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The Concept of n-Cylinder and its

Relationship to Simple Sets

M. B. THURAISINGHAM

1 Introduction The concept of '^-cylinder' was originally defined [4] in
order to construct noncylindrical decision problems using System functions,
a kind of function defined by Cleave [1]. It is a generalization of Young's [6]
concept of a semicylinder and it forms a link between a semicylinder and a
cylinder. Its definition is as follows:

Definition A set P is an ^-cylinder if and only if there is a recursive function
/such that for all xu x2, . . ., xn,

{XUX2,. ->Xn\ ί ^ / ( X i , X 2 > -,Xn)eP-\Xl>X2> >*n\

\XUX2, . .,Xn\ QPs*f0Ci,X2, .,Xn)€P-lXuX2, • Xni-

This function / is called the ^-cylinder function for P. It can be seen that a
semicylinder is a 1-cylinder. In [5], properties of ^-cylinders and their relation-
ship to cylinders were explored, and subsequently it was shown that: (i) for
each n > 1, the class of all (n+ l)-cylinders is a proper subset of the class of all
cylinders, and (ii) a set is a cylinder if and only if it is an ^-cylinder for each
n>\. Thus we can deduce that as n tends to infinity, the class of-all ^-cylinders
coincides with the class of all cylinders.

This article shows a major difference between the properties of /^-cylinders
and cylinders: for each n > 1, the class of all ^-cylinders contains a simple set
whereas it has been shown [3] that no cylinder can be simple. The existence of
^-cylinders which are simple gives rise to the following question: "Can every
one-one degree be represented by an ^-cylinder for each n > 1?"

From the results obtained in [4] and [5] we conjecture that for every
infinite recursively enumerable set We' there is an ^-cylinder Ane for each
n > 1 such that We < An e and An e < We, where a set A is n* reducible to a

1-1 ' ' n*
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set B if A is many-one reducible to B via some recursive function / and for each
x, f~ι(x) has at most (/?+1) members. However, the question as to whether for
each recursively enumerable set We there exists an ^-cylinder An>e for each
n > 1 such that We = An>e still remains open.

1~1

In Section 3 of this paper we prove the following result (a) which shows
the existence of ^-cylinders which are simple. The preliminary definitions
needed for this proof are given in Section 2. For the recursive function theory
terminology used in this paper we refer to [3].

Result (a) For each n > 1, there is an ^-cylinder An such that An is simple.

2 Definitional preliminaries The definition of System functions and the
definitions in the theory of graphs given in this section have been obtained
mainly from [1] and [2]. In Section 3, these graph theoretic concepts are
employed in formulating certain algorithms.

Let f:N-* PW(N) where N is the set of all natural numbers and PW(N) is
the set of all finite subsets of N.

For all x e N, f'\x) = {y:xe f(y)\.

By y e CfX is meant: Either y = x or y e f(x) or there exist yh y2> . . ., yn

(n > 1) such that yx e fix), y e f(yn) and for each (1 < i < n - 1), yi+1 e/(>>/).
n

By the expression V Ki is meant: Kι\zK2vK3\/, . . ., v Kn.
/=i

A system function is a function f:N~+ PW(N) such that there exist
recursive functions a and b such that for all x, f(x) = Da(x) and f~ι(x) - D^x)
where Dn is the nth finite set in some standard enumeration.

The class of all System functions will be denoted by 6.
Let D be a digraph whose points are in N. By x e D is meant: x is a point

of D. If x e D and y e D, then χ~?y (or y^x) is a directed line if and only if there
is a line from x to y in D. By x -> y (D) is meant: Either x = y or x^y is a
directed line or there exist υu υ2, . . ., vn(n > 1) which are points of D such that
x - υuy ~ vn a n d for each /(I < / < n ~ 1), vf?υi+1 is a directed line.

By x\y (D) is meant: It is not the case that x -> y{D) or y -• x(D).

3 Existence of simple sets which are n-cylinders We will now prove Result
(ά) stated in Section 1.

Proof of Result (a): We need to prove that for each n > 1, there is a simple set
Gn such that Gn e K(n) where K(n) is the class of all n-cylinders. This result
follows from the following result:

Result (β) For each g e 6 and n > 2, let

A8

n = l(xu x2,. ., xn)' Wg(xu x2i. . ., xn)\

where if n is a prime,

n-\

Wg(xu x2,. . ., X Λ ) Ξ V *ί+i e CgXiVxx e Cgxn.
1 = 1

If n is not a prime,
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W*{χ» χ2, ., **)= V ΨixjW V ΦίxjW... V V W*(?ή)

where m1, m2, . . ., ms are all the divisors of n other than n (but including 1)
and al9 a2, . . ., as are the respective quotients (i.e., for each /(I < / < s),
m, 0, = n) and

j l f (x?) = V Xr+tmk € CgXr+(t-i)mkVXr € CgXr+(ak-l)mk

Then:

(i) If g e 6, ^ is an ra-cylinder for each m<n.

(ii) For each n > 2, there exists an /e S such that >l£ is simple.

Proof of Result (β)(i): Let rrt be a recursive function which maps Nn l~ 1
and onto JV. Let 7ΓΪ, π", . . ., TΓ" be those recursive functions of one variable
which yield inverse mappings to τn\ i.e., for all x, rrt(πi(x),π2(x),..., π^(x)) = x.
We need the following result (δ). (Its proof is trivial and we state only the result
here.)

Result (δ) Given an rc-tuple of numbers x h x2) . . ., xn, define xx =
Qcl9 x 2 , - ., x n ) , x n

 = ( χ n , Xu *2> •» ^ Λ - I ) a n d f o r e a c n z ' ( 2 < i < n - I),
χi = \χi9 χi+i> Xi+2> •> ̂ n> ^i> ^2> •> ̂ i - i ) T h e n

(i) If n is a prime, there exist p, q (\<p, q <n) such that xp = Λ^ only
i f Xι = X 2

 = X3 = » •> = ^/l-l = ^Λ

(ii) If n is not a prime there exist p, q (1 < p, q < «) such that 3cp = x^
only if either xλ = x2 = . . . = x«-i = xn or there is a divisor m(mΦ 1
or n) of n where m a = n such that for each/(I </ < m), x; = x/+m =
Λ7+2m = = ^7+(fl-i)m-

For each m<n, construct a function hm of m variables as follows: To compute
hm(yu yiτ - •> ym)> fi r s t check whether the following condition (0) holds.

(θ) There is an /(I <i<m) such that for some /, Λ(l </, Λ < w), π^ί^i) =

π2(.yι) a n (^ there is an occurrence of x^ e Qx ; in Wg(xϊ9 x2, , xn)-

If Condition (θ) holds, then find the least number τΠ(ί, ί, . . ., t) such that there
is no /(I < i < m) such that ^ = rΠ(ί, ί, . . ., ί) Set Am(^i, y2, . . ., ^ m ) =
τn(t, t,. . ., ί).

If Condition (0) does not hold, find the least number τn(zlf z2, . . ., zn)
such that for some p{\ < p < m),

{zls z l 9 . . ., zn\ = ίπj(yp), πΊiyp), ., iTw(yp)h
(Zi, z2,. . ., zn) e (π%(yp), τt%yp),. . ., πj(^), 7r7(yp)),

(πw

3(jp),π5(yp), . . . , π ^ ) , π ? ( y p ) , π ^ p ) ) , . . .,
(<-i(yP),<(yp),πϊ(yp),πn2(yp),. . , ^ . 2 ( ^ ) )

W(^),^(^),^(^),. . ..π".^)),
and there is no r(l < r < m) such that rw(zj, z2, . . ., zn) = yr. As m < n
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and as Condition (Θ) does not hold, from Result (δ) and the definition of
Wg(xl9 x2) . ., x«), it can be seen that such a number τn(zϊ9 z2>. . ., zn) exists.

Set hm(yl9 y2, . . ., ym) = τn(zu z2, . . ., zn). It can be easily verified that
hm is an m-cyUnder function for Ag

n for each g e S.

Proof of Result (β)(ii):_ We prove this result only for the case when n = 2. The
essential points of our argument are clearly exhibited in this proof. (A similar
argument can be applied for the case when n > 2.) The proof is divided into
two parts. The first part consists of a programme in which labeled digraphs
D°, Dι, D2, are constructed with the following properties:

(i) There exists a recursive function p such that for each m, ρ(m) is the
Gδdel number of Dm.

(ii) For each m, Dm+1 is an extension of Dm\ i.e., all points of Dm are
points of Dm+1 and Dm+ι contains as a point the least number which
is not a point of Dm. Furthermore, if x, y are points of Dm, then
there is a line from x to y in Dm if and only if there is a line from x
toyinDm+1.

(ϋi) For each m, m is a point ofDm.
(iv) Labels are taken from the infinite set \Plv F%.: e > 0, i> 0} of

markers. In addition to these labels, markers of the form /* or /*
where /, t > 0 are used.

We also use the following two statements SI and S2 in the programme. (

51 Introduce the labels Pj0, PlQ to Dm~λ and extend the resulting graph
to/λ

52 Introduce the labels P\v F*. to D.

By SI we mean the following: Find the least 2 numbers, say ax <a2, not
in Dm~ι and introduce them as new points so that each point αz (/ e f 1,2}) forms
a new component. Name a,χ by P\Q for each/(7 e ίl,2}). Let the resulting graph
beDψ'1. Then find the least four numbersa 3 <a 4 <a 5 <a 6 not inDψ"1. Adjoin
these numbers as new points and join the lines a^ax, a3~?a2, a^a3, a{?as, a2~^as,
a^a6. Let the resulting graph be JDJ1"1. Let bl9 b2, . , b% be all the numbers
which have beside them a symbol /* where /, t > 0, and let ru r2, . . ., rs be all
the numbers which have beside them a symbol pq where p,q>θ. Find the least
k + s numbers, say yx <y2 < . . . <yic+s> n o t i n Dψ'1, Adjoin these numbers as
new points and join the lines y"bu yrb2, . . ., yk~bk, r"ys+l9 r^yk+2, . . .,
rs*yk+s Erase the symbol beside each ft, (l < i < k) and palce it beside >>,-.
Similarly erase the symbol beside each η(\ < / < s) and place it beside >>*+/•
Then place the symbol eg beside a4 and the symbol e^ beside a6. Join the line
yjc+s^

a4' The resulting graph is D. (See Figure 1.)
By S2 we mean the following: Find the least two numbers, say Vι < v2i

not in D. Adjoin them as new points so that each point Vj(j e U,2}) forms a
new component. Name ι/; (/ e 11,2}) by PJ

e.. Let the resulting graph beDj. Find
the least four numbers say υ3 < i74 <υ5<υ6 not in Dx. Adjoin them as new
points and join the lines v{^υχ9 vz~^υ2, υ^v3, v{^vS9 v2~^υ5, Vs^v^- Find the largest
number y which has beside it a symbol pj(p, q > 0). Join the line y^v^ Then
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place the symbol ef beside ι>4 and the symbol e[ beside v6. (See Figure 2.)
The second part of the proof consists of four lemmas by means of which it will
be proved that there is an / e 6 such that every infinite recursively enumerable
set We intersects A{.

I Programme Construct the digraph Dm and a list Zm(m > 0) as follows:

Stage 0. D° consists of the points 0, 1, 2, 3, 4, 5 and the lines 2^0, 2^1, 2^3,
1^4? 2^4, 4~5. 0, 1 are labeled P£o, P

2

%i respectively. The symbol 0£ is placed
beside 3 and the symbol 0Q is placed beside 6. Z o = φ.

Stage m(m > 1), Step 1. Introduce the labels P^o, P^ o to Dm~ι and extend the
resulting graph to D.

Step 2. Find the least number e < m such that there exist numbers xl9 x2, z
all <ra satisfying R where R is the conjunction of the following conditions
Ri,R2, and R3, where

R1= T(e, r(xί, x2), z) where T is the Kleene's Γ-predicate and r is a
recursive function which maps TV2 1-1 and onto TV

R2=τ(xί,x2)>2e
R3=eiZm.v

If there does not exist such an e, set Dm = D and Zm = Zm_ x . If there exists such
an e, define:

em = (μe)(3z, χu x2 all <m)R(e, xu x2, z, rή)
xf = (μxjiβz, x2 both <m)R(em, χlt x2, z, m)
x™ = (M*2)(3z < m)R(em, xψ, x2, z, m).

For convenience, let em, xψ, xψ be e, xlf x2, respectively. The application of
Step 3 to e will be called an 'attack' on e.

Step 3, Case 1. There do not exist/(/ < rή) and k{k > 0) such that xlt x2 are

labeled Pfk, P ^ , respectively, where 1 < u, v < 2 and u Φ υ. Then set Dm = D

a n d Z m = Z m _! U {el.

Case 2. Case 1 does not hold.

(i) I f / < e , set£>m=i3, Zm=Zm.v

(ii) j>e. Suppose the symbols jj*, j£ are placed beside yu y2, respec-

tively. Join the line y2~^yv Delete Pj , Pj.. Let the resulting graph be D.

Introduce the labels Pjk^ Pfk+i to D. The resulting graph is Dm Set Zm =

Zm-γ\J\e\.

This ends the programme.

oo

Set D = U Dm where Dl U D1 = D] if/ > i
m=0 =/)'"if/</.

Clearly all points incident with x in D are lines of Z>*+1. Define:
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fix) = {y:x^y (D)\ = [y: x ->y (Z^+ 1)}

f'\x) = \y:y^x (D)\ = {y:y-+x (Dx+1)\.

Then / e S and 4 ζ = {(jclf x2): (xι -+x2 v x2^x ι)Φ)}.

II Definition A label L is fixed at a stage numbered H if it is assigned to
the same point at all stages numbered n> H.

Lemma 1 For each e(e > 0), there is a unique number te and a Stage Me

such that PL , Plt are fixed at Stage Me.
ιe ιe

Proof: For each e, P\o, P\o are introduced at Stage e. P\p P\{ (/ > 0) are deleted

and Pli+V P%i+ι are introduced via Case 2(ii) of a stage numbered m only if a

number k < e is attacked at Stage M. Furthermore this number k will never be

attacked at a Stage n> m. As there exist only finitely many numbers less than

e, and at any stage in the programme as there exists only one number, say q,

such that Pi, Pi are assigned to points, there exists a unique number say t and

a Stage M such that P\v P\t are fixed at Stage M. Set te = t and Me = M.

Lemma 2 A{is recursively enumerable.

Proof: A2 = K*i, Xi)'- (x\ ~* Xi v x2 "* Xi)(i))}. From the programme it can be
seen that for any number m > 0, and for any pair of points (x, y)iifχ-*y (Dm),
then χ-+y (D). Construct a list L as follows:

Stage n* (n > 0). For any points x, y, if Λ: -* j> (Dn), then place (x,y) and
(>>, x) in Z,.

This list gives an effective enumeration of the set A{. Therefore A{ is recursively
enumerable.

Lemma 3 A 2 is infinite.

Proof: By Lemma 1, for each e, there is a unique number te and a Stage Me

such that thejabels t\χ , P\χ are fixed at Stage Me. From the programme it can

be seen that A{ = {Oi, χ2); χl9 χ2 are labeled either P\t , P\χ , respectively, or

Plt J ̂ i f J respectively, for some e>0\. Clearly ̂ l{ is infinite.

Lemma 4 £Verμ infinite recursively enumerable set intersects A^.

Proof: If We = \x: Qy)T(e, x, y)} is infinite, then there exist infinitely many

numbers x belonging to W€ such that x > 2e. Furthermore, as there exist only
finitely many numbers less than e, there is a Stage m at which e will be attacked
and Case 2(i) will not occur at Step 3 of Stage m. Then there exist xu x2 such
that τ(xίyx2) e We and at Stage m it will be ensured that (xx ~*x2v x2-*Xι)(Dm)

holds. As D is an extension of Dm, (x1 -+ x2 v x2 -> x1)(Z)m) =» (xx -» x2 v

^2."^ ^ i ) Φ ) ; i e

 5 (^1^2) e ^2 ^ e n a v e shown that A{ is recursively enumerable,

A?2 is infinite and every infinite recursively enumerable set intersects A{. There-

fore A{ is simple. This proves Result (β)(ii) for the case when n = 2.
Note that for the case when n>2, the proof is similar to the above proof

except that labels P\v P\v . . ., P»t (e > 0, t > 0) will have to be used.
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