Notre Dame Journal of Formal Logic Volume 24, Number 1, January 1983

On the Borel Classification of the Isomorphism Class of a Countable Model

ARNOLD W. MILLER*

Introduction For ρ , a countable similarity type, let X_{ρ} be the space of structures of similarity type ρ whose universe is ω (see [13], Section 3). For any element \mathcal{A} of X_{ρ} , let $[\mathcal{A}]$ be the set of all elements of X_{ρ} which are isomorphic to \mathcal{A} . Scott [10] showed that $[\mathcal{A}]$ is a Borel subset of X_{ρ} . In fact, he showed that for any such \mathcal{A} there is a sentence θ of $L_{\omega_1\omega}$ such that $[\mathcal{A}]$ is exactly the set of elements of X_{ρ} which are models of θ (see [1], Ch. VII, for a good write-up of Scott sentences).

In [13] Vaught considerably strengthened Scott's result. There is a natural hierarchy of formulas of $L_{\omega_1\omega}$. Let $\Pi_0^0=\Sigma_0^0$ be the quantifier-free first-order formulas. For any $\alpha \geq 1$ the Π_α^0 formulas are those of the form:

$$\bigwedge_{n < \omega} \forall x_1 \forall x_2 \dots \forall x_n \theta_n$$

where each θ_n is $\Sigma^0_{\beta_n}$ for some $\beta_n < \alpha$. The Σ^0_{α} formulas are those of the form:

$$\bigvee_{n<\omega}\exists x_1\exists x_2\ldots\exists x_n\theta_n$$

where each θ_n is $\Pi^0_{\beta_n}$ for some $\beta_n < \alpha$. A set $B \subseteq X_\rho$ is called invariant iff it is closed under isomorphism. Vaught showed that for every Π^0_α invariant set B there is a Π^0_α sentence θ such that B is the set of models of θ , and similarly for Σ^0_α .

^{*}Research was partially supported by the NSF.

This result was extended by D. E. Miller [8] to the classical Hausdorff difference hierarchy. He proves that for any $\alpha \ge 1$ if B is an invariant $\Delta_{\alpha+1}^0$ set, then there exists $\beta < \omega_1$ and invariant decreasing Π_{α}^0 sets C_{δ} for $\delta < \beta$ such that:

$$B = \bigcup \{C_{\delta} - C_{\delta+1} : \delta \text{ even } < \beta\}.$$

He also showed that if an invariant set is the difference of Π^0_α sets $(\Pi^0_\alpha \wedge \Sigma^0_\alpha)$, then it is the difference of invariant Π^0_α sets.

Note that $[\mathscr{A}]$ is a minimal invariant set. From Miller's Theorems we see that if $[\mathscr{A}]$ is $\Delta^0_{\alpha+1}$, then it is the difference of two invariant Π^0_α sets. If it is not properly the difference of two Π^0_α sets, then it is the union of an invariant Π^0_α and an invariant Σ^0_α , and so it is either Π^0_α or Σ^0_α . If α is a limit ordinal and $[\mathscr{A}]$ is Σ^0_α , then it is Π^0_β for some $\beta < \alpha$. This follows immediately from Vaught's theorem by considering the form of a Σ^0_α sentence. For the same reason (for α limit) $[\mathscr{A}]$ cannot be properly the difference of two Π^0_α sets.

In Section 1 we show that the isomorphism class of a countable model in a countable similarity type containing no operation symbols cannot be properly Σ^0_2 (Σ^0_1 is also impossible). In Section 2 we show how Wadge games may be used to classify the Borel class of the isomorphism class of some common models. In Section 3 we calculate the Borel class of the isomorphism class of each countable ordinal. In Section 4 we give examples of isomorphism classes properly in each Borel class not ruled out by the results above except for $\Sigma^0_{\lambda+1}$ for λ an infinite limit ordinal. This case is open. In Section 5 we give an example of an \aleph_0 -categorical theory whose (only) model has an isomorphism class which is properly Π^0_ω .

The theorems in the first four sections appeared in [6] and the result in Section 5 was announced in [7].

I No isomorphism class is properly Σ_2^0 In this section we prove that if \mathcal{A} is a model in a countable similarity type with no operation symbols and $[\mathcal{A}]$ is Σ_2^0 then it is Δ_2^0 . D. E. Miller [8] has shown that no $[\mathcal{A}]$ is properly Σ_2^0 in the topology generated by first-order logic. However, I do not know how to deduce either result from the other.

Theorem 1 No $[\mathcal{A}]$ is properly Σ_2^0 .

Proof: Suppose that $[\mathcal{A}]$ is Σ_2^0 , then by Vaught's Theorem there is a Σ_2^0 sentence θ such that $[\mathcal{A}]$ is the set of models of θ . Note that θ has the form:

$$\bigvee_{n<\omega} \exists x_1 \exists x_2 \dots \exists x_n \bigwedge_{m<\omega} \psi_{n,m}(x_1, x_2, \dots, x_n),$$

where each $\psi_{n,m}$ is a universal first-order formula. Since α models one of the disjuncts, we can sssume that θ has the form:

$$\exists x_1 \exists x_2 \dots \exists x_n \bigwedge_{m < \omega} \psi_m(x_1, x_2, \dots, x_n).$$

Lemma 1.1 a is saturated.

Proof: Note that from the form of θ , if \mathcal{B} is any (first-order) elementary extension of \mathcal{A} , then \mathcal{B} models θ and therefore \mathcal{B} is isomorphic to \mathcal{A} . From

this it follows that every type in $Th(\mathcal{A})$ is realized in \mathcal{A} (i.e., \mathcal{A} is weakly saturated). Therefore there is a countable saturated model of $Th(\mathcal{A})$, and since \mathcal{A} is an elementary substructure of it, we have that it is isomorphic to \mathcal{A} .

Remark: In fact, it is not hard to show (see [8], Section 3) that $Th(\mathcal{A})$ is \aleph_0 -categorical.

Next I will show that we may assume, without loss of generality, some simplifications in the properties of the ψ_m .

Lemma 1.2 There exists $\psi_m(\vec{x})$ such that:

- (1) $\psi_m(x_1, x_2, \ldots, x_n)$ are universal first-order formulas with only x_1 , x_2, \ldots, x_n free,
- (2) $[\mathcal{A}]$ is the set of models of $\exists \vec{x} \bigwedge_{m < \omega} \psi_m(\vec{x})$,
- (3) for any m, $\psi_{m+1}(\vec{x}) \to \psi_m(\vec{x})$, (4) for any m, $\psi_m(\vec{x}) \to \bigwedge_{i \neq j}^{m \setminus \omega} (x_i \neq x_j)$, (i.e., irreflexive)
- (5) for any m and permutation σ of $\{1, 2, \ldots, n\}$,

$$\psi_m(x_1, x_2, ..., x_n) \rightarrow \psi_m(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$

(i.e., symmetric).

Proof: To obtain (3) just replace the ψ_m by $\bigwedge_{i \le m} \psi_i$. To get (4) just look at the cardinality of a witness in \mathcal{A} . To get (5) replace $\psi_m(x_1, x_2, \ldots, x_n)$ by

$$\bigvee_{\sigma} \psi_m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$$

where the disjunct is taken over all permutations of $\{1, 2, ..., n\}$. Note that (2) is retained since by (3) it is enough to satisfy infinitely many ψ_m , so the same σ must be used infinitely often.

Let $\psi(\vec{x})$ be the infinite conjunction of the $\psi_m(\vec{x})$. Let $D \in [A]^n$ be arbitrary such that $\alpha \models \psi(D)$. Since α is saturated we can find $B \subseteq A - D$ a set of D-indiscernibles of order type the rationals. By D-indiscernible I mean that they remain indiscernible even if constant symbols are added for elements of D. Consider for any $A_0 \subseteq D$, $\mathcal{A} \upharpoonright (A_0 \cup B)$ (i.e., the substructure of \mathcal{A} with universe $A_0 \cup B$). In this model B is certainly still A_0 -indiscernible with respect to quantifier-free formulas. In fact, B is A_0 -indiscernible in $\mathcal{A} \upharpoonright (A_0 \cup B)$ even with respect to universal formulas. This is because any witness for an existential formula is from $A_0 \cup B$ and B has order type the rationals. Choose $A_0 \subseteq D$ of minimal cardinality, say $n_0 \le n$, such that for all $X \in [B]^{n-n_0}$, $\mathcal{A} \upharpoonright (A_0 \cup B) \vDash$ $\psi(A_0 \cup X)$. Clearly $\alpha \upharpoonright (A_0 \cup B)$ is isomorphic to α , so we may assume $A_0 \cup B = A$.

For every $A_1 \in [A]^{n_0}$, $A_0 = A_1$ iff $\forall X \in [A - A_1]^{n - n_0} \varnothing \models$ Lemma 1.3 $\psi(A_1 \cup X)$.

Proof: Left to right follows by the definition of A_0 . To prove right to left, suppose $A_0 \neq A_1$ and let $A_2 = A_0 \cap A_1$, and let the cardinality of A_2 be $n_2 < n_0$. Since B is A_0 -indiscernible with respect to universal formula it is easy to show $\forall X \in [B]^{n-n_2} \mathscr{A} \models \psi(A_2 \cup X)$. Since universals go down, the same is true in $\mathscr{A} \upharpoonright (A_2 \cup B)$ which contradicts the minimality of A_0 .

Lemma 1.4 Suppose f is any bijection from A to A which is the identity on A_0 , then f is an automorphism of A.

Proof: Recall that $A = A_0 \cup B$ where the elements of B are A_0 -indiscernible with respect to universal formula. I claim that B is totally A_0 -indiscernible with respect to quantifier-free formulas. Suppose ρ is quantifier free with some parameters from A_0 .

Claim

If
$$\vec{b} < c_1 < c_2 < \vec{d}$$
 are from B, then
$$\models \rho(\vec{b}, c_1, c_2, \vec{d}) \longleftrightarrow \rho(\vec{b}, c_2, c_1, \vec{d}).$$

To prove the claim, suppose

$$\models \rho(\vec{b},\,c_1,\,c_2,\,\vec{d}) \land \neg \, \rho(\vec{b},\,c_2,\,c_1,\,\vec{d}).$$

Choose $C = \{c_n: n < \omega\} \subseteq B$ such that $\vec{b} < c_n < c_{n+1} < \vec{d}$. Now consider the model $\mathcal{A} \upharpoonright (A_0 \cup \{\vec{b}, \vec{d}\} \cup C)$. This model is isomorphic to \mathcal{A} . But $\rho(\vec{b}, x, y, \vec{d})$ defines a linear order of order type ω on a cofinite subset of the universe, which contradicts the fact that \mathcal{A} is saturated.

Suppose $b_1 < b_2 < b_3 < \ldots < b_m$ are elements of B and let P be all permutations σ of $\{1, 2, \ldots, m\}$ such that for all $\rho(x_1, x_2, \ldots, x_m)$ quantifier free with parameters from A_0 ,

$$\mathcal{A} \models \rho(b_1, b_2, \ldots, b_m) \longleftrightarrow \rho(b_{\sigma(1)}, b_{\sigma(2)}, \ldots, b_{\sigma(m)}).$$

Note that P is closed under composition and by the claim contains all two cycles. It follows that P is the set of all permutations. The total A_0 -indiscernibility of B implies the Lemma.

Note that Lemma 1.3 implies that A_0 is definable $(L_{\omega_1\omega})$ in α . Next we simplify this. For any $k < \omega$, let $\tau_k(x_1, x_2, \ldots, x_{n_0})$ say that \vec{x} are distinct and for \vec{y} a sequence of $n - n_0$ distinct elements disjoint from \vec{x} , $\psi_k(\vec{x} \cup \vec{y})$. Note that from Lemma 1.3 we have that for all $K \in [A]^{n_0}$, $K = A_0$ iff $\alpha \models \bigwedge_{k \leq \omega} \tau_k(K)$.

Lemma 1.5 There exists $N < \omega$ such that for all $H \in [A]^N$ and for all $K \in [H]^{n_0}$:

$$K = A_0$$
 iff $\mathcal{A} \upharpoonright H \vDash "\tau_N(K)"$.

Proof: Consider the first-order theory T consisting of

- (a) for each $k < \omega$ "there are at least k elements",
- (b) for each $k < \omega$, $\tau_k(b_1, b_2, \ldots, b_{n_0})$,
- (c) for each $k < \omega$, $\tau_k(c_1, c_2, ..., c_{n_0})$, and
- (d) $\{b_1, b_2, \ldots, b_{n_0}\} \neq \{c_1, c_2, \ldots, c_{n_0}\}.$

Any countable model of T will be isomorphic to \mathcal{A} (when reduced to the language without the new constant symbols c_i and b_i for $i = 1, 2, ..., n_0$). Since A_0 is uniquely defined, T is inconsistent. Hence for all sufficiently large $N < \omega$ for all $H \in [A]^N$ there is at most one $K \in [H]^{n_0}$ such that $\mathcal{A} \upharpoonright H \models \text{``}\tau_N(K)\text{''}$.

Clearly, since τ_N is universal, if $A_0 \subseteq H$, then $\mathscr{A} \upharpoonright H \vDash "\tau_N(A_0)"$. Now suppose $\mathscr{A} \upharpoonright H \vDash "\tau_N(K)"$ and $K \neq A_0$. Therefore, part of K lies in B, thus if $N > 2n_0$, we can find a bijection f from A into A which fixes A_0 , sends H into H, and such that $f(K) \neq K$. By Lemma 1.4 f is an automorphism of \mathscr{A} and thus an automorphism of $\mathscr{A} \upharpoonright H$. But then

$$\mathcal{A} \upharpoonright H \vDash "\tau_N(K) \land \tau_N(f(K))",$$

a contradiction. This proves Lemma 1.5.

Let $\theta(H, K)$ be the quantifier-free formula which says that $H \in [A]^N$, $K \in [H]^{n_0}$, and

$$\mathcal{A} \upharpoonright H \vDash "\tau_N(K)".$$

Then the conjunction of the Σ_1^0 sentence:

$$\exists H \exists K \theta(H, K)$$

and the Π_1^0 sentence:

$$\forall H \forall K (\theta(H, K) \to \bigwedge_{m < \omega} \tau_m(K))$$

characterizes the isomorphism class of \mathcal{A} . Thus $[\mathcal{A}]$ is the difference of two Π_1^0 sets.

Remark: I have also been able to show that proper Σ_2^0 isomorphism classes are impossible in the language which consists of a single unary operation symbol. The most general case is open. In a language without operation symbols every consistent Σ_2^0 sentence has finite models. This, of course, is not true if the language contains operation symbols, e.g., "f is one-to-one and not onto". However it is easily shown that a counterexample (in the general case) must have finite models.

2 Using Wadge games In this section we show how to calculate the Borel class of the isomorphism class of some common models using Wadge games.

If X and Y are topological spaces and $A \subseteq X$, $B \subseteq Y$, we say that $A \leq_W B$ iff there exists a continuous map $f\colon X \to Y$ such that $f^{-1}(B) = A$. Wadge noted that in common spaces such as ω^{ω} , 2^{ω} , etc., the map f could be described very conveniently as the winning strategy of a particular two-person infinite game. For a good reference to Wadge games, see Van Wesep [14]. For simplicity let ρ be a finite similarity type with relation symbols only. Let $A \subseteq \omega^{\omega}$ and $B \subseteq X_{\rho}$ and consider the following game G(A,B). Player I and player II alternate and make infinitely many moves. On the k^{th} play, player I plays some $n_k \in \omega$ and player II plays some \mathcal{A}_k with universe a finite subset of ω and such that \mathcal{A}_{k-1} is a substructure of \mathcal{A}_k . We demand from player II that $\omega = \bigcup \{|\mathcal{A}_k|: k < \omega\}$. At the end of infinitely many plays, player I has written down $f = (n_k: k < \omega) \in \omega^{\omega}$, and player II has written down $\mathcal{A} = \bigcup_{n < \omega} \mathcal{A}_n \in X_{\rho}$.

Player II wins this particular play iff $(f \in A \text{ iff } \mathcal{A} \in B)$. Player II wins the game G(A, B) iff he has a winning strategy (i.e., a function which tells him what to play at each point in the game and which wins against all plays of player I). A

winning strategy for player II determines a continuous map which shows that $A \leq_W B$. And conversely, every continuous map witnessing $A \leq_W B$ determines a winning strategy for player II.

Let Γ be any of the Borel classes Σ_{α}^{0} , Π_{α}^{0} , $\Pi_{\alpha}^{0} \wedge \Sigma_{\alpha}^{0}$ (i.e., the difference of two Π_{α}^{0} sets), or $\Pi_{\alpha}^{0} \vee \Sigma_{\alpha}^{0}$ (i.e., the dual of $\Pi_{\alpha}^{0} \wedge \Sigma_{\alpha}^{0}$). Let Γ^{D} , the dual of Γ , be the set of complements of the elements of Γ . Each of these Γ is closed under continuous preimage (i.e., if $A \leq_{W} B \in \Gamma$, then $A \in \Gamma$). Also, each of them is nonselfdual (i.e., $\Gamma \neq \Gamma^{D}$). Thus, to show that some $B \subseteq X_{\rho}$ is not in Γ^{D} it suffices to show that for every $A \in \omega^{\omega} \cap \Gamma$, player II has winning strategy in G(A, B).

Example 1: Π_1^0 . Suppose ρ is the similarity type containing one unary relation symbol P. In this case $X_{\rho} = 2^{\omega}$. If $\alpha \models \forall x P(x)$, then $[\alpha]$ is a single point of X_{ρ} . Since no point of X_{ρ} is isolated it cannot be Σ_1^0 (i.e., open).

Example 2: $\Pi_1^0 \wedge \Sigma_1^0$. In the same space let \mathcal{Q} model the sentence:

$$\exists x \ P(x) \land \forall y \forall z (P(y) \land P(z)) \rightarrow y = z$$

(i.e., $\exists !xP(x)$).

Suppose that $A=0\cap C$ where $0\subseteq\omega^{\omega}$ is open and $C\subseteq\omega^{\omega}$ is closed. Let us give a winning strategy for player II in $G(A,[\infty])$. Let $\omega^{<\omega}$ be a set of all finite sequences of elements of ω . Because $0\subseteq\omega^{\omega}$ is open there exists $\overline{0}\subseteq\omega^{<\omega}$ such that:

$$0 = \{ f \in \omega^{\omega} | \exists n \ f \upharpoonright n \in \overline{0} \}.$$

Also, since $C \subseteq \omega^{\omega}$ is closed there exists $\overline{C} \subseteq \omega^{<\omega}$ such that

$$C = \{ f \in \omega^{\omega} | \forall n \ f \upharpoonright n \in \overline{C} \}.$$

Now we describe player II's winning strategy. Player II plays $\mathcal{A}_n \models \text{``} \forall x \neg P(x)\text{'`}$ until Player I plays $f \upharpoonright n \in \overline{0}$ (if this never happens he continues to play such \mathcal{A}_n forever). At that point, he plays $\mathcal{A}_n \models \text{``} \exists ! x P(x)\text{''}$. He continues to play models of $\exists ! x P(x)$ unless player I plays $f \upharpoonright m \notin \overline{C}$. At that point player II plays $\mathcal{A}_m \models \text{``} \exists x \exists y \ (x \neq y \land P(x) \land P(y))\text{''}$.

Example 3: Π_2^0 , η . Let ρ be the similarity type with one binary relation (so $X_{\rho} = 2^{\omega \times \omega}$). Let η be a dense linear order without end points. It is easily seen that $[\eta]$ is Π_2^0 . To see that it is not Σ_2^0 let's use Wadge games. Suppose $A = \bigcap_{n < \omega} 0_n$ is any Π_2^0 subset of ω^{ω} (each 0_n open). The strategy for player II is

to wait to fill in gaps until player I has put $f
mid m \in \overline{0}_n$ for some new n. That is, he plays $a_{m+1} \supseteq a_m$ an end extension (i.e., for every $x \in A_m$ and $y \in A_{m+1} - A_m$, x < y) unless there exists n such that $f
mid m \in \bigcap_{i \le n} \overline{0}_i$ but $f
mid (m-1) \notin \bigcap_{i \le n} \overline{0}_i$

and then he plays $\mathcal{A}_{m+1} \supseteq \mathcal{A}_m$ so that for all $x, y \in A_m$ there exists $z \in A_{m+1}$ x < z < y and there exists $z_0, z_1 \in A_{m+1}$ $z_0 < x$ and $y < z_1$.

Example 4: $\Pi_2^0 \wedge \Sigma_2^0$, $1 + \eta + 1$. Let $1 + \eta + 1$ be the countable dense linear order with endpoints. It is easily seen to be $\Pi_2^0 \wedge \Sigma_2^0$. Let " $\exists^{\infty} n$ " abbreviate "there exist infinitely many n" and let " $\forall^{\infty} n$ " abbreviate "for all but finitely many n". It is easily seen that every Π_2^0 subset of ω^{ω} is Wadge reducible to the

set of models of " $\exists^{\infty}nP(n)$ ". Thus every $\Pi_2^0 \wedge \Sigma_2^0$ set is reducible to the models of " $\exists^{\infty}nP(n) \wedge \forall^{\infty}nQ(n)$ ". To see that the set of models of " $\exists^{\infty}nP(n) \wedge \forall^{\infty}nQ(n)$ " reduces to the isomorphism class of $1+\eta+1$ is easy. Use P(n) to fill in gaps as in Example 3 and use Q(n) to pick the endpoints. That is, whenever $\neg Q(n)$ appears arrange things so that there exists $x_0, x_1 \in A_{n+1}$ such that for all $y \in A_n, x_0 < y < x_1$.

Example 5: Π_3^0 , ω . It is easy to see that the isomorphism class of ω (i.e., the order type of ω) is Π_3^0 . It is also easy to see that every Π_3^0 set is reducible to the models of " $\forall n \forall^\infty m C(n, m)$ ". To reduce the models of " $\forall n \forall^\infty m C(n, m)$ " to the isomorphism class of ω one strategy for player II can be roughly described as follows: Imagine that he first plays a copy of ω . In each interval [n, n+1] he plays $a_{i+1} < a_i$ for each i such that $\neg C(n, i)$. Thus if there exist infinitely i such that $\neg C(n, i)$ a copy of ω^* is jammed between [n, n+1], otherwise [n, n+1] is finite.

Remarks: Some other structures are also easy to do using Wadge games. For example, (ω, S) (where S is the successor function) has an isomorphism class which is complete $\Pi_2^0 \wedge \Sigma_2^0$. A slightly more difficult argument (see [6]) can be used to show that the model consisting of ω many copies of (ω, S) and ω many copies of (Z, S) (Z is the integers) has an isomorphism class which is complete Π_2^0 . This example was motivated by the fact that every finite valency structure has an isomorphism class which is Π_2^0 . (For the definition of finite valency structure, see [5].) This shows Π_2^0 is best possible.

3 Ehrenfeucht games or back and forth properties Here we review some material which is well known. In this section let \mathscr{A} and \mathscr{B} be countable models in the same similarity type. Define for α an ordinal, $\mathscr{A} \xrightarrow{\alpha} \mathscr{B}$ by induction on α . Define $\mathscr{A} \xrightarrow{\alpha} \mathscr{B}$ iff \mathscr{A} and \mathscr{B} model the same quantifier-free sentences. Define $\mathscr{A} \xrightarrow{\alpha} \mathscr{B}$ iff for all $\beta < \alpha$ and $\vec{a} \in A^{<\omega}$ there exists $\vec{b} \in B^{<\omega}$ such that $(\mathscr{B}, \vec{b})_{\vec{\beta}}$ (\mathscr{A}, \vec{a}) .

Lemma 3.1 $\mathscr{A} \xrightarrow{\alpha} \mathscr{B}$ iff every Σ^0_{α} sentence true in \mathscr{A} is true in \mathscr{B} .

Proof: Note that the right-hand side is equivalent to every Π^0_α sentence true in \mathcal{B} is true in \mathcal{A} . The proof is by induction. If

$$\bigvee_{n<\omega}\exists\vec{x}_n\theta_n(\vec{x}_n)$$

is true in \mathscr{A} where each θ_n is $\Pi^0_{\beta_n}$ for some $\beta_n < \alpha$, then choose $\vec{a} \in A^{<\omega}$ and n such that

$$\theta_n(\vec{a})$$

is true in \mathscr{Q} . Let $\vec{b} \in B^{<\omega}$ be such that $(\mathscr{D}, \vec{b}) \underset{\beta_n}{\rightarrow} (\mathscr{Q}, \vec{d})$. By inductive hypothesis, $\theta_k(\vec{b})$ is true in \mathscr{D} . To prove the converse, suppose every Σ_{α}^0 sentence true in \mathscr{D} is true in \mathscr{D} . Given $\vec{d} \in A^n$ and $\beta < \alpha$, it is enough to find $\vec{b} \in B^n$ such that every Σ_{β}^0 sentence true in (\mathscr{D}, \vec{b}) is true in (\mathscr{Q}, \vec{d}) . If not, then for all $\vec{b} \in B^n$ there exists a Σ_{β}^0 formula $\theta_{\vec{b}}^{-}(\vec{x})$ such that:

$$(\mathcal{B}, \vec{b}) \models \theta_{\vec{b}}(\vec{b}),$$

but

$$(\mathcal{A}, \vec{a}) \vDash \neg \theta_{\vec{b}}(\vec{a}).$$

But then α models the Σ_{α}^{0} formula:

$$\exists \bar{x} \bigwedge_{\vec{b} \in B^n} \neg \theta_{\vec{b}}(\bar{x})$$

but & does not.

Lemma 3.2 Suppose \mathscr{A} is not isomorphic to \mathscr{B} and $\mathscr{A} \xrightarrow{\alpha} \mathscr{B}$, then $[\mathscr{A}]$ is not Σ^0_α and $[\mathscr{B}]$ is not Π^0_α .

Proof: This is an immediate Corollary of Lemma 3.1 and Vaught's Theorem.

Next, we prove some facts about ordinals which are basically due to Ehrenfeucht [2] (see also Karp [4]). For any ordinal α , we use α to stand for the model in the language of one binary relation < of order type α . We need to strengthen the notion $\alpha \xrightarrow{\delta} \mathcal{B}$ by using the idea of a $(\delta-)$ elementary substructure.

Define $\alpha \not \preceq_{\delta} \beta$ iff α is a substructure of β and for all $\vec{a} \in A^{<\omega}$ and $\beta < \delta$, $(\beta, \vec{a}) \xrightarrow{\beta} (\alpha, \vec{a})$. We will say that α is δ oblivious iff for any $\gamma_1 \ge \gamma_0 \ge 1$, $\alpha \cdot \gamma_0 \not \preceq_{\delta} \alpha \cdot \gamma_1$.

Lemma 3.3 If α is δ oblivious, then $\alpha \cdot \omega$ is $\delta + 2$ oblivious.

Proof: See the proof of Theorem 12 in [2].

Lemma 3.4 For λ limit and $n < \omega$, $\omega^{\lambda+n}$ is $\lambda + 2n + 1$ oblivious.

Proof: First note that ω is 3 oblivious (i.e., if $\alpha \leq \beta$ are limit ordinals, then $\alpha \stackrel{\sim}{\supset}_3 \beta$). Use the identity for the first move from α to β and use the fact that α is a limit on the second move from β to α . For n=0 and λ a limit we want to prove that if $1 \leq \gamma_0 \leq \gamma_1$ and $\vec{a} \in \omega^{\lambda} \cdot \gamma_0$, then $(\omega^{\lambda} \cdot \gamma_1, \vec{a}) \not\subset (\omega^{\lambda} \cdot \gamma_0, \vec{a})$. But $\alpha \not\subset \beta$ iff for all $\beta < \lambda$ $\alpha \not\subset \beta$. By induction if $\beta < \lambda$ and $\beta + \alpha = \lambda$, then $\omega^{\beta} \cdot (\omega^{\alpha} \cdot \gamma_0) \not\subset \omega^{\beta} \cdot (\omega^{\alpha} \cdot \gamma_1)$. Thus $(\omega^{\lambda} \cdot \gamma_1, \vec{a}) = (\omega^{\beta} \cdot (\omega^{\alpha} \cdot \gamma_1), \vec{a}) \not\subset (\omega^{\beta} \cdot (\omega^{\alpha} \cdot \gamma_0), \vec{a}) = (\omega^{\lambda} \cdot \gamma_0, \vec{a})$.

Using Lemma 3.4 it is easy to compute the Borel class in which the isomorphism class of each countable ordinal lies.

Lemma 3.5 If $\gamma = \omega^{\lambda+m} \cdot n + \delta$ where λ is a limit, $n, m < \omega$, and $\delta < \omega^{\lambda+m}$, then if n = 1, then $[\gamma]$ is $\Pi^0_{\lambda+2m+1}$ but not $\Sigma^0_{\lambda+2m+1}$, if n > 1, then $[\gamma]$ is $\Pi^0_{\lambda+2m+1} \wedge \Sigma^0_{\lambda+2m+1}$ but not $\Pi^0_{\lambda+2m+1} \vee \Sigma^0_{\lambda+2m+1}$.

Proof: The computation of the upper bound on complexity is left to the reader.

For example, to see that $[\omega]$ is Π_3^0 say that it is a linear order with no greatest element (Π_2^0) and every element has finitely many predecessors. To see that $[\omega + \omega]$ is $\Pi_3^0 \wedge \Sigma_3^0$ say that it is a linear order with no greatest element (Π_2^0) , there exists a nonzero limit point (Σ_3^0) , and for all x < y either x has finitely many predecessors or y has finitely many predecessors greater than x (Π_3^0) . Now we verify the lower bound.

Since $\omega^{\lambda+m}$ is $\lambda + 2m$ oblivious, we have that:

$$(\omega^{\lambda+m}+\delta) \xrightarrow[\lambda+2m+1]{} (\omega^{\lambda+m} \cdot n+\delta) \xrightarrow[\lambda+2m+1]{} (\omega^{\lambda+m} \cdot (n+1)+\delta).$$

Here we are using the fact that if $\alpha \xrightarrow{\gamma} \beta$, then $(\alpha + \delta) \xrightarrow{\gamma} (\beta + \delta)$. From the first arrow we get that $\omega^{\lambda+m} + \delta$ cannot be $\Sigma^0_{\lambda+2m+1}$ and for n > 1, $\omega^{\lambda+m} \cdot n + \delta$ cannot be $\Pi^0_{\lambda+2m+1}$. From the second arrow we get that $\omega^{\lambda+m} \cdot n + \delta$ cannot be $\Sigma^0_{\lambda+2m+1}$.

Remarks: For any countable ordinal α let $WO(\alpha)$ be the subset of $2^{\omega \times \omega}$ of all well ordering ω of type less than α . Stern, in [11] and [12], showed, for example, that for any limit λ and $n < \omega$, $WO(\omega^{\lambda+n})$ is $\Sigma_{\lambda+2n}^0$ but not $\Pi_{\lambda+2n}^0$. His argument used a variant of Steel's forcing. He also calculated the Borel class of the set of well-founded trees of rank less than α . This characterization had been found earlier by Garland [3] using continuous reducibility (and not forcing). I don't know how to use continuous reducibility to do the ordinal case. Also, the use of forcing allowed Stern to prove more. He showed that assuming $MA + \neg CH$ any Borel set which is the union of $\aleph_1 \Sigma_\alpha^0$ sets must be Σ_α^0 . This result can also be proved by using the Vaught transform and Ehrenfeucht's analysis of well-orderings in place of forcing. For example, let us show that the isomorphism class of the order type of ω is not the ω_1 union of Σ_3^0 sets (assuming $MA + \neg CH$). Since $[\omega]$ is a minimal invariant set, it is enough to show that any invariant set which is the ω_1 union of Σ_3^0 sets is the ω_1 union of invariant Σ_3^0 sets. But note that Vaught [13] shows that for any Σ_3^0 set B, B^{Δ} is an invariant Σ_3^0 set. Also under $MA + \neg CH$ it is easy to see that:

$$\left(\bigcup_{\alpha<\omega_1}B_{\alpha}\right)^{\Delta}=\bigcup_{\alpha<\omega_1}B_{\alpha}^{\Delta}.$$

Also the fact that $WO(\omega + \omega)$ is not Π_3^0 can be proved using Ehrenfeucht games. This was proved in the appendix of [12] using forcing. It is not hard to see that $WO(\omega + \omega)$ is $\Pi_3^0 \wedge \Sigma_3^0$. Games can be used to show that for any Σ_3^0 sentence θ true in $(\omega + \omega^*, <)$ there is an $n < \omega$ such that θ is true in $(\omega + n, <)$.

4 Some finitely axiomatizable theories and other examples In this section we begin by giving some examples of finitely axiomatizable, first-order, \aleph_0 -categorical theories.

Construction 1 Given two models \mathcal{Q} and \mathcal{B} in the same language and i = 0, 1, 2, the model \mathcal{O}_i can be described as follows. Let \approx and \leq be two new binary relations. In $\mathcal{O}_i \approx$ is an equivalence relation and \leq densely orders (order type η) the \approx equivalence classes. Each equivalence class is isomorphic to either \mathcal{Q} or \mathcal{B} and in \mathcal{O}_i exactly i are isomorphic to \mathcal{Q} . The proofs of the next two claims are left to the reader.

Claim 1 If $\alpha \rightarrow \beta$, then $\mathcal{O}_0 \rightarrow 1$, then $\mathcal{O}_1 \rightarrow 1$, then $\mathcal{O}_2 \rightarrow 1$, and therefore by Lemma 3.2 $\mathcal{O}_0 \notin \Sigma_{n+1}^0$ and $\mathcal{O}_1 \notin \Sigma_{n+1}^0 \vee \Pi_{n+1}^0$.

Claim 2 If $[\mathscr{A}]$ and $[\mathscr{B}]$ are Δ_{n+1}^0 $(n \ge 2)$, finitely axiomatizable, and complete (i.e., no finite models), then $[\mathscr{O}_0]$ is Π_{n+1}^0 , finitely axiomatizable, and complete and $[\mathscr{O}_1]$ is $\Pi_{n+1}^0 \wedge \Sigma_{n+1}^0$, finitely axiomatizable, and complete.

Now starting with η and $1 + \eta + 1$ (Examples 3 and 4 of Section 2) and noting that $\eta \geq 1 + \eta + 1$ we get examples for all the Borel classes Π_n^0 and $\Pi_n^0 \wedge \Sigma_n^0$ for $3 \leq n < \omega$.

Construction 2 Given two structures \mathcal{A} and \mathcal{B} in the same language, we construct two models \mathcal{D}_0 and \mathcal{D}_1 similar to the first construction. The new \leq and \approx are the same as in the \mathcal{O}_i and every equivalence class is isomorphic to either \mathcal{A} or \mathcal{B} , and both \mathcal{A} and \mathcal{B} are isomorphic to some equivalence class. In addition, every equivalence class isomorphic to \mathcal{B} . The only difference between \mathcal{D}_1 and \mathcal{D}_0 is that in \mathcal{D}_1 there is a \leq greatest class isomorphic to \mathcal{A} and in \mathcal{D}_0 there isn't. The following claims are easy to verify.

Claim 1 If $[\mathcal{Z}]$ and $[\mathcal{B}]$ are $\Delta_{n+1}^0(n \ge 1)$, finitely axiomatizable, and complete, then $[\mathcal{S}_0]$ is Π_{n+2}^0 finitely axiomatizable and complete and $[\mathcal{S}_1]$ is Σ_{n+2}^0 finitely axiomatizable and complete.

Remark: In case n+2=3 we should take for \mathcal{A} and \mathcal{B} the one-element and two-element models in the empty language.

Claim 2 If $\mathcal{A} \xrightarrow{n} \mathcal{B}$ then $\mathcal{A}_0 \xrightarrow{n+2} \mathcal{A}_1$, and thus by Lemma 3.2 \mathcal{A}_1 is not Π_{n+2}^0 .

This construction gives examples for all the Borel classes Σ_n^0 for $3 \le n < \omega$. The ordinals give examples for all Borel classes Π_α^0 and $\Pi_\alpha^0 \wedge \Sigma_\alpha^0$ for odd $\alpha \ge 3$. Coupled with these two constructions we get examples for all Borel classes not ruled out, except for Π_λ^0 , $\Sigma_{\lambda+1}^0$, $\Sigma_{\lambda+2}^0$ for λ an infinite limit ordinal. We now give examples for Π_λ^0 and $\Sigma_{\lambda+2}^0$. For simplicity let $\lambda = \omega$. The isomorphism class of the model $\mathscr{A}_\omega = (\omega^\omega, <, P)$ where $P = \{\omega^n : n < \omega\}$ is easily seen to be Π_ω^0 . Let $\mathscr{A}_n = (\omega^{n+1}, <, P)$ where $P = \{\omega^i : i \le n\} \cup \{\omega^n \cdot m : m < \omega\}$. It is not hard to show that for each n, $\mathscr{A}_n \xrightarrow{n} \mathscr{A}_\omega$, thus $[\mathscr{A}_\omega]$ is not Π_n^0 for any $n < \omega$.

Construction 3 Let \mathcal{B}_1 be the model $(Q, <, c_n)_{n < \omega}$ where Q is the rationals and c_n a sequence strictly increasing to 0. Let \mathcal{B}_0 be \mathcal{B}_1 minus 0 (i.e., the c_n 's have no supremum). Let \mathcal{B}_1^* be obtained from \mathcal{B}_1 by replacing each c_n by a copy of \mathcal{A}_n and each other element of Q by a copy of \mathcal{A}_ω . Similarly construct \mathcal{B}_0^* . It is easily shown that

$$\mathcal{B}_0^* \xrightarrow{\omega+2} \mathcal{B}_1^*$$
.

Therefore, $[\mathcal{B}_1^*]$ is not $\Pi^0_{\omega+2}$. On the other hand, direct calculation shows that $[\mathcal{B}_1^*]$ is $\Sigma^0_{\omega+2}$.

5 An \aleph_0 categorical theory properly of class Π^0_ω In this section we give an example of a \aleph_0 -categorical, first-order theory whose model has an isomorphism class which is Π^0_ω but not Σ^0_ω . It is a variation of an (unpublished) example of Kueker and Baldwin of a countable, \aleph_0 -categorical theory which has the property that no finite extension is model complete.

For $N \le \omega$ let T_N be the following universal theory in the language: R, S binary relations and Q_n n+1-ary relation for n each $\le N$. The axioms of T_N say:

- (1) R and S are symmetric and irreflexive,
- (2) for n < N, Q_n is symmetric and irreflexive, and

(3) for n + 1 < N, nothing in Q_{n+1} is totally connected (by R if n even, S if n odd) to anything in Q_n .

More formally by (3) for n even I mean:

$$\forall \overline{x} \ \forall \overline{y} (Q_n(\overline{x}) \land Q_{n+1}(\overline{y})) \to \bigvee_{\substack{i < n \\ j < n+1}} \neg R(x_i, y_j);$$

and for n odd the same sentence with S in place of R.

Lemma 5.1 T_N has the amalgamation and joint embedding properties.

Proof: What these properties say is that any two models of T_N can be embedded into a third model (joint embedding) or amalgamated over a common submodel (amalgamation). The proof is trivial since (3) can be made true simply by making $Q_n(\overline{x})$ fail for all \overline{x} which are new.

Lemma 5.2 Suppose $\mathscr{A} \models T_N$, $\vec{a} \in A^{n+1}$, n+1 < N (n even), and $\mathscr{A} \models \neg Q_{n+1}(\vec{a})$, then there exists $\mathscr{B} \models T_N$, $\mathscr{B} \supseteq \mathscr{A}$, and $\mathscr{B} \models \exists \vec{b} \ Q_n(\vec{b}) \land \bigwedge_{\substack{i < n \\ i < n+1}}^{N} R(b_i, a_i)$. (Similarly for n odd with S in place of R.)

Proof: Let $B = A \cup \{b_0, b_1, \ldots, b_n\}$; for $k \neq n$ let $Q_k^B = Q_k^A$; let $Q_n^B = Q_n^A \cup \{\vec{b}': \vec{b}' \text{ is a permutation of } \vec{b}\}$; let $S^B = S^A$, and let $R^B = R^A \cup \{(a_i, b_j), (b_j, a_i): i < n + 1, j < n\}$. Here is where we needed both R and S, since Q_{n-1} might hold on some subset of \vec{a} .

Let \mathscr{Q}_N be the universal homogeneous countable model of T_N . That is, every finite model of T_N is isomorphic to a substructure of \mathscr{Q}_N and every isomorphism of finite substructures of \mathscr{Q}_N extends to an automorphism of \mathscr{Q}_N . The Theory of \mathscr{Q}_N is \aleph_0 -categorical. For any $k \leq N$ let \mathscr{Q}_N^k be the reduct of \mathscr{Q}_N to the language R, S, $Q_i \colon i < k$. By Lemma 5.2 it is easy to see that every Q_i is definable in \mathscr{Q}_N^1 , thus the theory of \mathscr{Q}_N^1 is also \aleph_0 -categorical. We will show that $[\mathscr{Q}_\omega^1]$ is not Π_n^0 for any $n < \omega$. First note that for $n < m < \omega$, \mathscr{Q}_n^1 is not isomorphic to \mathscr{Q}_m^1 . This is because \mathscr{Q}_m^1 satisfies $\exists \vec{x} \ Q_n(\vec{x})$ but \mathscr{Q}_n^1 does not (we mean here the definition of Q_n from $\{R, S, Q_0\}$). This in turn is proved like Lemma 5.2. Define \mathscr{Q}_n^1 iff $\mathscr{Q}_n^1 \not \gg \emptyset$ and $\mathscr{D}_n^1 \not \sim \emptyset$.

Lemma 5.3 If $k+1 \leq \min(N,N')$, then if $(\mathcal{A}_N^{k+1},\vec{a}) \Xi_0(\mathcal{A}_N^{k+1},\vec{a}')$, then $(\mathcal{A}_N^k,\vec{a})\Xi_1(\mathcal{A}_N^{k'},\vec{a}')$.

Proof: Let $\vec{b} \in A_N^{<\omega}$. Construct a model C in the language $\{R, S, Q_n: n < N'\}$ as follows. Let $C = \vec{a}' \cup \vec{b}$, let \mathcal{C}^k be isomorphic to $(\vec{a} \cup \vec{b}, R, S, Q_n: n < k)$ via the given map taking \vec{a}' to \vec{a} and the identity on \vec{b} , and for n with $k \le n < N'$ let $Q_n^{\mathcal{C}} = (\vec{a}')^{n+1} \cap Q_n^{\mathcal{C}}N'$.

Claim $\mathcal{O} \models T_{N'}$.

We only need to check (3). Suppose $\mathcal{C} \models ``Q_n(\vec{c}) \land Q_{n+1}(\vec{d}) \land \vec{c}$ and \vec{d} are totally connected by R (if n even, S if n odd)". By construction of C^k it cannot be that n+1 < k. If $n \ge k$ then both \vec{c} and \vec{d} are subsets of \vec{d}' and again there is no problem. The remaining case is n+1=k. From the construction we have that \vec{d} must be contained in \vec{d}' and so Q_k holds on its image in \vec{d} , since by

assumption $(\vec{a}', R, S, Q_n, n \le k)$ is isomorphic to $(\vec{a}, R, S, Q_n, n \le k)$. But Q_{k-1} holds on the image of \vec{c} in $\vec{a} \cup \vec{b}$, a contradiction. This proves the claim.

But now since $\mathcal{Q}_{N'}$ is universal homogeneous, we know there exists \vec{b}' in $\mathcal{Q}_{N'}$ such that \mathcal{C} is isomorphic to $(\vec{a}' \cup \vec{b}', R, S, Q_n: n < N')$ (extending the identity on \vec{a}'). Therefore, $(\mathcal{Q}_{N}^k, \vec{a}, \vec{b}) \Xi_0 (\mathcal{Q}_{N'}^k, \vec{a}', \vec{b}')$.

Lemma 5.4 If $k+1 \leq \min(N, N')$, then if $(\mathcal{A}_N^{k+1}, \vec{a}) \Xi_i (\mathcal{A}_N^{k+1}, \vec{a}')$, then $(\mathcal{A}_N^k, \vec{a}) \Xi_{i+1} (\mathcal{A}_N^k, \vec{a}')$.

Proof: Play the game for i steps, then get through one more step by dropping Q_k .

Lemma 5.5 If $k + 1 = \min(N, N')$, then $\alpha_N^1 \Xi_k \alpha_{N'}^1$.

Proof: Immediate from Lemma 5.4.

This lemma gives immediately that $[\mathcal{A}_{\omega}^{1}]$ is not Π_{k}^{0} for any $k < \omega$.

Remark: The proper generalization to admissible $\lambda > \omega$ is given by the Λ -self-hyp-characterizable models of [9].

REFERENCES

- [1] Barwise, J., Admissible Sets and Structures, Springer-Verlag, New York, 1975.
- [2] Ehrenfeucht, A., "An application of games to the completeness problem for formalized theories," Fundamenta Mathematicae, vol. 49 (1961), pp. 129-141.
- [3] Garland, S., "Borel rank and the derivative ordering," unpublished (1966).
- [4] Karp, C., "Finite-quantifier equivalence," in *The Theory of Models*, North-Holland, New York (1965), pp. 407-412.
- [5] Korec, Peretiatkin, and Rautenberg, "Definability in structures of finite valency," Fundamenta Mathematicae, vol. 81 (1974), pp. 175-181.
- [6] Miller, A., "Some problems of set theory and model theory," unpublished Ph.D. Dissertation, University of California, Berkeley (1978).
- [7] Miller, A., "Hierarchies, ultrafilters, and a categorical theory," abstract in the *Notices* of the American Mathematical Society, vol. 24 (1978), A-361.
- [8] Miller, D. E., "The invariant Π_{α}^{0} separation principle," Transactions of the American Mathematical Society, vol. 242 (1978), pp. 185-204.
- [9] Makkai, M., "An example concerning Scott heights," *The Journal of Symbolic Logic*, vol. 46 (1981), pp. 301-318.
- [10] Scott, D., "Invariant Borel sets," Fundamenta Mathematicae, vol. 56 (1964), pp. 117-128.
- [11] Stern, J., "Évaluation du rang de Borel de certains ensembles," Des Comptes Rendus: Des Séances de l'Academie des Sciences, 286 (1978), pp. 855-857.
- [12] Stern, J., "On the notion of rank in the theory of Borel sets," to appear (1978).

- [13] Vaught, R., "Invariant sets in topology and logic," Fundamenta Mathematicae, vol. 82 (1974), pp. 269-294.
- [14] Van Wesep, R., "Wadge degrees and descriptive set theory," in *Cabal Seminar* 76-77, Lecture notes 689, Springer-Verlag, New York, 1978, pp. 151-170.

Department of Mathematics The University of Texas at Austin Austin, Texas 78712