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Introduction For p, a countable similarity type, let X, be the space of
structures of similarity type p whose universe is w (see [13], Section 3). For
any element ¢ of X, let [« ] be the set of all elements of X, which are
isomorphic to . Scott [10] showed that [¢2 '] is a Borel subset of X, In fact,
he showed that for any such & there is a sentence 0 of L, ., such that [2 ] is
exactly the set of elements of X, which are models of 6 (see [1], Ch. VII, for a
good write-up of Scott sentences).

In [13] Vaught considerably strengthened Scott’s result. There is a natural
hierarchy of formulas of L, . Let II§ = Z§ be the quantifier-free first-order
formulas. For any o 2 1the I19 formulas are those of the form:

M\ v Vs . Va0,
n<w
where each 0, is Egn for some B, < a. The X2 formulas are those of the form:
W3x13x2 ... 3x,0,
n<w

where each 6, is Hﬁ for some B, < o. A set B C X, is called invariant iff it is
closed under 1somorphlsm Vaught showed that for every II2 invariant set B
there is a TIO sentence 6 such that B is the set of models of 6, and similarly
for 2.
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This result was extended by D. E. Miller [8] to the classical Hausdorff
difference hierarchy. He proves that for any «>> 1 if B is an invariant A2, set,
then there exists § < w; and invariant decreasing Hg sets Cs for 6§ <8 such that:

B=U{Cs — Csyy: 6 even <.

He also showed that if an invariant set is the difference of II2 sets (II2 A Z2),
then it is the difference of invariant II2 sets.

Note that [« ] is a minimal invariant set. From Miller’s Theorems we see
that if [« ]is A2, ,, then it is the difference of two invariant IT sets. If it is not
properly the difference of two IT sets, then it is the union of an invariant I12
and an invariant X2, and so it is either 1S or 2. If « is a limit ordinal and [ ]
is 22, then it is Hg for some B < a. This follows immediately from Vaught’s
theorem by considering the form of a = sentence. For the same reason (for
alimit) (2] cannot be properly the difference of two I12 sets.

In Section 1 we show that the isomorphism class of a countable model in
a countable similarity type containing no operation symbols cannot be properly
29 (ZYis also impossible). In Section 2 we show how Wadge games may be used
to classify the Borel class of the isomorphism class of some common models. In
Section 3 we calculate the Borel class of the isomorphism class of each
countable ordinal. In Section 4 we give examples of isomorphism classes
properly in each Borel class not ruled out by the results above except for =y,
for A an infinite limit ordinal. This case is open. In Section 5 we give an
example of an Njcategorical theory whose (only) model has an isomorphism
class which is properly T2,

The theorems in the first four sections appeared in [6] and the result in
Section 5 was announced in [7].

1 No isomorphism class is properly 9 In this section we prove that if &
is a model in a countable similarity type with no operation symbols and [/ ] is
=9 then it is AJ. D. E. Miller [8] has shown that no [¢2 ] is properly Z9in the
topology generated by first-order logic. However, I do not know how to deduce
either result from the other.

Theorem 1 No [ ] is properly Z9.

Proof: Suppose that [« ] is 9, then by Vaught’s Theorem there is a X9
sentence 0 such that [ ] is the set of models of . Note that 6 has the form:

\X/HXIEIX; coo3x, /X\\I/n,m(xly X5 ey Xn),
n<w m<w

where each V, ,, is a universal first-order formula. Since ¢ models one of the
disjuncts, we can sssume that 6 has the form:

Ix,3%,. . 3%, I\ UCep Xa0 - o x0).
m<w

Lemma 1.1 A is saturated.

Proof: Note that from the form of 8, if £ is any (first-order) elementary
extension of ¢z, then # models 0 and therefore £ is isomorphic to ¢ . From
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this it follows that every type in Th(c2) is realized in & (i.e., & is weakly
saturated). Therefore there is a countable saturated model of Th(£ ), and since
@ is an elementary substructure of it, we have that it is isomorphic to <z .

Remark: In fact, it is not hard to show (see [8], Section 3) that Th(2) is
N-categorical.

Next I will show that we may assume, without loss of generality, some
simplifications in the properties of the .

Lemma 1.2 There exists (%) such that:

(D) Ymlxy, X3, - . ., xn) are universal first-order formulas with only x,,
Xg, .. ., Xn free,
(2) [@] is the set of models of A% /X\ Um(X),

m<w

(3) for any m, Y4 i(X) > Ym(%),
(4) forany m, Y,,(%) ~> A (x; # xj), (i.e., irreflexive)
i#]

(5) for any m and permutation o of {1, 2, ..., n},

d/m(xl: X2+ 00 xn) - ‘l’m(xo(l), x0(2)> e xo(n))

(ie., symmetric).
Proof: To obtain (3) just replace the ¥, by /X\ Y;. To get (4) just look at the
i<m

cardinality of a witness in ¢z . To get (5) replace Y,,(xy, X5, . . ., Xn) DY
\X/ Ym(Xo(1) Xo(2)s - + > Xa(n))
a

where the disjunct is taken over all permutations of {1, 2, ..., n}. Note that
(2) is retained since by (3) it is enough to satisfy infinitely many y,,, so the
same o must be used infinitely often.

Let Y(¥) be the infinite conjunction of the V,,(¥). Let D € [A]" be
arbitrary such that & F (D). Since @ is saturated we can find BCA-Da
set of D-indiscernibles of order type the rationals. By D-indiscernible I mean
that they remain indiscernible even if constant symbols are added for elements
of D. Consider for any 4, C D, @ ! (A,Y B) (i.e., the substructure of &£ with
universe 4, U B). In this model B is certainly still A yindiscernible with respect
to quantifier-free formulas. In fact, B is A yindiscernible in ¢ (44U B) even
with respect to universal formulas. This is because any witness for an existential
formula is from A, U B and B has order type the rationals. Choose Ay C D of
minimal cardinality, say n, < n, such that for all X € [B]"™"0, @ } (A, UB) F
Y(Ay U X). Clearly @ } (4, YU B) is isomorphic to &2, so we may assume
Ao UB =A.

Lemma 1.3 For every A, € [A]", Ag= A, iff VX e [A-A,]" 2 F
Y4,V X).

Proof: Left to right follows by the definition of A, To prove right to left,
suppose A, # A, and let A, = Ay N A, and let the cardinality of A, be n, <n,,.
Since B is A indiscernible with respect to universal formula it is easy to show
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VX e [B]"™" @ F y(A4, U X). Since universals go down, the same is true in
@ ' (A, U B) which contradicts the minimality of A,

Lemma 1.4 Suppose fis any bijection from A to A which is the identity on
Ay, then fis an automorphism of @ .

Proof: Recall that A = A, U B where the elements of B are A4 yindiscernible
with respect to universal formula. I claim that B is totally A yindiscernible with
respect to quantifier-free formulas. Suppose p is quantifier free with some
parameters from A,

Chaim  Ifb <c,<c,<d are from B, then

Ep(b, ¢y, ¢y, d) < p(b, c,, CI,J).
To prove the claim, suppose

Ep®, ¢, ¢y d)A1p(b, ¢y, ¢4, d).

Choose C = tcy: n < w} C B such that b < ¢y < cpsy < d. Now consider the
model @ | (4, U {b, d} U C). This model is isomorphic to . But p(8, x, y, d)
defines a linear order of order type w on a cofinite subset of the universe,
which contradicts the fact that /2 is saturated.

Suppose b, < b, < bz < ...<b, are elements of B and let P be all
permutations o of {1, 2, . . ., m} such that for all p(x,, x,, . . ., X;») quantifier
free with parameters from A,

@ Epby, by .. bw) <= 0(boy Boys - - - bomy)-

Note that P is closed under composition and by the claim contains all two
cycles. It follows that P is the set of all permutations. The total A yindis-
cernibility of B implies the Lemma.

Note that Lemma 1.3 implies that 4, is definable (Lwlw) in (. Next we
simplify this. For any k < w, let 74(xy, x5, . . ., Xp,) say that X are distinct and
for ¥ a sequence of n — n, distinct elements disjoint from ¥, Yx(¥ U 7). Note

that from Lemma 1.3 we have that for all K e [4]", K= A, iff & l—_-k/X\ T(K).
<w

Lemma 1.5 There exists N < w such that for all H € [A]Y and for all
K e [H]M:

K=Ayiff @t HE “rp(K)”.
Proof: Consider the first-order theory T consisting of

(a) for each k < w “‘there are at least k elements”,
(b) for each k < w, 7¢(by, by, . . ., byy),

(c) foreach k <w, 7¢(cy, €ay - - -, Cny), and

(d) by, by, . .., but FACy, Coy - o s Cngh-

Any countable model of T will be isomorphic to & (when reduced to the
language without the new constant symbols ¢; and b; fori=1, 2, .. ., ny). Since
Ay is uniquely defined, T is inconsistent. Hence for all sufficiently large N < w
for all H € [A1Y there is at most one K € [H]"0 such that @ } H E “mp(K)”.
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Clearly, since 7y is universal, if Ao C H, then @@ ' H F “7y(4,)”. Now
suppose @@ } H F “1y(K)” and K # A, Therefore, part of K lies in B, thus if
N > 2ng, we can find a bijection f from A into A which fixes 4,, sends H into
H, and such that f(K) # K. By Lemma 1.4 fis an automorphism of ¢ and thus
an automorphism of « ! H. But then

@ ' H E“ty(K) nTa(f(K))”,
a contradiction. This proves Lemma 1.5.

Let 0(H, K) be the quantifier-free formula which says that H e [4]Y,
K € [H]"0, and

a b HF“ty(K)”.
Then the conjunction of the 9 sentence:
JH3K 6(H, K)

and the IT9 sentence:
VEYKOH, K) > MR\ 1K)
m<w

characterizes the isomorphism class of ¢ . Thus [« ] is the difference of two
9 sets.

Remark: I have also been able to show that proper £Jisomorphism classes are
impossible in the language which consists of a single unary operation symbol.
The most general case is open. In a language without operation symbols every
consistent 9 sentence has finite models. This, of course, is not true if the
language contains operation symbols, e.g., “f is one-to-one and not onto”.
However it is easily shown that a counterexample (in the general case) must
have finite models.

2 Using Wadge games In this section we show how to calculate the Borel
class of the isomorphism class of some common models using Wadge games.

If X and Y are topological spaces and A C X, B C Y, we say that A <y B
iff there exists a continuous map f> X = Y such that f~%(B) = A. Wadge noted
that in common spaces such as w*, 2%, etc., the map f could be described very
conveniently as the winning strategy of a particular two-person infinite game.
For a good reference to Wadge games, see Van Wesep [14]. For simplicity let
p be a finite similarity type with relation symbols only. Let A C w* and
B C X, and consider the following game G(4, B). Player I and player II alter-
nate and make infinitely many moves. On the k™ play, player I plays some
ny € w and player II plays some <2 with universe a finite subset of w and such
that @ _, is a substructure of ;. We demand from player II that w =
U fl@il: k < wl. At the end of infinitely many plays, player I has written

down f = (n;: k < w) € w*, and player Il has written down & = U LnelX,.
n<w
Player II wins this particular play iff (f e A iff & € B). Player Il wins the game

G(A, B) iff he has a winning strategy (i.e., a function which tells him what to
play at each point in the game and which wins against all plays of player I). A
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winning strategy for player II determines a continuous map which shows that
A <y B. And conversely, every continuous map witnessing 4 <y B determines
a winning strategy for player II.

Let I" be any of the Borel classes £, 12, 12 A 20 (i.e., the difference of
two 12 sets), or 112 v X2 (i.e., the dual of 2 A £9). Let I'°, the dual of T, be
the set of complements of the elements of I'. Each of these I' is closed under
continuous preimage (i.e., if 4 <y B € I', then A € I'). Also, each of them is
nonselfdual (i.e., I' # I'P). Thus, to show that some B C X, is not in I'? it
suffices to show that for every A € w“ N I, player Il has winning strategy in
G(A4, B).

Example 1: I19. Suppose p is the similarity type containing one unary relation
symbol P. In this case Xp = 2«. If & F VxP(x), then [ (2] is a single point of
X,. Since no point of X,, is isolated it cannot be 29 (i.e., open).

Example 2: TI$ AZ9. In the same space let &2 model the sentence:
Ax P(x) AVYYz(P(Y)AP(2)) >y =z

(i.e., 'xP(x)).

Suppose that A = 0 N C where 0 C w® is open and C C w* is closed. Let us
give a winning strategy for player II in G(4, [@]). Let w<¢ be a set of all
finite sequences of elements of w. Because 0 C w* is open there exists
0 C w<% such that:

0={fewInftneol
Also, since C C w® is closed there exists c C w<¢ such that
C={few“lVnftneCl

Now we describe player II’s winning strategy. Player II plays 2, F “Vx-1P(x)”
until Player I plays f I' n € O (if this never happens he continues to play such @,
forever). At that point, he plays @2, F “3I!xP(x)”. He continues to play models
of I!xP(x) unless player I plays f I m ¢ C. At that point player II plays
@m FIxAy (x #y AP(x) A P(P))”.

Example 3: I19, n. Let p be the similarity type with one binary relation (so
Xp = 2wX®) Let n be a dense linear order without end points. It is easily seen
that [n] is I19. To see that it is not Z9 let’s use Wadge games. Suppose

A= D 0, is any II subset of w* (each 0, open). The strategy for player II is
n<w

to wait to fill in gaps until player I has put f tm e 6,, for some new n. That is,
he plays 2,41 2 @, an end extension (i.e., for every x € 4,, and y € Ay4q —
Apm, x < p) unless there exists n such that ftm e n 0; but ft (m-1) ¢ n 0;

i<n i<n
and then he plays @2 ,,+1 2 @m so that for all x, y € A, there exists z €
Amer x <z <y and there exists zy, z; € A+ 2o <xand y <z,.

Example 4: TI9 A 29,1+ n+ 1. Let 1 +n+ 1 be the countable dense linear
order with endpoints. It is easily seen to be II3 A Z9. Let “3%n> abbreviate
“there exist infinitely many »n’” and let “V™n” abbreviate “for all but finitely

many n”. It is easily seen that every IIJsubset of w* is Wadge reducible to the
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set of models of “I”nP(n)”. Thus every II3 A =9 set is reducible to the models
of “I*nP(n) A ¥Y<nQn)”. To see that the set of models of “I*nP(n) a
V*nQ#)” reduces to the isomorphism class of 1 +n + 1 is easy. Use P(n) to fill
in gaps as in Example 3 and use Q(n) to pick the endpoints. That is, whenever
“1Q(n) appears arrange things so that there exists xo, x; € A,+; such that for all
VeAy xo<y<x,

Example 5: II3, w. It is easy to see that the isomorphism class of w (i.e., the
order type of w) is I1S. It is also easy to see that every I1§ set is reducible to the
models of “Yn¥"mC(n, m)”. To reduce the models of “VnV=mC(n, m)” to the
isomorphism class of w one strategy for player II can be roughly described as
follows: Imagine that he first plays a copy of w. In each interval [n, n+ 1] he
plays a;+; < @; for each i such that 1C(n, ). Thus if there exist infinitely i such
that 1C(n, i) a copy of w* is jammed between [n, n + 1], otherwise [n, n + 1]
is finite.

Remarks: Some other structures are also easy to do using Wadge games. For
example, (w, S) (where S is the successor function) has an isomorphism class
which is complete I19 A 9. A slightly more difficult argument (see [6]) can be
used to show that the model consisting of w many copies of (w, S) and w many
copies of (Z, ) (Z is the integers) has an isomorphism class which is complete
1. This example was motivated by the fact that every finite valency structure
has an isomorphism class which is I1. (For the definition of finite valency
structure, see [5].) This shows I13 is best possible.

3 FEhrenfeucht games or back and forth properties Here we review some
material which is well known. In this section let ¢z and # be countable models
in the same similarity type. Define for a an ordinal, & 3> # by induction on a.
Define & > # iff @ and # model the same quantlfler-free sentences. Defme
@ = iff for all B <o and d € A“ there exists b € B<® such that (@, b) -
(@,3).

Lemma 3.1 @ = % iff every O sentence true in @ is true in 3.

Proof: Note that the right-hand side is equivalent to every II2 sentence true in
# is true in 2. The proof is by induction. If

N/ 32,0,

n<w

is true in & where each 6, is Hgn for some B, < @, then choose @ € A<* and n
such that

0,(d)

is true in . Let b € B<“ be such that (», b) 5 (@, d). By inductive hypo-
thesis, Gk(b) is true in #. To prove the converse suppose every 2" sentence
true in @ is true in @. Givend € A” and B < a, it is enough to find be B” such
that every E sentence true in (#, b) is true in (&, @). If not, then for all b e B
there exists a Z‘o formula 05 (%) such that:

(B, b) E05(b),
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but
(@, d) EA03(a).
But then @ models the Z9 formula:

ax M\ 050)

beBn
but # does not.

Lemma 3.2 Suppose & is not isomorphic to # and & 2 #, then [¢¢ ] is
not =2 and [#] is not I1Y.

Proof: This is an immediate Corollary of Lemma 3.1 and Vaught’s Theorem.

Next, we prove some facts about ordinals which are basically due to
Ehrenfeucht [2] (see also Karp [4]). For any ordinal «, we use « to stand for
the model in the language of one binary relation < of order type o. We need to
strengthen the notion & > # by using the idea of a (6-) elementary sub-
structure.

Define @2 25 # iff @ is a substructure of # and for all @ € A<“ and
<6, (#,ad) 7 (@, d). We will say that a is 8 oblivious iff for any v, = v,=> 1,
oy 3y -y
Lemma 3.3 If ais & oblivious, then a-w is 8 + 2 oblivious.

Proof: See the proof of Theorem 12 in [2].
Lemma 3.4 For X limit and n < w, wM" is N+ 2n + 1 oblivious.

Proof: First note that w is 3 oblivious (i.e., if o << § are limit ordinals, then
o 53 B). Use the identity for the first move from « to 8 and use the fact that «
is a limit on the second move from g to cx. For n = 0 and \ a limit we want
to prove that if 1 < yo < y; and d € w7, then (W*-v,,d) 3 (W7, d).
But @ % # iff for allﬁ< Na g B Bymductlon 1fB<)\andﬁ+oz-7\
then cf- (W7 R W (w" 71) Thus (w* 7y, d) = (WP (W 7y), d) 7
(WP (w*0), ) = (W0, d).

Using Lemma 3.4 it is easy to compute the Borel class in which the
isomorphism class of each countable ordinal lies.

Lemma 3.5 If y =M™ n+ 8 where X\ is a limit, n, m < w, and § < WM™
then if n = 1, then [v] is M omss but not 2£+2m+1, if n > 1, then [v] is
e ame1 A ZReamer bt 70t MRypmer V ZReame 1.

Proof: The computation of the upper bound on complexity is left to the
reader.

For example, to see that [w] is I1§say that it is a linear order with no
greatest element (I19) and every element has finitely many predecessors. To see
that [w + w] is I A £ say that it is a linear order with no greatest element
(I19), there exists a nonzero limit point (£9), and for all x <y either x has
finitely many predecessors or y has finitely many predecessors greater than
x (I19). Now we verify the lower bound.
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Since w™™ is A + 2m oblivious, we have that:

(M 4 8) sy (WM + 8) s (WM (n + 1) + 8).

Here we are using the fact that if « prg B, then (o + 6) = (B + 6). From the first
arrow we get that wM™ + & cannot be 20 oms+1 and "for n > 1, WM™n + 8
cannot be Iy, ,,+;. From the second arrow we get that w™™.n + § cannot be
a1

Remarks: For any countable ordinal o let WO(a) be the subset of 29X« of all
well ordering w of type less than «. Stern, in [11] and [12], showed, for
example, that for any limit A and n < w, WO(w"*”) is 2,2, but not I12,,,. His
argument used a variant of Steel’s forcing. He also calculated the Borel class of
the set of well-founded trees of rank less than . This characterization had been
found earlier by Garland [3] using continuous reducibility (and not forcing). I
don’t know how to use continuous reducibility to do the ordinal case. Also, the
use of forcing allowed Stern to prove more. He showed that assuming
MA +1CH any Borel set which is the union of 8, 29 sets must be 2. This
result can also be proved by using the Vaught transform and Ehrenfeucht’s
analysis of well-orderings in place of forcing. For example, let us show that the
isomorphism class of the order type of w is not the w; union of XY sets
(assuming MA + 1CH). Since [w] is a minimal invariant set, it is enough to
show that any invariant set which is the w; union of X§ sets is the w, union of
invariant Z9 sets. But note that Vaught [13] shows that for any Zset B, B2 is
an invariant £ set. Also under MA + 1CH it is easy to see that:
( U Ba)A = U B2
a<w) a<wy

Also the fact that WO(w + w) is not I19 can be proved using Ehrenfeucht
games. This was proved in the appendix of [12] using forcing. It is not hard to
see that WO(w + w) is M1 A £9. Games can be used to show that for any =%
sentence 6 true in (w + w*, <) there is an n < w such that 6 is true in
(w+n, <.

4 Some finitely axiomatizable theories and other examples In this section
we begin by giving some examples of finitely axiomatizable, first-order,
N-categorical theories.

Construction 1 Given two models &£ and # in the same language and
i=0,1, 2, the model C; can be described as follows. Let &~ and < be two new
binary relations. In C; & is an equivalence relation and < densely orders (order
type 1) the = equivalence classes. Each equivalence class is isomorphic to either
@ or # and in C; exactly i are isomorphic to . The proofs of the next two
claims are left to the reader.

Claim 1 If @ > #, then Co 53 C1 575 O and therefore by Lemma 3.2
Co¢ Zsrand Cy ¢ En+1 v 104y

Claim 2 If (2] and [#] are A9, (n=>2), finitely axiomatizable, and
complete (i.e., no finite models), then [&,] is I13,,, finitely axiomatizable, and
complete and [ C,] is [194; A 2244, finitely axiomatizable, and complete.
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Now starting with n and 1 + n + 1 (Examples 3 and 4 of Section 2) and
noting that n 3 1 + n + 1 we get examples for all the Borel classes 19 and
M AZdfor3<n<w.

Construction 2 Given two structures ¢ and # in the same language, we
construct two models £y and .0 similar to the first construction. The new <
and ~ are the same as in the C; and every equivalence class is isomorphic to
either & or £, and both & and # are isomorphic to some equivalence class.
In addition, every equivalence class isomorphic to 2 is < every equivalence
class isomorphic to #. The only difference between 0, and & is thatin 0,
there is a < greatest class isomorphic to ¢z and in 0, there isn’t. The following
claims are easy to verify.

Claim 1 If [«2] and [®] are A, (n = 1), finitely axiomatizable, and
complete, then [ &) is 112, finitely axiomatizable and complete and [ .&,] is
9., finitely axiomatizable and complete.

Remark: In case n + 2 = 3 we should take for & and # the one-element and
two-element models in the empty language.

Claim 2 If @ 2 % then &y £, and thus by Lemma 3.2 0 is not IT,.,.

n+2

This construction gives examples for all the Borel classes 29 for 3 <n < w.
The ordinals give examples for all Borel classes I1 and 13 A 2 for odd « = 3.
Coupled with these two constructions we get examples for all Borel classes not
ruled out, except for II}, X9, ,, %, for A an infinite limit ordinal. We now give
examples for I1{ and >9.,. For simplicity let X = w. The isomorphism class of
the model @, = (w*, <, P) where P = {w": n < w} is easily seen to be Hg,. Let
@, = (W < P) where P = {wi: i<n} U {w"-m: m<wl It is not hard to
show that for each n, @, 3> @, thus [ @Z,] is not IT} for any n < w.

Construction 3 Let #, be the model (Q, <, ¢;)n<., Where Q is the rationals
and ¢, a sequence strictly increasing to 0. Let #ybe £, minus O (i.e., the ¢,’s
have no supremum). Let #§f be obtained from #, by replacing each ¢, by a
copy of £, and each other element of Q by a copy of & ,. Similarly construct
7%, It is easily shown that
B TP H

Therefore, [£%] is not I12,,. On the other hand, direct calculation shows that
[#%] is 2042

5 An Rycategorical theory properly of class 112, In this section we give an
example of a Njcategorical, first-order theory whose model has an iso-
morphism class which is II2, but not £2,. It is a variation of an (unpublished)
example of Kueker and Baldwin of a countable, 8,categorical theory which
has the property that no finite extension is model complete.

For N < w let Ty be the following universal theory in the language: R, S
binary relations and Q, » + 1-ary relation for n each <N. The axioms of T say:

(1) R and S are symmetric and irreflexive,
(2) for n <N, Q, is symmetric and irreflexive, and
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(3) for n + 1 < N, nothing in Q,., is totally connected (by R if n even, S if n
odd) to anything in Q,,.

More formally by (3) for n even [ mean:

VE YT (O (E) A Quai(P)) > \ZV RGxi, 3));

j<n+i

and for n odd the same sentence with S in place of R.

Lemma 5.1 Ty has the amalgamation and joint embedding properties.

Proof: What these properties say is that any two models of T, can be em-
bedded into a third model (joint embedding) or amalgamated over a common
submodel (amalgamation). The proof is trivial since (3) can be made true
simply by making Q, (x) fail for all X which are new.

Lemma 5.2 Suppose @ E Ty, d € A" n+1 <N(n even), and @ E

1Qper(@), then there exists B E Ty, 8 D @, and £ = 3b 0,(B) a /X\ R(b;, a)).
(Similarly for n odd with S in place of R.) ,<,,+1

Proo[ Let B = A U {b,, bl, ..obyhifork #Fnlet Qf = Q letQB Q4 v
(b': B is a permutation of b}; let SB S4 andlet RE=RA U {(a,, b)), (b, a;):
i<n+1,j<n}. Here is where we needed both R and S, since Q,,- 1mlght hold
on some subset of d.

Let 2z ny be the universal homogeneous countable model of 7). That is,
every finite model of Ty is isomorphic to a substructure of 2y and every
isomorphism of finite substructures of ¢y extends to an automorphism of
 y. The Theory of @z y is Ny-categorical. For any £k < N let ﬁxﬂ‘v be the reduct
of ¢y to the language R, S, Q;: i < k. By Lemma 5.2 it is easy to see that every
Q; is definable in ¢z}, thus the theory of 2} is also Ny-categorical. We will
show that [¢2L,] is not ITQ for any n < w. First note that for n <m < w, @ is
not isomorphic to <2 },. This is because ¢z}, satisfies 3% Q,(X) but & does not
(we mean here the definition of Q, from {R, S, Q,}). This in turn is proved like
Lemma 5.2. Define & =, #iff 2 > # and & > @ .

Lemma 5.3  If k + 1 < min(N, N"), then if (2%, @) Eo (@5, @), then
@y, &) = (@, @).

Proof: Let be A,f,“’ Construct a model C in the language {R, S, Q,: n<N'} as
follows. Let C=3d' U b let C% be isomorphic to @au b R, S, Q,: n <k) via the
given map taking @’ to @ and the identity on b and for n with £k <n <N'let
Q7 = @)1 nQEN'.

Claim  C E Ty

We only need to check (3). Suppose & F “Q,(¢) A Qn+1(3) A& and d are
totally connected by R (if n even, S if n odd)”. By construction of C* it cannot
be that n + 1 < k. If n > k then both & and d are subsets of @' and again there is
no problem. The remaining case is # + 1 = k. From the construction we have
that d must be contained in @ and so Qy holds on its image in @, since by
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assumption (@, R, S, Q,, n <k) is, isomorphic to @R,S, Q, n<k). But
Ok, holds on the image of & in @ U b, a contradiction. This proves the claim.

But now since (&’ is universal homogeneous we know there exists ' in
@' such that Cis 1somorphlc tg @y B, R S, Qn n <N') (extending the
identity on d@'). Therefore, (@N, i b= o (@N a, b

Lemma 5.4 Ifk + 1 < min(N, N"), then if (@', @) Z; (@K &), then
(@, @) E, @, 3.

Proof: Play the game for i steps, then get through one more step by
dropping Q.

Lemma 5.5  Ifk+1=min(N, N'), then @y @ ).

Proof: Immediate from Lemma 5.4.

This lemma gives immediately that [« })] is not H,g for any k < w.

Remark: The proper generalization to admissible A > w is given by the
A-self-hyp-characterizable models of [9].
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