Notre Dame Journal of Formal Logic Volume 24, Number 3, July 1983

The Concept of n-Cylinder and its Relationship to Simple Sets

M. B. THURAISINGHAM

1 Introduction The concept of '*n*-cylinder' was originally defined [4] in order to construct noncylindrical decision problems using System functions, a kind of function defined by Cleave [1]. It is a generalization of Young's [6] concept of a semicylinder and it forms a link between a semicylinder and a cylinder. Its definition is as follows:

Definition A set P is an n-cylinder if and only if there is a recursive function f such that for all x_1, x_2, \ldots, x_n ,

$$\{x_1, x_2, \dots, x_n\} \subseteq P \Rightarrow f(x_1, x_2, \dots, x_n) \in P - \{x_1, x_2, \dots, x_n\} \\ \{x_1, x_2, \dots, x_n\} \subseteq \overline{P} \Rightarrow f(x_1, x_2, \dots, x_n) \in \overline{P} - \{x_1, x_2, \dots, x_n\}.$$

This function f is called the *n*-cylinder function for *P*. It can be seen that a semicylinder is a 1-cylinder. In [5], properties of *n*-cylinders and their relationship to cylinders were explored, and subsequently it was shown that: (i) for each $n \ge 1$, the class of all (n+1)-cylinders is a proper subset of the class of all cylinders, and (ii) a set is a cylinder if and only if it is an *n*-cylinder for each $n \ge 1$. Thus we can deduce that as *n* tends to infinity, the class of all *n*-cylinders coincides with the class of all cylinders.

This article shows a major difference between the properties of *n*-cylinders and cylinders: for each $n \ge 1$, the class of all *n*-cylinders contains a simple set whereas it has been shown [3] that no cylinder can be simple. The existence of *n*-cylinders which are simple gives rise to the following question: "Can every one-one degree be represented by an *n*-cylinder for each $n \ge 1$?"

From the results obtained in [4] and [5] we conjecture that for every infinite recursively enumerable set $W_{e'}$ there is an *n*-cylinder $A_{n,e}$ for each $n \ge 1$ such that $W_e \le A_{n,e}$ and $A_{n,e} \le W_e$, where a set A is n^* reducible to a

Received June 15, 1981

set B if A is many-one reducible to B via some recursive function f and for each x, $f^{-1}(x)$ has at most (n+1) members. However, the question as to whether for each recursively enumerable set W_e there exists an n-cylinder $A_{n,e}$ for each $n \ge 1$ such that $W_e \equiv A_{n,e}$ still remains open.

In Section 3 of this paper we prove the following result (α) which shows the existence of *n*-cylinders which are simple. The preliminary definitions needed for this proof are given in Section 2. For the recursive function theory terminology used in this paper we refer to [3].

Result (α) For each $n \ge 1$, there is an *n*-cylinder A_n such that A_n is simple.

2 Definitional preliminaries The definition of System functions and the definitions in the theory of graphs given in this section have been obtained mainly from [1] and [2]. In Section 3, these graph theoretic concepts are employed in formulating certain algorithms.

Let $f: N \to P_w(N)$ where N is the set of all natural numbers and $P_w(N)$ is the set of all finite subsets of N.

For all $x \in N$, $f^{-1}(x) = \{y : x \in f(y)\}.$

By $y \in C_f x$ is meant: Either y = x or $y \in f(x)$ or there exist y_1, y_2, \ldots, y_n $(n \ge 1)$ such that $y_1 \in f(x)$, $y \in f(y_n)$ and for each $(1 \le i \le n-1)$, $y_{i+1} \in f(y_i)$. By the expression $\bigvee_{i=1}^n K_i$ is meant: $K_1 \lor K_2 \lor K_3 \lor \ldots, \lor K_n$.

A system function is a function $f: N \to P_w(N)$ such that there exist recursive functions *a* and *b* such that for all *x*, $f(x) = D_{a(x)}$ and $f^{-1}(x) = D_{b(x)}$ where D_n is the *n*th finite set in some standard enumeration.

The class of all System functions will be denoted by \mathfrak{S} .

Let D be a digraph whose points are in N. By $x \in D$ is meant: x is a point of D. If $x \in D$ and $y \in D$, then $x \neq y$ (or $y \neq x$) is a directed line if and only if there is a line from x to y in D. By $x \neq y$ (D) is meant: Either x = y or $x \neq y$ is a directed line or there exist v_1, v_2, \ldots, v_n ($n \ge 1$) which are points of D such that $x = v_1, y = v_n$ and for each $i(1 \le i \le n - 1), v_i \neq v_{i+1}$ is a directed line.

By x|y(D) is meant: It is not the case that $x \to y(D)$ or $y \to x(D)$.

3 Existence of simple sets which are n-cylinders We will now prove Result (α) stated in Section 1.

Proof of Result (α): We need to prove that for each $n \ge 1$, there is a simple set G_n such that $G_n \in K(n)$ where K(n) is the class of all *n*-cylinders. This result follows from the following result:

Result (β) For each $g \in \mathfrak{S}$ and $n \ge 2$, let

$$A_n^g = \{(x_1, x_2, \dots, x_n): W^g(x_1, x_2, \dots, x_n)\}$$

where if *n* is a prime,

$$W^{g}(x_1, x_2, \ldots, x_n) \equiv \bigvee_{i=1}^{n-1} x_{i+1} \in C_g x_i V x_1 \in C_g x_n.$$

If *n* is not a prime,

$$W^{g}(x_{1}, x_{2}, \ldots, x_{n}) \equiv \bigvee_{j=1}^{m_{1}} \underline{W}^{g}(x_{j}^{1}) V \bigvee_{j=1}^{m_{2}} \underline{W}^{g}(x_{j}^{2}) V \ldots V \bigvee_{j=1}^{m_{s}} \underline{W}^{g}(x_{j}^{s})$$

where m_1, m_2, \ldots, m_s are all the divisors of *n* other than *n* (but including 1) and a_1, a_2, \ldots, a_s are the respective quotients (i.e., for each $i(1 \le i \le s)$, $m_i a_i = n$) and

$$\underline{W}^{g}(x_{r}^{k}) = \bigvee_{t=1}^{a_{k}-1} x_{r+tm_{k}} \in C_{g} x_{r+(t-1)m_{k}} V x_{r} \in C_{g} x_{r+(a_{k}-1)m_{k}}.$$

Then:

- (i) If $g \in \mathfrak{S}$, A_n^g is an *m*-cylinder for each m < n.
- (ii) For each $n \ge 2$, there exists an $f \in \mathbb{S}$ such that A_n^f is simple.

Proof of Result (β)(i): Let τ_n be a recursive function which maps N^n 1-1 and onto N. Let $\pi_1^n, \pi_2^n, \ldots, \pi_n^n$ be those recursive functions of one variable which yield inverse mappings to τ_n ; i.e., for all $x, \tau_n(\pi_1^n(x), \pi_2^n(x), \ldots, \pi_n^n(x)) = x$. We need the following result (δ). (Its proof is trivial and we state only the result here.)

Result (δ) Given an *n*-tuple of numbers x_1, x_2, \ldots, x_n , define $\overline{x}_1 = (x_1, x_2, \ldots, x_n)$, $\overline{x}_n = (x_n, x_1, x_2, \ldots, x_{n-1})$ and for each $i(2 \le i \le n-1)$, $\overline{x}_i = (x_i, x_{i+1}, x_{i+2}, \ldots, x_n, x_1, x_2, \ldots, x_{i-1})$. Then

- (i) If n is a prime, there exist p, q $(1 \le p, q \le n)$ such that $\overline{x}_p = \overline{x}_q$ only if $x_1 = x_2 = x_3 = \dots = x_{n-1} = x_n$.
- (ii) If n is not a prime there exist p, q (1 ≤ p, q ≤ n) such that x̄_p = x̄_q only if either x₁ = x₂ = ... = x_{n-1} = x_n or there is a divisor m (m ≠ 1 or n) of n where m ⋅ a = n such that for each j(1 ≤ j ≤ m), x_j = x_{j+m} = x_{j+2m} = ... = x_{j+(a-1)m}.

For each m < n, construct a function h_m of m variables as follows: To compute $h_m(y_1, y_2, \ldots, y_m)$, first check whether the following condition (θ) holds.

(θ) There is an $i(1 \le i \le m)$ such that for some j, $k(1 \le j, k \le n), \pi_j^n(y_i) = \pi_k^n(y_i)$ and there is an occurrence of $x_k \in C_g x_j$ in $W^g(x_1, x_2, \dots, x_n)$.

If Condition (θ) holds, then find the least number $\tau_n(t, t, \ldots, t)$ such that there is no $i(1 \le i \le m)$ such that $y_i = \tau_n(t, t, \ldots, t)$. Set $h_m(y_1, y_2, \ldots, y_m) = \tau_n(t, t, \ldots, t)$.

If Condition (θ) does not hold, find the least number $\tau_n(z_1, z_2, \ldots, z_n)$ such that for some $p(1 \le p \le m)$,

$$\{z_1, z_1, \dots, z_n\} = \{\pi_1^n(y_p), \pi_2^n(y_p), \dots, \pi_n^n(y_p)\}, (z_1, z_2, \dots, z_n) \in (\pi_2^n(y_p), \pi_3^n(y_p), \dots, \pi_n^n(y_p), \pi_1^n(y_p)), (\pi_3^n(y_p), \pi_4^n(y_p), \dots, \pi_n^n(y_p), \pi_1^n(y_p), \pi_2^n(y_p)), \dots, (\pi_{n-1}^n(y_p), \pi_n^n(y_p), \pi_1^n(y_p), \pi_2^n(y_p), \dots, \pi_{n-2}^n(y_p)) (\pi_n^n(y_p), \pi_1^n(y_p), \pi_2^n(y_p), \dots, \pi_{n-1}^n(y_p)),$$

and there is no $r(1 \le r \le m)$ such that $\tau_n(z_1, z_2, \ldots, z_n) = y_r$. As m < n

and as Condition (θ) does not hold, from Result (δ) and the definition of $W^{g}(x_{1}, x_{2}, \ldots, x_{n})$, it can be seen that such a number $\tau_{n}(z_{1}, z_{2}, \ldots, z_{n})$ exists.

Set $h_m(y_1, y_2, \ldots, y_m) = \tau_n(z_1, z_2, \ldots, z_n)$. It can be easily verified that h_m is an *m*-cylinder function for A_n^g for each $g \in \mathbb{S}$.

Proof of Result (β)(ii): We prove this result only for the case when n = 2. The essential points of our argument are clearly exhibited in this proof. (A similar argument can be applied for the case when n > 2.) The proof is divided into two parts. The first part consists of a programme in which labeled digraphs D^{0} , D^{1} , D^{2} , are constructed with the following properties:

- (i) There exists a recursive function ρ such that for each m, $\rho(m)$ is the Gödel number of D^m .
- (ii) For each m, D^{m+1} is an extension of D^m ; i.e., all points of D^m are points of D^{m+1} and D^{m+1} contains as a point the least number which is not a point of D^m . Furthermore, if x, y are points of D^m , then there is a line from x to y in D^m if and only if there is a line from x to y in D^{m+1} .
- (iii) For each m, m is a point of D^m .
- (iv) Labels are taken from the infinite set $\{P_{e_i}^1, P_{e_i}^2: e \ge 0, i \ge 0\}$ of markers. In addition to these labels, markers of the form j_t^* or j_t^+ where $j, t \ge 0$ are used.

We also use the following two statements S1 and S2 in the programme.

S1 Introduce the labels $P_{e_0}^1$, $P_{e_0}^2$ to D^{m-1} and extend the resulting graph to \hat{D} .

S2 Introduce the labels $P_{e_i}^1$, $P_{e_i}^2$ to \overline{D} .

By S1 we mean the following: Find the least 2 numbers, say $a_1 < a_2$, not in D^{m-1} and introduce them as new points so that each point a_i ($i \in \{1, 2\}$) forms a new component. Name a_i by $P_{e_0}^i$ for each $i(i \in \{1, 2\})$. Let the resulting graph be D_1^{m-1} . Then find the least four numbers $a_3 < a_4 < a_5 < a_6$ not in D_1^{m-1} . Adjoin these numbers as new points and join the lines $a_3 \stackrel{\sim}{a} a_1, a_3 \stackrel{\sim}{a} a_2, a_4 \stackrel{\leftrightarrow}{a} a_3, a_1 \stackrel{\sim}{a} a_5, a_2 \stackrel{\sim}{a} a_5$. Let the resulting graph be D_2^{m-1} . Let b_1, b_2, \ldots, b_k be all the numbers which have beside them a symbol j_t^* where $j, t \ge 0$, and let r_1, r_2, \ldots, r_s be all the numbers, say $y_1 < y_2 < \ldots < y_{k+s}$, not in D_2^{m-1} . Adjoin these numbers as new points and join the lines $y_1 \stackrel{\leftrightarrow}{b} b_1, y_2 \stackrel{\leftrightarrow}{b} b_2, \ldots, y_k \stackrel{\leftrightarrow}{b} b_k, r_1 \stackrel{\leftrightarrow}{b} y_{s+1}, r_2 \stackrel{\leftrightarrow}{b} y_{k+2}, \ldots, r_s \stackrel{\leftrightarrow}{b} y_{k+s}$. Erase the symbol beside each $b_i(1 \le i \le s)$ and place it beside y_{k+i} . Then place the symbol e_0^* beside a_4 and the symbol e_0^* beside a_6 . Join the line $y_{k+s} \stackrel{\sim}{a} a_4$. The resulting graph is \hat{D} . (See Figure 1.)

By S2 we mean the following: Find the least two numbers, say $v_1 < v_2$, not in \overline{D} . Adjoin them as new points so that each point $v_j(j \in \{1,2\})$ forms a new component. Name $v_j(j \in \{1,2\})$ by $P_{e_i}^j$. Let the resulting graph be \overline{D}_1 . Find the least four numbers say $v_3 < v_4 < v_5 < v_6$ not in \overline{D}_1 . Adjoin them as new points and join the lines $v_3 \cdot v_1, v_3 \cdot v_2, v_4 \cdot v_3, v_1 \cdot v_5, v_2 \cdot v_5, v_5 \cdot v_6$. Find the largest number y which has beside it a symbol $p_q^{i}(p, q \ge 0)$. Join the line $y \cdot v_4$. Then

place the symbol e_i^* beside v_4 and the symbol e_i^+ beside v_6 . (See Figure 2.) The second part of the proof consists of four lemmas by means of which it will be proved that there is an $f \in \mathbb{S}$ such that every infinite recursively enumerable set W_e intersects A_2^f .

I Programme Construct the digraph D^m and a list $Z_m (m \ge 0)$ as follows:

Stage 0. D^o consists of the points 0, 1, 2, 3, 4, 5 and the lines $2 \cdot 0$, $2 \cdot 1$, $2 \cdot 3$, $1 \cdot 4$, $2 \cdot 4$, $4 \cdot 5$. 0, 1 are labeled $P_{0_0}^1$, $P_{0_0}^2$, respectively. The symbol 0_0^* is placed beside 3 and the symbol 0_0^* is placed beside 6. $Z_0 = \phi$.

Stage $m(m \ge 1)$, Step 1. Introduce the labels $P_{m_0}^1$, $P_{m_0}^2$ to D^{m-1} and extend the resulting graph to \hat{D} .

Step 2. Find the least number $e \le m$ such that there exist numbers x_1, x_2, z all $\le m$ satisfying R where R is the conjunction of the following conditions R_1, R_2 , and R_3 , where

 $R_1 \equiv T(e, \tau(x_1, x_2), z)$ where T is the Kleene's T-predicate and τ is a recursive function which maps N^2 1-1 and onto N $R_2 \equiv \tau(x_1, x_2) > 2e$ $R_3 \equiv e \notin Z_{m-1}$.

If there does not exist such an e, set $D^m = \hat{D}$ and $Z_m = Z_{m-1}$. If there exists such an e, define:

 $e^{m} = (\mu e)(\exists z, x_{1}, x_{2} \text{ all } \leq m)R(e, x_{1}, x_{2}, z, m)$ $x_{1}^{m} = (\mu x_{1})(\exists z, x_{2} \text{ both } \leq m)R(e^{m}, x_{1}, x_{2}, z, m)$ $x_{2}^{m} = (\mu x_{2})(\exists z \leq m)R(e^{m}, x_{1}^{m}, x_{2}, z, m).$

For convenience, let e^m , x_1^m , x_2^m be e, x_1 , x_2 , respectively. The application of Step 3 to e will be called an 'attack' on e.

Step 3, Case 1. There do not exist $j(j \le m)$ and $k(k \ge 0)$ such that x_1, x_2 are labeled $P_{j_k}^u, P_{j_k}^v$, respectively, where $1 \le u, v \le 2$ and $u \ne v$. Then set $D^m = \hat{D}$ and $Z_m = Z_{m-1} \cup \{e\}$.

Case 2. Case 1 does not hold.

(i) If $j \leq e$, set $D^m = \hat{D}$, $Z_m = Z_{m-1}$.

(ii) j > e. Suppose the symbols j_k^* , j_k^+ are placed beside y_1 , y_2 , respectively. Join the line $y_2 \vec{\neg} y_1$. Delete $P_{j_k}^1$, $P_{j_k}^2$. Let the resulting graph be \overline{D} . Introduce the labels $P_{j_{k+1}}^1$, $P_{j_{k+1}}^2$ to \overline{D} . The resulting graph is D^m Set $Z_m = Z_{m-1} \cup \{e\}$.

This ends the programme.

Set
$$D = \bigcup_{m=0}^{\infty} D^m$$
 where $D^i \cup D^j = D^j$ if $j \ge i$
= D^i if $j < i$.

Clearly all points incident with x in D are lines of D^{x+1} . Define:

$$f(x) = \{y: x \to y \ (D)\} = \{y: x \to y \ (D^{x+1})\}\$$

$$f^{-1}(x) = \{y: y \to x \ (D)\} = \{y: y \to x \ (D^{x+1})\}.$$

Then $f \in S$ and $A_2^f = \{(x_1, x_2) : (x_1 \to x_2 \lor x_2 \to x_1)(D)\}.$

II Definition A label L is *fixed* at a stage numbered H if it is assigned to the same point at all stages numbered $n \ge H$.

Lemma 1 For each $e(e \ge 0)$, there is a unique number t_e and a Stage M_e such that $P_{e_{t_e}}^1$, $P_{e_{t_e}}^2$ are fixed at Stage M_e .

Proof: For each e, $P_{e_0}^1$, $P_{e_0}^2$ are introduced at Stage e. $P_{e_i}^1$, $P_{e_i}^2$ $(i \ge 0)$ are deleted and $P_{e_{i+1}}^1$, $P_{e_{i+1}}^2$ are introduced via Case 2(ii) of a stage numbered m only if a number k < e is attacked at Stage M. Furthermore this number k will never be attacked at a Stage n > m. As there exist only finitely many numbers less than e, and at any stage in the programme as there exists only one number, say q, such that $P_{e_q}^1$, $P_{e_q}^2$ are assigned to points, there exists a unique number say t and a Stage M such that $P_{e_t}^1$, $P_{e_t}^2$ are fixed at Stage M. Set $t_e = t$ and $M_e = M$.

Lemma 2 A_2^f is recursively enumerable.

Proof: $A_2^f = \{(x_1, x_2): (x_1 \to x_2 \lor x_2 \to x_1)(D)\}$. From the programme it can be seen that for any number $m \ge 0$, and for any pair of points (x, y), if $x \to y$ (D^m) , then $x \to y$ (D). Construct a list L as follows:

Stage n^* $(n \ge 0)$. For any points x, y, if $x \to y$ (D^n) , then place (x, y) and (y, x) in L.

This list gives an effective enumeration of the set A_2^f . Therefore A_2^f is recursively enumerable.

Lemma 3 A_2^f is infinite.

Proof: By Lemma 1, for each e, there is a unique number t_e and a Stage M_e such that the labels $P_{e_{t_e}}^1, P_{e_{t_e}}^2$ are fixed at Stage M_e . From the programme it can be seen that $\overline{A_2^f} = \{(x_1, x_2): x_1, x_2 \text{ are labeled either } P_{e_{t_e}}^1, P_{e_{t_e}}^2, \text{ respectively, or } P_{e_{t_e}}^2, P_{e_{t_e}}^1, \text{ respectively, for some } e \ge 0\}$. Clearly $\overline{A_2^f}$ is infinite.

Lemma 4 Every infinite recursively enumerable set intersects A_2^f .

Proof: If $W_e = \{x: (\exists y) T(e, x, y)\}$ is infinite, then there exist infinitely many numbers x belonging to W_e such that x > 2e. Furthermore, as there exist only finitely many numbers less than e, there is a Stage m at which e will be attacked and Case 2(i) will not occur at Step 3 of Stage m. Then there exist x_1, x_2 such that $\tau(x_1, x_2) \in W_e$ and at Stage m it will be ensured that $(x_1 \rightarrow x_2 \lor x_2 \rightarrow x_1)(D^m)$ holds. As D is an extension of D^m , $(x_1 \rightarrow x_2 \lor x_2 \rightarrow x_1)(D^m) \Rightarrow (x_1 \rightarrow x_2 \lor x_2 \rightarrow x_1)(D)$; i.e., $(x_1, x_2) \in A_2^f$. We have shown that A_2^f is recursively enumerable, $\overline{A_2^f}$ is infinite and every infinite recursively enumerable set intersects A_2^f . Therefore A_2^f is simple. This proves Result $(\beta)(ii)$ for the case when n = 2.

Note that for the case when n > 2, the proof is similar to the above proof except that labels $P_{e_t}^1, P_{e_t}^2, \ldots, P_{e_t}^n$ $(e \ge 0, t \ge 0)$ will have to be used.

REFERENCES

- [1] Cleave, J. P., "Combinatorial systems I, cylindrical problems," Journal of Computer and System Sciences, vol. 6 (1972), pp. 254-266.
- [2] Cleave, J. P., "Non-cylindrical decision problems," unpublished (1970), Department of Pure Mathematics, University of Bristol, U.K.
- [3] Rogers, H., Jr., *Theory of Recursive Functions and Effective Computability*, McGraw-Hill, New York, 1967.
- [4] Thuraisingham, M. B., System Functions and their Decision Problems, Ph.D. Thesis (1979), Department of Pure Mathematics, University College of Swansea, U.K.
- [5] Thuraisingham, M. B., "The concept of *n*-cylinder, its relationship to cylinders and its application," submitted to *The Journal of Symbolic Logic*.
- [6] Young, P. R., "On semi-cylinders, splinters and bound truth table reducibility," *Transactions of the American Mathematical Society*, vol. 115 (1965), pp. 329-339.

Department of Computer Science New Mexico Tech Socorro, New Mexico 87801