, a_{1}, \ldots is an enumeration of the domain $M, a_{0}=0$.

Proof: We prove (a) and (b) by induction on n. Define $b_{0}=a_{0}$, and assume b_{0}, \ldots, b_{n-1} have been constructed. Let

$$
\begin{aligned}
\Gamma w= & \left\{\phi \underline{a}_{0} \ldots \underline{a}_{n} \rightarrow \phi \underline{b}_{0} \ldots \underline{b}_{n-1} w: \phi x_{0} \ldots x_{n} \text { is } \Sigma_{k+1}^{0}\right\} \\
& \cup\left\{\lambda \neq \mu x \psi x \underline{b}_{0} \ldots \underline{b}_{n-1} w: \psi \vec{x} y \text { is a } \Delta_{k+1}^{0} \text { formula of } L_{P}\right\} .
\end{aligned}
$$

We prove that Γw is a type over \underline{M}. So choose formulas

$$
\begin{array}{rr}
\phi_{i} \underline{a}_{0} \ldots \underline{a}_{n} \rightarrow \phi_{i} \underline{b}_{0} \ldots \underline{b}_{n-1} w, & i<r, \\
\lambda \neq \mu x \psi_{j} x \underline{b}_{0} \ldots \underline{b}_{n-1} w, & j<s
\end{array}
$$

from Γw. We may assume $\underline{M} \vDash \bigwedge_{i<r} \phi_{i} \underline{a}_{0} \ldots \underline{a}_{n}$; thus

$$
\underline{M} \vDash \exists x \bigwedge_{i<r} \phi_{i} \underline{a}_{0} \ldots \underline{a}_{n-1} x .
$$

The formula $\exists x \bigwedge_{i<r} \phi_{i} \underline{a}_{0} \ldots \underline{a}_{n-1} x$ is Σ_{k+1}^{0}; thus by the inductive hypothesis

$$
\underline{M} \vDash \exists x \bigwedge_{i<r} \phi_{i} \underline{b}_{0} \cdots \underline{b}_{n-1} x .
$$

By Lemma 2.1 it follows that there is a $\Delta_{k+1}^{0}\left(b_{0}, \ldots, b_{n-1}\right)$ element d such that

$$
\underline{M} \vDash \bigwedge_{i<r} \phi_{i} \underline{b}_{0} \ldots \underline{b}_{n-1} \underline{d}
$$

Assume $\underline{M} \vDash \lambda=\mu x \psi_{j_{0}} x \underline{b}_{0} \cdots \underline{b}_{n-1} \underline{d}_{0}$ for some $j_{0}<s$, i.e., $\psi_{j_{0}} x \underline{b}_{0}$ $\ldots \underline{b}_{n-1} \underline{d}$ defines λ. Let $\theta x y_{0} \ldots y_{n-1}$ be a Δ_{k+1}^{0} formula of L_{P} which defines d, i.e., $\underline{M} \vDash \underline{d}=\mu z \theta z \underline{b}_{0} \ldots \underline{b}_{n-1}$. Then

$$
\begin{aligned}
& \alpha x \doteq \exists y\left(y=\mu z \theta \underline{b}_{0} \cdots \underline{b}_{n-1} z \wedge \psi_{j_{0}} x \underline{b}_{0} \cdots \underline{b}_{n-1} y\right) \\
& \beta x \doteq \forall y\left(y=\mu z \theta \underline{b}_{0} \cdots \underline{b}_{n-1} z \rightarrow \psi_{j_{0}} x \underline{b}_{0} \cdots \underline{b}_{n-1} y\right)
\end{aligned}
$$

define λ, and $\alpha x, \beta x$ are $\Sigma_{k+1}^{0}, \Pi_{k+1}^{0}$, respectively. As $P \vdash \alpha x \leftrightarrow \beta x$, it follows that λ is Δ_{k+1}^{0} definable in \underline{M} with parameters in $\left\{b_{0}, \ldots, b_{n-1}\right\}$, contradicting our assumption on λ.

Let $b_{n} \in M$ realize the recursive Σ_{k+2}^{0} type Γw.
Definition 2.4 If \underline{M} is a countable model of P, then

$$
P_{k}^{M}=\cap\left\{N: \underline{N}<_{\Sigma_{k}^{0}} \underline{M}, \underline{N} \cong \underline{M}\right\}
$$

Theorem 2.5 $\quad P_{k}^{M}=\Delta_{k+1}^{M}$.
Proof: First we prove $P_{k}^{M} \subseteq \Delta_{k+1}^{M}$. By Lemma 2.3 for each $\lambda \epsilon M-\Delta_{k+1}^{M}$ there is a sequence b_{0}, b_{1}, \ldots such that (a) and (b) of the lemma hold. Then $N=\left\{b_{0}, b_{1}, \ldots\right\}$ is a submodel of \underline{M}, and $\lambda \notin N$. Also $\underline{N}<_{\Sigma_{0}} \underline{M}$, since we have the following. Assume $\underline{N} \vDash \phi \underline{b}_{0} \cdots \underline{b}_{n-1}$, where $\phi \vec{x}$ is $\Sigma_{k+1}^{\Sigma_{k}}$. As the mapping $f: a_{i} \mapsto b_{i}$ defines an isomorphism of \underline{M} onto \underline{N}, it follows that $\underline{M} \vDash \phi \underline{a}_{0}$ $\ldots \underline{a}_{n-1}$. Then, by (b) of the lemma, we have $\underline{M} \vDash \phi \underline{b}_{0} \ldots \underline{b}_{n-1}$. Therefore, $\underline{N} \subseteq_{\Sigma_{k+1}^{0}} \underline{M}$; i.e., $\underline{N}<_{\Sigma_{k}^{0}} \underline{M}$.

Now we prove $\Delta_{k+1}^{M} \subseteq P_{k}^{M}$. Let $\underline{N}<_{\Sigma_{k}^{0}} \underline{M}$, and $f: \underline{N} \cong \underline{M}$ be an isomorphism. If $a \in \Delta_{k+1}^{M}$ is defined, say, by a Δ_{k+1}^{0} formula ϕx, then $\underline{M} \vDash \underline{a}=\mu x \phi x$. Hence,
$\underline{N} \vDash f^{-1} \underline{a}=\mu x \phi x$, and as $y=\mu x \phi x$ is Δ_{k+1}^{0}, it follows that $\underline{M} \vDash f^{-1} \underline{a}=\mu x \phi x$; so $f a=a$. Thus $a \in N$, and therefore $\Delta_{k+1}^{M} \subseteq N$.

In [5] Δ_{1}^{M} elements are called recursive numbers in \underline{M}. By above we have the following characterization of recursive numbers:
Corollary 2.5.1 $\cap\{N: \underline{N} \subseteq \underline{M}, N \cong \underline{M}\}=\Delta_{1}^{M}$.
Theorem 2.5 enables us to find the intersection of those initial segments of \underline{M} which are Σ_{k}^{0} embedded in \underline{M}. For that reason we introduce the following
Definition $2.6 \quad Q_{k}^{M}=\cap\left\{\underline{K}: \underline{K}<_{e \Sigma}{ }_{k} \underline{M}, \underline{K} \cong \underline{M}\right\}$.
Recall that $\Pi_{k}^{M}=\left\{x \in M: x\right.$ is definable in M by a Π_{k}^{0} formula $\}$. This set is considered in [7] and [5] for the case $k=1$.
Theorem 2.7 If \underline{M} is a countable model of P, then $Q_{k}^{M} \subseteq J\left(\Pi_{k}^{M}\right)$.
Proof: The proof of this theorem which we shall present is a variant of the proof of Friedman's Embeddability Theorem.

Let $\lambda \in M$ be such that for all $x \in \pi_{k}^{M}, x<\lambda$, and let $a_{0}, a_{1}, \ldots, a_{0}=0$, be an enumeration of M. We shall define a new enumeration e_{0}, e_{1}, \ldots of \underline{M}, and find a sequence $b_{0}, b_{1}, \ldots<\lambda$ such that the map $e_{i} \mapsto b_{i}$ defines an isomorphism $f: \underline{M} \cong \underline{N}, N=\left\{b_{0}, b_{1}, \ldots\right\}$ and $\underline{N}<_{e \Sigma_{k}^{0} . \underline{M}}$. The construction is done by the use of the back and forth argument maintaining
(1) $\frac{M}{\Sigma_{k+1}^{0}} \vDash \exists x \theta x \underline{e}_{0} \ldots \underline{e}_{n} \rightarrow \exists x<\lambda \theta x \underline{b}_{0} \ldots \underline{b}_{n}$, where $\theta x \vec{y}$ is an arbitrary

Define $e_{0}=b_{0}=a_{0}$. Suppose $e_{0}, \ldots, e_{m-1}, b_{0}, \ldots, b_{m-1}$ have been determined.

Step $m=2 n+1$. Case $n=0$. Then:
(1) $\underline{M} \vDash \exists x \theta x \rightarrow \exists x<\lambda \theta x$, where θx is an arbitrary Σ_{k+1}^{0} formula of L_{P} (with only one free variable x). So let θx be Σ_{k+1}^{0} and assume $\underline{M} \vDash \exists x \theta x$.

Then there is a Π_{k}^{0} formula $\psi x y$ such that
(2) $\underline{M} \vDash \forall x(\theta x \leftrightarrow \exists y \psi x y)$
(3) $\underline{M} \vDash \exists x \theta x \leftrightarrow \exists w(\exists x, y<w) \psi x y$.

As the formula $\phi w \doteq(\exists x, y<w) \psi x y$ is Π_{k}^{0}, and as $\underline{M} \vDash \exists w \phi w$, there is an element $c \in M$ such that $\underline{M} \vDash c=\mu x \phi x$; so $c \in \Pi_{k}^{M}$ and, by the choice of λ, c is a witness to $\underline{M} \vDash(\exists w<\lambda) \phi w$. Therefore, by (2) and (3) it follows that $\underline{M} \vDash(\exists x<\lambda) \theta x$.

Case $n>0$. Let e_{m} be a_{i} with the least index i such that $a_{i} \neq e_{0}, \ldots, e_{m-1}$. To determine b_{m} consider

$$
\begin{aligned}
\Gamma w= & \{w<\lambda\} \\
& \cup\left\{\exists x \theta x e_{0} \ldots e_{m} \rightarrow \exists x<\lambda \theta x b_{0} \ldots b_{m-1} w: \theta x \vec{y} \text { is } \Sigma_{k+1}^{0}\right\} .
\end{aligned}
$$

Obviously, Γw is a recursive set of Σ_{k+2}^{0} formulas of L_{P}. We show that Γw is a type over \underline{M}.

So let

$$
\exists x_{i} \theta_{i} x_{i} \underline{e}_{0} \ldots \underline{e}_{m} \rightarrow \exists x_{i}<\lambda \theta_{i} x_{i} \underline{b}_{0} \ldots b_{m-1} w, \quad i<s
$$

be from Γw (we may assume that for $i \neq j$ the variables x_{i} and x_{j} are different). We show that all these formulas are realized in \underline{M} together with $w<\lambda$. We may assume $\underline{M} \vDash \bigwedge_{i<s} \exists x_{i} \theta_{i} x_{i} \underline{e}_{0} \ldots \underline{e}_{m}$. Thus

$$
\underline{M} \vDash \exists y \bigwedge_{i<s} \exists x_{i} \theta_{i} x_{i} \underline{e}_{0} \ldots \underline{e}_{m-1} y
$$

i.e.,

$$
\underline{M} \vDash \exists z(\exists y<z)\left(\exists x_{0} \ldots x_{s-1}<z\right) \bigwedge_{i<s} \theta_{i} x_{i} \underline{e}_{0} \ldots \underline{e}_{m-1} y
$$

As the above sentence is Σ_{k+1}^{0}, we have by the inductive hypothesis

$$
\underline{M} \vDash(\exists z<\underline{\lambda})(\exists y<z)\left(\exists x_{0} \ldots x_{s-1}<z\right) \bigwedge_{i<s} \theta_{i} x_{i} b_{0} \ldots b_{m-1} y
$$

Therefore,

$$
\underline{M} \vDash(\exists y<\lambda) \bigwedge_{i<s}\left(\exists x_{i}<\lambda\right) \theta_{i} x_{i} b_{0} \ldots b_{m-1} y ;
$$

i.e., Γw is finitely consistent. Therefore, by Theorem $1.3 \Gamma w$ is realized in \underline{M} by some b_{m}.
Step $m=2 n+2$. We distinguish two cases:
Case 1. There is no $c<\lambda$ such that $c \neq e_{0}, \ldots, e_{m-1}$ and $c<b_{i}$ for some $i<m$. Then we proceed to the next step, taking $e_{m}=e_{m-1}, b_{m}=b_{m-1}$.
Case 2. There is a $c<\lambda$ such that $c \neq e_{0}, \ldots, e_{m-1}$ and $c<b_{i}$ for some $i<m$. Then b_{m} is chosen to be the first such c in the enumeration a_{0}, a_{1}, \ldots.

To find e_{m} we consider the following recursive set of Σ_{k+2}^{0} formulas

$$
\begin{aligned}
\Gamma w= & \left\{w<\underline{e}_{i}\right\} \\
& \cup\left\{\exists x \theta x \underline{e}_{0} \ldots \underline{e}_{m-1} w \rightarrow(\exists x<\lambda) \theta x \underline{b}_{0} \ldots \underline{b}_{m}: \theta x \vec{y} \text { is } \Sigma_{k+1}^{0}\right\} .
\end{aligned}
$$

We show that Γw is a type over \underline{M}. Assume Γw is not consistent; so there is a j such that

$$
\underline{M} \vDash \neg \exists w\left(w<\underline{e}_{i} \wedge \bigwedge_{r<j}\left(\exists x \psi_{r} x_{r} \underline{e}_{0} \cdots \underline{e}_{m-1} w \rightarrow(\exists x<\lambda) \psi_{r} x_{r} \underline{b}_{0} \cdots \underline{b}_{m}\right)\right)
$$

where $\psi_{r} x \vec{y}$ are Σ_{k+1}^{0} formulas (we may assume that the variables x_{0}, \ldots, x_{j-1} are different). Let $Y \subseteq\{0,1, \ldots, j-1\}$ be such that

$$
\begin{aligned}
& r \in Y \text { implies } M \not \vDash\left(\forall x_{r}<\lambda\right) \backslash \psi_{r} x_{r} \underline{b}_{0} \ldots \underline{b}_{m} \\
& r \notin Y \text { implies } \underline{M} \vDash\left(\exists x_{r}<\lambda\right) \psi_{r} x_{r} \underline{b}_{0} \ldots \underline{b}_{m} .
\end{aligned}
$$

Observe that $Y \neq \phi$. Let $Y=\left\{r_{0}, \ldots, r_{s}\right\}$. Then

$$
\underline{M} \vDash\left(\forall w<\underline{e}_{i}\right) \bigvee_{r \in Y} \exists x_{r} \psi_{r} x_{r} \underline{e}_{0} \ldots \underline{e}_{m-1} w
$$

By Replacement Scheme in P we have

$$
\underline{M} \vDash \exists z\left(\forall w<\underline{e}_{i}\right)\left(\exists x_{r_{0}}, \ldots, x_{r_{s}}<z\right) \bigvee_{r \in Y} \psi_{r} x_{r} \underline{e}_{0} \ldots \underline{e}_{m-1} w
$$

As the above sentence is Σ_{k+1}^{0}, by the induction hypothesis we have

$$
\underline{M} \vDash(\exists z<\underline{\lambda})\left(\forall w<\underline{b}_{i}\right)\left(\exists x_{r_{0}}, \ldots, x_{r_{s}}<z\right) \bigvee_{r \in Y} \psi_{r} x_{r} \underline{b}_{0} \cdots \underline{b}_{m-1} w .
$$

Hence, as $b_{m}<b_{i}$, we have for some $r \in Y$

$$
\underline{M} \vDash\left(\exists x_{r}<\underline{\lambda}\right) \psi_{r} x_{r} \underline{b}_{0} \cdots \underline{b}_{m}
$$

contradicting our choice of Y. Therefore, Γw is a recursive Σ_{k+2}^{0} type; thus it is realized by some $\underline{e}_{m} \in M$.

Let $N=\left\{b_{0}, b_{1}, \ldots\right\}$. Then $\underline{N} \subseteq_{e} \underline{M}$, and $f\left(e_{i}\right)=b_{i}$ defines an isomorphism from \underline{M} onto \underline{N}. We show that $\underline{N}<_{\Sigma_{k}^{0}} \underline{M}$. Let $\phi x_{0} \ldots x_{n}$ be a Σ_{k+1}^{0} formula of L_{P}, and assume $\underline{N} \vDash \phi \underline{b}_{0} \ldots \underline{b}_{n}$. Then for some Π_{k}^{0} formula $\psi, \phi \doteq \exists x \psi x$; hence $\underline{N} \vDash \exists x \psi x \underline{b}_{0} \ldots \underline{b}_{n}$; i.e., $\underline{N} \vDash \exists x \psi x f \underline{e}_{0} \ldots f \underline{e}_{n}$. So $\underline{M} \vDash \exists x \psi x \underline{e}_{0} \ldots \underline{e}_{n}$. By (1) it follows that $\underline{M} \vDash(\exists x<\underline{\lambda}) \psi x \underline{b}_{0} \ldots \underline{b}_{n}$. Therefore $\underline{N} \subseteq_{\Sigma_{k+1}^{0}} \underline{M}$. As for all $x \in N, x<\lambda$, we have $Q_{k}^{M} \subseteq J\left(\Pi_{k}^{M}\right)$.

Another proof of the last theorem is possible. For that it suffices to prove:
Theorem 2.8 If $\lambda \in M$ and for all $x \in \pi_{k}^{M}$ we have $x<\lambda$, then there is a model \underline{M}_{1} such that $\underline{M}_{1} \cong \underline{M}, \underline{M}_{1}<_{\Sigma_{k}^{0}} \underline{M}$, and $x<\lambda$ for all $x \in M_{1}$.

The proof of this theorem is given at the odd step of the proof of Theorem 2.7. So let $\lambda \in M$, such that for all $x \in \pi_{k}^{M}$ we have $x<\lambda$, and $\underline{M}_{1}<_{\Sigma_{k}^{0}} \underline{M}, \underline{M}_{1} \cong \underline{M}$. Let \underline{M}_{2} be such that $\underline{M}_{1}<_{c} \underline{M}_{2} \subseteq_{e} \underline{M}$. Such an \underline{M}_{2} exists by Gaifman's Splitting Theorem. Therefore, by Theorem 1.2 it follows that $\underline{M}_{2}<_{\Sigma_{k}^{0}} \underline{M}$. As $\operatorname{Th}\left(\underline{M}_{2}\right)=\operatorname{Th}(\underline{M})$ and as $\operatorname{SSy}(\underline{M})=\operatorname{SSy}\left(\underline{M}_{2}\right)$, we may apply the hierarchical refinement of Friedman's Embeddability Theorem, i.e., there is $\underline{N}<_{e \Sigma_{k}^{0}} \underline{M}_{2}$ such that $\underline{N} \cong \underline{M}$. Then $\underline{N}<_{e \Sigma_{k}^{0} \underline{M}}$ and $x<\lambda$ for all $x \in N$.

Corollary 2.7.1 $\quad Q_{k}=J\left(P_{k}\right)=J\left(\Delta_{k+1}^{M}\right)=J\left(\Pi_{k}^{M}\right)$.
Proof: By Theorems 2.5 and 2.7 we have

$$
\Pi_{k}^{M} \subseteq \Delta_{k+1}^{M} \subseteq Q_{k} \subseteq J\left(\Pi_{k}^{M}\right) \subseteq J\left(\Delta_{k+1}^{M}\right)
$$

Corollary 2.7.2 (D. Marker, A. Wilkie) $\cap\left\{K: \underline{K} \subseteq_{e} \underline{M}, \underline{K} \cong \underline{M}\right\}=J\left(\Sigma_{0}^{M}\right)$.
Proof: We have $\Sigma_{0}^{M}=\Pi_{0}^{M}$, so by Theorem $2.7 Q_{0} \subseteq J\left(\Sigma_{0}^{M}\right)$. But Σ_{0}^{0} definable elements are preserved under embeddings $f: \underline{M} \rightarrow \underline{K}$.

Corollary 2.7.3 For all $k \in \omega, \Pi_{k}^{M} \subseteq_{c} \Sigma_{k+1}^{M}$.
Proof: By Corollaries 2.2.1 and 2.7.1.
Since $J\left(\Pi_{k}^{M}\right)$ is a proper subset of \underline{M} whenever \underline{M} is a model of P (observe that $\left\{x>\mu y \phi y: \phi y\right.$ is $\left.\Pi_{k}^{0}\right\}$ is a recursive $\bar{\Sigma}_{k+2}^{0}$ type over \underline{M}), we have also:

Corollary 2.7.4 For every $k \in \omega$ there is a $J<_{e \Sigma_{k}^{0}} \underline{M}$ such that $J \cong \underline{M}$ and $J \neq \underline{M}$.

Now we are able to characterize Σ_{k}^{0} extensions of natural numbers.
Theorem 2.9 The following are equivalent for all $k \in \omega$ and all models \underline{M} of P :
(a) $\underline{\omega}<_{\Sigma_{k+1}^{0}} \underline{M}$;
; (b) $\Delta_{k+1}^{M}=\omega$;
(c) $\Pi_{k}^{M}=\omega$;
(d) $P_{k}=\omega$; (e) $Q_{k}=\omega$.

Proof: According to the theorems above, it suffices to prove the equivalence (a) \leftrightarrow (b):
(a) \rightarrow (b) If $\underline{\omega}<_{\Sigma_{k+1}^{0}} \underline{M}$ and $a \in \Delta_{k+1}^{M}$, then there is a Δ_{k+1}^{0} formula ϕx such that $\underline{M} \vDash a=\mu x \phi x$. Thus $M \vDash \exists x \phi x$. Hence $\underline{\omega} \vDash \exists x \phi x$. So for some $n \in \omega$, $\underline{M} \vDash \bar{\phi} \underline{n}$, i.e., $a \leqslant n$.
(b) \rightarrow (a) Assume $\Delta_{k+1}^{M}=\omega$. Let ϕ be any Σ_{k+1}^{0} sentence and assume there is a Π_{k}^{0} formula θx such that $\underline{M} \vDash \phi \leftrightarrow \exists x \theta x$. Thus, for some $b \in M$, $\underline{M} \vDash b=\mu x \theta x$. Hence $b \in \Delta_{k+1}^{M}$, i.e., $b \in \omega$. Therefore, we have proved: for any $\bar{\Sigma}_{k+1}^{0}$ formula ϕx, if $\underline{M} \vDash \exists x \phi x$, then $\underline{M} \vDash \phi \underline{n}$ for some $n \in \omega$.

By a hierarchical refinement of the Tarski-Vaught Lemma it follows that $\underline{\omega}<\Sigma_{\Sigma_{k+1}^{0}} \underline{M}$.

Corollary 2.9.1 $\quad \underline{\omega}<_{\Sigma_{1}^{0}} \underline{M}$ iff $\cap\left\{N: \underline{N} \subseteq_{e} \underline{M}, \underline{N} \cong \underline{M}\right\}=\omega$.

REFERENCES

[1] Blass, A., Lecture Notes on Models of Arithmetic, Madison, 1978.
[2] Chang, C. C. and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
[3] Friedman, H., "Countable models of set theories," pp. 539-573 in Cambridge Summer School in Mathematical Logic, eds., A. R. D. Mathias and H. Rodgers, Springer Verlag, Heidelberg, 1973.
[4] Gaifman, H. "Models and types of Peano's arithmetic," Annals of Mathematical Logic, vol. 9 (1976), pp. 223-306.
[5] Jensen, D. and A. Ehrenfeucht, "Some problems in elementary arithmetic," Fundamenta Mathematicae, vol. 92 (1976), pp. 223-245.
[6] Kotlarski, H., "On cofinal extensions of models of arithmetic," manuscript, 1981.
[7] McAloon, K., "Completeness theorems, incompleteness theorems and models of arithmetic," Transactions of the American Mathematical Society, vol. 239 (1978), pp. 253-277.
[8] Mijajlović, Ž., "Partial saturation of nonstandard models of arithmetic," Colloquie Internationale de Logique, Marseille, 1981.
[9] Paris, J., Lecture Notes on Models of Arithmetic, Manchester, 1977.
[10] Scott, D., "Algebra of sets binumerable in complete extensions of arithmetic," pp. 117-121 in Recursive Function Theory, ed., J. C. E. Dekker, American Mathematical Society, Providence, Rhode Island, 1962.
[11] Smorynski, C., "The incompleteness theorems," in Handbook of Mathematical Logic, ed., J. Barwise, North-Holland, Amsterdam, 1977.
[12] Smorynski, C., "Recursively saturated nonstandard models of arithmetic," The Journal of Symbolic Logic, vol. 46 (1981), pp. 259-286.
[13] Wilkie, A., "On the theories of end-extensions of models of arithmetic," pp. 305-310 in Set Theory and Hierarchy Theory V, eds., A. Lachlan, M. Srebrni and A. Zarach, Springer Verlag, Heidelberg, 1977.

Faculty of Science
Institute of Mathematics
Belgrade, Yugoslavia

[^0]: *I presented some of my early results at the Logic Conference in Marseille, 1981 (Corollary 2.9.1). There I had a short but inspiring discussion on these matters with D. Marker, who informed me of a generalization belonging to him and A. Wilke (Corollary 2.7.2).

