The Concept of n-Cylinder and its Relationship to Simple Sets

M. B. THURAISINGHAM

Abstract

1 Introduction The concept of ' n-cylinder' was originally defined [4] in order to construct noncylindrical decision problems using System functions, a kind of function defined by Cleave [1]. It is a generalization of Young's [6] concept of a semicylinder and it forms a link between a semicylinder and a cylinder. Its definition is as follows:

Definition A set P is an n-cylinder if and only if there is a recursive function f such that for all $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\begin{aligned}
& \left\{x_{1}, x_{2}, \ldots, x_{n} \subseteq P P \Rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right. \\
& \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq \bar{P} \Rightarrow f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \bar{P}-\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} .
\end{aligned}
$$

This function f is called the n-cylinder function for P. It can be seen that a semicylinder is a 1 -cylinder. In [5], properties of n-cylinders and their relationship to cylinders were explored, and subsequently it was shown that: (i) for each $n \geqslant 1$, the class of all $(n+1)$-cylinders is a proper subset of the class of all cylinders, and (ii) a set is a cylinder if and only if it is an n-cylinder for each $n \geqslant 1$. Thus we can deduce that as n tends to infinity, the class of all n-cylinders coincides with the class of all cylinders.

This article shows a major difference between the properties of n-cylinders and cylinders: for each $n \geqslant 1$, the class of all n-cylinders contains a simple set whereas it has been shown [3] that no cylinder can be simple. The existence of n-cylinders which are simple gives rise to the following question: "Can every one-one degree be represented by an n-cylinder for each $n \geqslant 1$?"

From the results obtained in [4] and [5] we conjecture that for every infinite recursively enumerable set $W_{e^{\prime}}$ there is an n-cylinder $A_{n, e}$ for each $n \geqslant 1$ such that $W_{e} \leq A_{n, e}$ and $A_{n, e} \underset{n^{*}}{\leqslant} W_{e}$, where a set A is n^{*} reducible to a
set B if A is many-one reducible to B via some recursive function f and for each $x, f^{-1}(x)$ has at most ($n+1$) members. However, the question as to whether for each recursively enumerable set W_{e} there exists an n-cylinder $A_{n, e}$ for each $n \geqslant 1$ such that $W_{e} \equiv A_{n, e}$ still remains open.

In Section 3 of this paper we prove the following result (α) which shows the existence of n-cylinders which are simple. The preliminary definitions needed for this proof are given in Section 2. For the recursive function theory terminology used in this paper we refer to [3].

Result (α) For each $n \geqslant 1$, there is an n-cylinder A_{n} such that A_{n} is simple.
2 Definitional preliminaries The definition of System functions and the definitions in the theory of graphs given in this section have been obtained mainly from [1] and [2]. In Section 3, these graph theoretic concepts are employed in formulating certain algorithms.

Let $f: N \rightarrow P_{w}(N)$ where N is the set of all natural numbers and $P_{w}(N)$ is the set of all finite subsets of N.

For all $x \in N, f^{-1}(x)=\{y: x \in f(y)\}$.
By $y \in C_{f} x$ is meant: Either $y=x$ or $y \in f(x)$ or there exist $y_{1}, y_{2}, \ldots, y_{n}$ $(n \geqslant 1)$ such that $y_{1} \in f(x), y \in f\left(y_{n}\right)$ and for each $(1 \leqslant i \leqslant n-1), y_{i+1} \in f\left(y_{i}\right)$.

By the expression $\bigvee_{i=1}^{n} K_{i}$ is meant: $K_{1} \vee K_{2} \vee K_{3} \vee, \ldots, \vee K_{n}$.
A system function is a function $f: N \rightarrow P_{w}(N)$ such that there exist recursive functions a and b such that for all $x, f(x)=D_{a(x)}$ and $f^{-1}(x)=D_{b(x)}$ where D_{n} is the $n^{\text {th }}$ finite set in some standard enumeration.

The class of all System functions will be denoted by \mathcal{G}.
Let D be a digraph whose points are in N. By $x \in D$ is meant: x is a point of D. If $x \in D$ and $y \in D$, then $x \vec{\rightarrow} y$ (or $y \uplus x$) is a directed line if and only if there is a line from x to y in D. By $x \rightarrow y(D)$ is meant: Either $x=y$ or $x \vec{\square} y$ is a directed line or there exist $v_{1}, v_{2}, \ldots, v_{n}(n \geqslant 1)$ which are points of D such that $x=v_{1}, y=v_{n}$ and for each $i(1 \leqslant i \leqslant n-1), v_{i} \vec{\cdot} v_{i+1}$ is a directed line.

By $x \mid y(D)$ is meant: It is not the case that $x \rightarrow y(D)$ or $y \rightarrow x(D)$.
3 Existence of simple sets which are n-cylinders We will now prove Result (α) stated in Section 1.

Proof of Result (α) : We need to prove that for each $n \geqslant 1$, there is a simple set G_{n} such that $G_{n} \in K(n)$ where $K(n)$ is the class of all n-cylinders. This result follows from the following result:

Result (β) For each $g \in \subseteq$ and $n \geqslant 2$, let

$$
A_{n}^{g}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): W^{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

where if n is a prime,

$$
W^{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv \bigvee_{i=1}^{n-1} x_{i+1} \in C_{g} x_{i} V x_{1} \in C_{g} x_{n}
$$

If n is not a prime,

$$
W^{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv \bigvee_{j=1}^{m_{1}} \underline{W}^{g}\left(x_{j}^{1}\right) V \bigvee_{j=1}^{m_{2}} \underline{W}^{g}\left(x_{j}^{2}\right) V \ldots V \bigvee_{j=1}^{m_{s}} \underline{W}^{g}\left(x_{j}^{s}\right)
$$

where $m_{1}, m_{2}, \ldots, m_{s}$ are all the divisors of n other than n (but including 1) and $a_{1}, a_{2}, \ldots, a_{s}$ are the respective quotients (i.e., for each $i(1 \leqslant i \leqslant s)$, $m_{i} a_{i}=n$) and

$$
\underline{W}^{g}\left(x_{r}^{k}\right)=\bigvee_{t=1}^{a_{k}-1} x_{r+t m_{k}} \in C_{g} x_{r+(t-1) m_{k}} V x_{r} \in C_{g} x_{r+\left(a_{k}-1\right) m_{k}}
$$

Then:
(i) If $g \in \mathbb{S}, A_{n}^{g}$ is an m-cylinder for each $m<n$.
(ii) For each $n \geqslant 2$, there exists an $f \in \subseteq$ such that A_{n}^{f} is simple.

Proof of Result (β)(i): Let τ_{n} be a recursive function which maps $N^{n} 1-1$ and onto N. Let $\pi_{1}^{n}, \pi_{2}^{n}, \ldots, \pi_{n}^{n}$ be those recursive functions of one variable which yield inverse mappings to τ_{n}; i.e., for all $x, \tau_{n}\left(\pi_{1}^{n}(x), \pi_{2}^{n}(x), \ldots, \pi_{n}^{n}(x)\right)=x$. We need the following result (δ). (Its proof is trivial and we state only the result here.)

Result ($\boldsymbol{\delta}$) Given an n-tuple of numbers $x_{1}, x_{2}, \ldots, x_{n}$, define $\bar{x}_{1}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right), \bar{x}_{n}=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and for each $i(2 \leqslant i \leqslant n-1)$, $\bar{x}_{i}=\left(x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{n}, x_{1}, x_{2}, \ldots, x_{i-1}\right)$. Then
(i) If n is a prime, there exist $p, q(1 \leqslant p, q \leqslant n)$ such that $\bar{x}_{p}=\bar{x}_{q}$ only if $x_{1}=x_{2}=x_{3}=, \ldots,=x_{n-1}=x_{n}$.
(ii) If n is not a prime there exist $p, q(1 \leqslant p, q \leqslant n)$ such that $\bar{x}_{p}=\bar{x}_{q}$ only if either $x_{1}=x_{2}=\ldots=x_{n-1}=x_{n}$ or there is a divisor $m(m \neq 1$ or n) of n where $m \cdot a=n$ such that for each $j(1 \leqslant j \leqslant m), x_{j}=x_{j+m}=$ $x_{j+2 m}=\ldots=x_{j+(a-1) m}$.
For each $m<n$, construct a function h_{m} of m variables as follows: To compute $h_{m}\left(y_{1}, y_{2}, \ldots, y_{m}\right)$, first check whether the following condition (θ) holds.
(θ) There is an $i(1 \leqslant i \leqslant m)$ such that for some $j, k(1 \leqslant j, k \leqslant n), \pi_{j}^{n}\left(y_{i}\right)=$ $\pi_{k}^{n}\left(y_{i}\right)$ and there is an occurrence of $x_{k} \in C_{g} x_{j}$ in $W^{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
If Condition (θ) holds, then find the least number $\tau_{n}(t, t, \ldots, t)$ such that there is no $i(1 \leqslant i \leqslant m)$ such that $y_{i}=\tau_{n}(t, t, \ldots, t)$. Set $h_{m}\left(y_{1}, y_{2}, \ldots, y_{m}\right)=$ $\tau_{n}(t, t, \ldots, t)$.

If Condition (θ) does not hold, find the least number $\tau_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ such that for some $p(1 \leqslant p \leqslant m)$,

$$
\begin{aligned}
\left\{z_{1}, z_{1}, \ldots, z_{n}\right\}= & \left\{\pi_{1}^{n}\left(y_{p}\right), \pi_{2}^{n}\left(y_{p}\right), \ldots, \pi_{n}^{n}\left(y_{p}\right)\right\}, \\
\left(z_{1}, z_{2}, \ldots, z_{n}\right) \epsilon & \left(\pi_{2}^{n}\left(y_{p}\right), \pi_{3}^{n}\left(y_{p}\right), \ldots, \pi_{n}^{n}\left(y_{p}\right), \pi_{1}^{n}\left(y_{p}\right)\right), \\
& \left(\pi_{3}^{n}\left(y_{p}\right), \pi_{4}^{n}\left(y_{p}\right), \ldots, \pi_{n}^{n}\left(y_{p}\right), \pi_{1}^{n}\left(y_{p}\right), \pi_{2}^{n}\left(y_{p}\right)\right), \ldots, \\
& \left(\pi_{n-1}^{n}\left(y_{p}\right), \pi_{n}^{n}\left(y_{p}\right), \pi_{1}^{n}\left(y_{p}\right), \pi_{2}^{n}\left(y_{p}\right), \ldots, \pi_{n-2}^{n}\left(y_{p}\right)\right) \\
& \left(\pi_{n}^{n}\left(y_{p}\right), \pi_{1}^{n}\left(y_{p}\right), \pi_{2}^{n}\left(y_{p}\right), \ldots, \pi_{n-1}^{n}\left(y_{p}\right)\right),
\end{aligned}
$$

and there is no $r(1 \leqslant r \leqslant m)$ such that $\tau_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=y_{r}$. As $m<n$
and as Condition (θ) does not hold, from Result (δ) and the definition of $W^{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it can be seen that such a number $\tau_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ exists.

Set $h_{m}\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\tau_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. It can be easily verified that h_{m} is an m-cylinder function for A_{n}^{g} for each $g \epsilon \mathbb{S}$.
Proof of Result (β)(ii):. We prove this result only for the case when $n=2$. The essential points of our argument are clearly exhibited in this proof. (A similar argument can be applied for the case when $n>2$.) The proof is divided into two parts. The first part consists of a programme in which labeled digraphs D^{o}, D^{1}, D^{2}, are constructed with the following properties:
(i) There exists a recursive function ρ such that for each $m, \rho(m)$ is the Gödel number of D^{m}.
(ii) For each m, D^{m+1} is an extension of D^{m}; i.e., all points of D^{m} are points of D^{m+1} and D^{m+1} contains as a point the least number which is not a point of D^{m}. Furthermore, if x, y are points of D^{m}, then there is a line from x to y in D^{m} if and only if there is a line from x to y in D^{m+1}.
(iii) For each m, m is a point of D^{m}.
(iv) Labels are taken from the infinite set $\left\{P_{e_{i}}^{1}, P_{e_{i}}^{2}: e \geqslant 0, i \geqslant 0\right\}$ of markers. In addition to these labels, markers of the form j_{t}^{*} or j_{t}^{+} where $j, t \geqslant 0$ are used.

We also use the following two statements S1 and S2 in the programme.
S1 Introduce the labels $P_{e_{0}}^{1}, P_{e_{0}}^{2}$ to D^{m-1} and extend the resulting graph to \hat{D}.

S2 Introduce the labels $P_{e_{i}}^{1}, P_{e_{i}}^{2}$ to \bar{D}.
By S1 we mean the following: Find the least 2 numbers, say $a_{1}<a_{2}$, not in D^{m-1} and introduce them as new points so that each point $a_{i}(i \in\{1,2\})$ forms a new component. Name a_{i} by $P_{e_{O}}^{i}$ for each $i(i \in\{1,2\})$. Let the resulting graph be D_{1}^{m-1}. Then find the least four numbers $a_{3}<a_{4}<a_{5}<a_{6}$ not in D_{1}^{m-1}. Adjoin these numbers as new points and join the lines $a_{3} \vec{\bullet} a_{1}, a_{3} \vec{\bullet} a_{2}, a_{4} \bullet a_{3}, a_{1} \vec{\bullet} a_{5}, a_{2} \vec{~} a_{5}$, $a_{5} \stackrel{\rightharpoonup}{*} a_{6}$. Let the resulting graph be D_{2}^{m-1}. Let $b_{1}, b_{2}, \ldots, b_{k}$ be all the numbers which have beside them a symbol j_{t}^{*} where $j, t \geqslant 0$, and let $r_{1}, r_{2}, \ldots, r_{s}$ be all the numbers which have beside them a symbol p_{q}^{+}where $p, q \geqslant 0$. Find the least $k+s$ numbers, say $y_{1}<y_{2}<\ldots<y_{k+s}$, not in D_{2}^{m-1}. Adjoin these numbers as new points and join the lines $y_{1} \uplus b_{1}, y_{2} \stackrel{\leftrightarrow}{2}, \ldots, y_{k} \stackrel{\leftrightarrow}{4} b_{k}, r_{1} \stackrel{\leftrightarrow}{*} y_{s+1}, r_{2} \stackrel{\leftrightarrow}{ } y_{k+2}, \ldots$, $r_{s} \uplus y_{k+s}$. Erase the symbol beside each $b_{i}(1 \leqslant i \leqslant k)$ and palce it beside y_{i}. Similarly erase the symbol beside each $r_{i}(1 \leqslant i \leqslant s)$ and place it beside y_{k+i}. Then place the symbol e_{o}^{*} beside a_{4} and the symbol e_{o}^{+}beside a_{6}. Join the line $y_{k+s} \vec{a} a_{4}$. The resulting graph is \hat{D}. (See Figure 1.)

By S2 we mean the following: Find the least two numbers, say $v_{1}<v_{2}$, not in \bar{D}. Adjoin them as new points so that each point $v_{j}(j \in\{1,2\})$ forms a new component. Name $v_{j}(j \in\{1,2\})$ by $P_{e_{i}}^{j}$. Let the resulting graph be \bar{D}_{1}. Find the least four numbers say $v_{3}<v_{4}<v_{5}<v_{6}$ not in \bar{D}_{1}. Adjoin them as new points and join the lines $v_{3} \vec{\cdot} v_{1}, v_{3} \vec{\cdot} v_{2}, v_{4} \stackrel{\rightharpoonup}{v_{3}}, v_{1} \vec{\cdot} v_{5}, v_{2} \vec{\cdot} v_{5}, v_{5} \stackrel{\rightharpoonup}{v} v_{6}$. Find the largest number y which has beside it a symbol $p_{q}^{+}(p, q \geqslant 0)$. Join the line $y \cdot \vec{v}_{4}$. Then

place the symbol e_{i}^{*} beside v_{4} and the symbol e_{i}^{+}beside v_{6}. (See Figure 2.) The second part of the proof consists of four lemmas by means of which it will be proved that there is an $f \in \mathcal{S}$ such that every infinite recursively enumerable set W_{e} intersects A_{2}^{f}.

I Programme Construct the digraph D^{m} and a list $Z_{m}(m \geqslant 0)$ as follows:
Stage 0. D^{o} consists of the points $0,1,2,3,4,5$ and the lines $2 \cdot 0,2 \cdot 1,2 \leftrightarrow 3$, $1 \rightarrow 4,2 \vec{\bullet}, 4 \nleftarrow 5$. 0,1 are labeled $P_{0_{0}}^{1}, P_{0_{0}}^{2}$, respectively. The symbol 0_{0}^{*} is placed beside 3 and the symbol 0_{0}^{+}is placed beside 6. $Z_{0}=\phi$.

Stage $m(m \geqslant 1)$, Step 1. Introduce the labels $P_{m_{0}}^{1}, P_{m_{0}}^{2}$ to D^{m-1} and extend the resulting graph to \hat{D}.

Step 2. Find the least number $e \leqslant m$ such that there exist numbers x_{1}, x_{2}, z all $\leqslant m$ satisfying R where R is the conjunction of the following conditions R_{1}, R_{2}, and R_{3}, where

$$
\begin{aligned}
& R_{1} \equiv T\left(e, \tau\left(x_{1}, x_{2}\right), z\right) \text { where } T \text { is the Kleene's } T \text {-predicate and } \tau \text { is a } \\
& \text { recursive function which maps } N^{2} 1-1 \text { and onto } N \\
& R_{2} \equiv \tau\left(x_{1}, x_{2}\right)>2 e \\
& R_{3} \equiv e \notin Z_{m-1} .
\end{aligned}
$$

If there does not exist such an e, set $D^{m}=\hat{D}$ and $Z_{m}=Z_{m-1}$. If there exists such an e, define:

$$
\begin{aligned}
& e^{m}=(\mu e)\left(\exists z, x_{1}, x_{2} \text { all } \leqslant m\right) R\left(e, x_{1}, x_{2}, z, m\right) \\
& x_{1}^{m}=\left(\mu x_{1}\right)\left(\exists z, x_{2} \text { both } \leqslant m\right) R\left(e^{m}, x_{1}, x_{2}, z, m\right) \\
& x_{2}^{m}=\left(\mu x_{2}\right)(\exists z \leqslant m) R\left(e^{m}, x_{1}^{m}, x_{2}, z, m\right) .
\end{aligned}
$$

For convenience, let $e^{m}, x_{1}^{m}, x_{2}^{m}$ be e, x_{1}, x_{2}, respectively. The application of Step 3 to e will be called an 'attack' on e.
Step 3, Case 1. There do not exist $j(j \leqslant m)$ and $k(k \geqslant 0)$ such that x_{1}, x_{2} are labeled $P_{j_{k}}^{u}, P_{j_{k}}^{v}$, respectively, where $1 \leqslant u, v \leqslant 2$ and $u \neq v$. Then $\operatorname{set} D^{m}=\hat{D}$ and $Z_{m}=Z_{m-1} \cup\{e\}$.

Case 2. Case 1 does not hold.
(i) If $j \leqslant e$, set $D^{m}=\hat{D}, Z_{m}=Z_{m-1}$.
(ii) $j>e$. Suppose the symbols j_{k}^{*}, j_{k}^{+}are placed beside y_{1}, y_{2}, respectively. Join the line $y_{2} \overrightarrow{y_{1}}$. Delete $P_{\bar{j}}^{1}, P_{j_{k}}^{2}$. Let the resulting graph be \bar{D}. Introduce the labels $P_{j_{k+1}}^{1}, P_{j_{k+1}}^{2}$ to \bar{D}. The resulting graph is D^{m} Set $Z_{m}=$ $Z_{m-1} \cup\{e\}$.
This ends the programme.

$$
\begin{aligned}
\text { Set } D=\bigcup_{m=0}^{\infty} D^{m} \text { where } D^{i} \cup D^{j} & =D^{j} \text { if } j \geqslant i \\
& =D^{i} \text { if } j<i
\end{aligned}
$$

Clearly all points incident with x in D are lines of D^{x+1}. Define:

$$
\begin{aligned}
& f(x)=\{y: x \rightarrow y(D)\}=\left\{y: x \rightarrow y\left(D^{x+1}\right)\right\} \\
& f^{-1}(x)=\{y: y \rightarrow x(D)\}=\left\{y: y \rightarrow x\left(D^{x+1}\right)\right\} .
\end{aligned}
$$

Then $f \in S$ and $A_{2}^{f}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1} \rightarrow x_{2} \vee x_{2} \rightarrow x_{1}\right)(D)\right\}$.
II Definition A label L is fixed at a stage numbered H if it is assigned to the same point at all stages numbered $n \geqslant H$.

Lemma 1 For each $e(e \geqslant 0)$, there is a unique number t_{e} and a Stage M_{e} such that $P_{e_{t_{e}}}^{1}, P_{e_{t_{e}}}^{2}$ are fixed at Stage M_{e}.

Proof: For each $e, P_{e_{o}}^{1}, P_{e_{O}}^{2}$ are introduced at Stage $e . P_{e_{i}}^{1}, P_{e_{i}}^{2}(i \geqslant 0)$ are deleted and $P_{e_{i+1}}^{1}, P_{e_{i+1}}^{2}$ are introduced via Case 2(ii) of a stage numbered m only if a number $k<e$ is attacked at Stage M. Furthermore this number k will never be attacked at a Stage $n>m$. As there exist only finitely many numbers less than e, and at any stage in the programme as there exists only one number, say q, such that $P_{e_{q}}^{1}, P_{e_{q}}^{2}$ are assigned to points, there exists a unique number say t and a Stage M such that $P_{e_{t}}^{1}, P_{e_{t}}^{2}$ are fixed at Stage M. Set $t_{e}=t$ and $M_{e}=M$.
Lemma $2 A_{2}^{f}$ is recursively enumerable.
Proof: $A_{2}^{f}=\left\{\left(x_{1}, x_{2}\right):\left(x_{1} \rightarrow x_{2} \vee x_{2} \rightarrow x_{1}\right)(D)\right\}$. From the programme it can be seen that for any number $m \geqslant 0$, and for any pair of points (x, y), if $x \rightarrow y\left(D^{m}\right)$, then $x \rightarrow y(D)$. Construct a list L as follows:

Stage $n^{*}(n \geqslant 0)$. For any points x, y, if $x \rightarrow y\left(D^{n}\right)$, then place (x, y) and (y, x) in L.

This list gives an effective enumeration of the set A_{2}^{f}. Therefore A_{2}^{f} is recursively enumerable.
Lemma $3 \quad \overline{A_{2}^{f}}$ is infinite.
Proof: By Lemma 1, for each e, there is a unique number t_{e} and a Stage M_{e} such that the labels $P_{e_{e}}^{1}, P_{e_{e_{e}}}^{2}$ are fixed at Stage M_{e}. From the programme it can be seen that $\overline{A_{2}^{f}}=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2}\right.$ are labeled either $P_{e_{e_{e}}}^{1}, P_{e_{t_{e}}}^{2}$, respectively, or $P_{e_{e}}^{2}, P_{e_{e}}^{1}$, respectively, for some $\left.e \geqslant 0\right\}$. Clearly $\overline{A_{2}^{f}}$ is infinite.

Lemma $4 \quad$ Every infinite recursively enumerable set intersects A_{2}^{f}.

Proof: If $W_{e}=\{x:(\exists y) T(e, x, y)\}$ is infinite, then there exist infinitely many numbers x belonging to W_{e} such that $x>2 e$. Furthermore, as there exist only finitely many numbers less than e, there is a Stage m at which e will be attacked and Case 2(i) will not occur at Step 3 of Stage m. Then there exist x_{1}, x_{2} such that $\tau\left(x_{1}, x_{2}\right) \in W_{e}$ and at Stage m it will be ensured that $\left(x_{1} \rightarrow x_{2} \vee x_{2} \rightarrow x_{1}\right)\left(D^{m}\right)$ holds. As D is an extension of $D^{m},\left(x_{1} \rightarrow x_{2} \vee x_{2} \rightarrow x_{1}\right)\left(D^{m}\right) \Rightarrow\left(x_{1} \rightarrow x_{2} \vee\right.$ $\left.x_{2} \rightarrow x_{1}\right)(D)$; i.e., $\left(x_{1}, x_{2}\right) \in A_{2}^{f}$. We have shown that A_{2}^{f} is recursively enumerable, $\overline{A_{2}^{f}}$ is infinite and every infinite recursively enumerable set intersects A_{2}^{f}. Therefore A_{2}^{f} is simple. This proves Result (β) (ii) for the case when $n=2$.

Note that for the case when $n>2$, the proof is similar to the above proof except that labels $P_{e_{t}}^{1}, P_{e_{t}}^{2}, \ldots, P_{e_{t}}^{n}(e \geqslant 0, t \geqslant 0)$ will have to be used.

REFERENCES

[1] Cleave, J. P., "Combinatorial systems I, cylindrical problems," Journal of Computer and System Sciences, vol. 6 (1972), pp. 254-266.
[2] Cleave, J. P., "Non-cylindrical decision problems," unpublished (1970), Department of Pure Mathematics, University of Bristol, U.K.
[3] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGrawHill, New York, 1967.
[4] Thuraisingham, M. B., System Functions and their Decision Problems, Ph.D. Thesis (1979), Department of Pure Mathematics, University College of Swansea, U.K.
[5] Thuraisingham, M. B., "The concept of n-cylinder, its relationship to cylinders and its application," submitted to The Journal of Symbolic Logic.
[6] Young, P. R., "On semi-cylinders, splinters and bound truth table reducibility," Transactions of the American Mathematical Society, vol. 115 (1965), pp. 329-339.

Department of Computer Science
New Mexico Tech
Socorro, New Mexico 87801

