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On the Borel Classification of the
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Introduction For p, a countable similarity type, let Xp be the space of
structures of similarity type p whose universe is ω (see [13], Section 3). For
any element & of Xp, let \d/\ be the set of all elements of Xp which are
isomorphic to CO. Scott [10] showed that \β/\ is a Borel subset of Xp. In fact,
he showed that for any such (2/ there is a sentence θ of Lωχω such that \C0\ is
exactly the set of elements of Xp which are models of θ (see [ 1 ], Ch. VII, for a
good write-up of Scott sentences).

In [13] Vaught considerably strengthened Scott's result. There is a natural
hierarchy of formulas of Lωχω. Let ΠQ = ΣQ be the quantifier-free first-order
formulas. For any a > 1 the Π° formulas are those of the form:

where each θn is Σβn for some βn < a. The Σ^ formulas are those of the form:

where each θn is Π ^ for some βn < a. A set B C Xp is called invariant iff it is
closed under isomorphism. Vaught showed that for every Π^ invariant set B
there is a Π^ sentence θ such that B is the set of models of 0, and similarly
for Σ°.
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This result was extended by D. E. Miller [8] to the classical Hausdorff
difference hierarchy. He proves that for any a > 1 if B is an invariant Δ°+ 1 set,
then there exists β < ωλ and invariant decreasing Π° sets Cδ for δ < β such that:

B = U\Cδ - C δ + 1 : δ even<j3i.

He also showed that if an invariant set is the difference of Π^ sets (Π^ Λ Σ^),
then it is the difference of invariant Π° sets.

Note that [CO] is a minimal invariant set. From Miller's Theorems we see
that if [ ^ ] is Δj+i, then it is the difference of two invariant Π° sets. If it is not
properly the difference of two Π^ sets, then it is the union of an invariant Π^
and an invariant Σ°, and so it is either Π^ or Σ°. If α is a limit ordinal and \C0 ]
is Σ^, then it is Π° for some β < a. This follows immediately from Vaught's
theorem by considering the form of a Σ° sentence. For the same reason (for
a limit) [ ^ ] cannot be properly the difference of two Π° sets.

In Section 1 we show that the isomorphism class of a countable model in
a countable similarity type containing no operation symbols cannot be properly
Σξ> (Σ i is also impossible). In Section 2 we show how Wadge games may be used
to classify the Borel class of the isomorphism class of some common models. In
Section 3 we calculate the Borel class of the isomorphism class of each
countable ordinal. In Section 4 we give examples of isomorphism classes
properly in each Borel class not ruled out by the results above except for Σ° + 1

for λ an infinite limit ordinal. This case is open. In Section 5 we give an
example of an K0-categorical theory whose (only) model has an isomorphism
class which is properly Yl°ω.

The theorems in the first four sections appeared in [6] and the result in
Section 5 was announced in [7].

1 No isomorphism class is properly Σ§ In this section we prove that if CO
is a model in a countable similarity type with no operation symbols and [ fl/ ] is
Σ^ then it is Δ§. D. E. Miller [8] has shown that no [CO] is properly Σ^in the
topology generated by first-order logic. However, I do not know how to deduce
either result from the other.

Theorem 1 No [CO] is properly Σ§.

Proof: Suppose that \d/\ is Σ§, then by Vaught's Theorem there is a Σ^
sentence θ such that [ ^ ] is the set of models of θ. Note that θ has the form:

\X/3x13x2. . .3xn /XWn,m(*i, * 2, .,**),

where each ψw > m is a universal first-order formula. Since CO models one of the
disjuncts, we can sssume that θ has the form:

3xj3x 2 ...3xn M \ φm(xlt x2, ., */ι).

Lemma 1.1 .d/ is saturated.

Proof: Note that from the form of θ, if 43 is any (first-order) elementary
extension of CO, then 49 models θ and therefore 49 is isomorphic to CO. From



24 ARNOLD W. MILLER

this it follows that every type in Th(β^) is realized in β/ (i.e., CO is weakly
saturated). Therefore there is a countable saturated model of Th(&), and since
β/ is an elementary substructure of it, we have that it is isomorphic to β,.

Remark: In fact, it is not hard to show (see [8], Section 3) that Th(fc) is

tt0-categorical.

Next I will show that we may assume, without loss of generality, some
simplifications in the properties of the ψm.

Lemma 1.2 There exists φm(x) such that:

(1) φm(x\, x2, ., Xn) a r e universal first-order formulas with only xlt

x2, ., xn free,
(2) \β/\ is the set of models of3x /f\ φm(x),

(3) for any m, ψm+1(x) -+ ψm(x),

(4) for any m, φm(x) ->/Λ\(X, + x, ) , (i.e., irreflexive)
iΦj

(5) for any m and permutation σ o / 1 1 , 2 , . . . , n\,

Ψm(χl> X2> J Xn) ~* Ψm(xσ(l)> xσ(2)> •? xσ(n))

(i.e., symmetric).

Proof: To obtain (3) just replace the φm by /Xλ ψz . To get (4) just look at the
i<m

cardinality of a witness in β/. To get (5) replace ψm(Xι, x2, -, χn) by

W Ψm(χσ(l)> xσ(2)> •> xσ(n))
σ

where the disjunct is taken over all permutations of {1,2,.. ., n\. Note that
(2) is retained since by (3) it is enough to satisfy infinitely many φm, so the
same σ must be used infinitely often.

Let ψ(jc) be the infinite conjunction of the ψm(x). Let D e [A]n be
arbitrary such that β/ 1= φ(D). Since β/ is saturated we can find B C A - D a
set of D-indiscernibles of order type the rationals. By D-indiscernible I mean
that they remain indiscernible even if constant symbols are added for elements
of D. Consider for any Ao C D, CO \ (Ao U B) (i.e., the substructure of β/ with
universe Ao U B). In this model B is certainly still 4̂ 0-indiscernible with respect
to quantifier-free formulas. In fact, B is A0-indiscernible in β^t(A0ΌB) even
with respect to universal formulas. This is because any witness for an existential
formula is from Ao U B and B has order type the rationals. Choose Ao C D of
minimal cardinality, say n0 < n, such that for all X e [B]n~nQ9 β/ ϊ (A0U B) 1=
φ(A0 U X). Clearly β/ \ (AQ U B) is isomorphic to β,, so we may assume
A0UB=A.

Lemma 1.3 For every A1 e [A]no, Ao = Aι iff \/X e [A - Λ1]
Λ-/Io & 1=

Proof: Left to right follows by the definition of Ao. To prove right to left,
suppose A 0 Φ A x and let A 2 - A 0 Π ̂ 4 j , and let the cardinality of ̂ 4 2 be «2 <

 Λ o
Since ^ is ^-indiscernible with respect to universal formula it is easy to show
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\/X e [B]n~n* (2/ 1= φ(A2 U X). Since universals go down, the same is true in
CO \ (A2 U 5) which contradicts the minimality of ^40.

Lemma 1.4 Suppose f is any bijection from A to A which is the identity on
Ao, then f is an automorphism of &>.

Proof: Recall that A = i 0 U 5 where the elements of B are A 0-indiscernible
with respect to universal formula. I claim that B is totally A 0-'mdiscQrmb\Q with
respect to quantifier-free formulas. Suppose p is quantifier free with some
parameters from A 0.

Claim Ifb<c1<c2<dare from B, then

1= p(S, clt c2, d) «-* p(b, c2, cltd).

To prove the claim, suppose

t=p(S, cϊf c2} d) Λ ~~\p(b, c2, cγ, d).

Choose C = {cn: n<ω\ C B such that b < cn < cn+ί < d. Now consider the
model β/ r G40 U [b, d\ U C). This model is isomorphic to β/. But p(b, x, y, J)
defines a linear order of order type ω on a cofinite subset of the universe,
which contradicts the fact that β/ is saturated.

Suppose bι < b2 < b3 < . . . < bm are elements of B and let P be all
permutations σ of ίl, 2, . . ., m\ such that for all p(xχ, x2, . . ., xm) quantifier
free with parameters from A 0,

β/ \=β(blf b2, . . ., bm) ^-^p(^ σ ( i ) , 6σ(2)> •> ̂ σ(m))

Note that P is closed under composition and by the claim contains all two
cycles. It follows that P is the set of all permutations. The total A0-indis-
cernibility of B implies the Lemma.

Note that Lemma 1.3 implies that Ao is definable (L0Jιω) m ^ Next we
simplify this. For any k < ω, let τjc(x1, x2, . . ., xnQ) say that x are distinct and
for y a sequence of n - n0 distinct elements disjoint from jc, Ψkix ^ P) Note

that from Lemma 1.3 we have that for all K e [A ]no, K = Ao iff β/ \= /X\ τk(K).
k<ω

Lemma 1.5 There exists N < ω such that for all He [A]N and for all
Ke[H]n°:

K = Aoiϊffct H ^"τN(Ky\

Proof: Consider the first-order theory T consisting of

(a) for each k< ω "there are at least k elements",

(b) for each k < ω, Tk(blt b2, . . ., bnf),
(c) for each k<ω, τk(cίf c2,. . ., cnQ), and
(d) lbltb2,...9bno\Φ\cl9c2,...,cnol

Any countable model of T will be isomorphic to β/ (when reduced to the
language without the new constant symbols Q and bj for i = 1, 2, . . ., n0). Since
Ao is uniquely defined, T is inconsistent. Hence for all sufficiently large N <ω
for all H e [A ]N there is at most one K e [H]n° such that β, \ H \= CVA/(^)".
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Clearly, since τ^ is universal, if Ao C H, then CO \ H 1= "TJVG4O)" Now
suppose a> \ H 1= "τ^(iSΓ)" and £ =£ i40. Therefore, part of # lies in B, thus if
TV > 2n0, we can find a bijection / from yl into A which fixes Ao, sends H into
7/, and such that f(K) Φ K. By Lemma 1.4 /is an automorphism of Cfr and thus
an automorphism of ££ I" //. But then

^ r // 1= «T i V(tf) Λ τN(f(K)Y\

a contradiction. This proves Lemma 1.5.

Let 0(i/, TO be the quantifier-free formula which says that H e [A]N,
K e [H] "o, and

O/ r H \= "τN(KY\

Then the conjunction of the Σ? sentence:

3H3KΘ(H, K)

and the Πj sentence:

\/HVK(θ(H,K)^/)&τm(K))

characterizes the isomorphism class of Cί/. Thus \d/\ is the difference of two
Π? sets.

Remark: I have also been able to show that proper Σ§ isomorphism classes are
impossible in the language which consists of a single unary operation symbol.
The most general case is open. In a language without operation symbols every
consistent Σ2 sentence has finite models. This, of course, is not true if the
language contains operation symbols, e.g., "/ is one-to-one and not onto".
However it is easily shown that a counterexample (in the general case) must
have finite models.

2 Using Wadge games In this section we show how to calculate the Borel
class of the isomorphism class of some common models using Wadge games.

If X and Y are topological spaces and A C X, B C Y, we say that A < ^ B
iff there exists a continuous map f: X -+ Y such that f~\B) = A. Wadge noted
that in common spaces such as coω, 2ω, etc., the map/could be described very
conveniently as the winning strategy of a particular two-person infinite game.
For a good reference to Wadge games, see Van Wesep [14]. For simplicity let
p be a finite similarity type with relation symbols only. Let A C ωω and
B C Xp and consider the following game G(A, B). Player I and player II alter-
nate and make infinitely many moves. On the kth play, player I plays some
Πk e ω and player II plays some &k with universe a finite subset of ω and such
that β/k-ι is a substructure of ύ^k We demand from player II that ω =
U ίl^fcl: k < ωi. At the end of infinitely many plays, player I has written

down / = (njc'. k < ω) e ωω, and player II has written down ^ = U ι2/neXp.
n<ω

Player II wins this particular play iff (/e A iff (7/ e B). Player II wins the game
G(A, B) iff he has a winning strategy (i.e., a function which tells him what to
play at each point in the game and which wins against all plays of player I). A
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winning strategy for player II determines a continuous map which shows that
A <w B. And conversely, every continuous map witnessing A <w B determines
a winning strategy for player II.

Let Γ be any of the Borel classes Σ°, Π°, Π° Λ Σ° (i.e., the difference of
two Π° sets), or Π° v Σ° (i.e., the dual of Π° Λ Σ°). Let ΓD, the dual of Γ, be
the set of complements of the elements of Γ. Each of these Γ is closed under
continuous preimage (i.e., if A < ^ B e Γ, then A e Γ). Also, each of them is
nonselfdual (i.e., Γ Φ Γ^). Thus, to show that some B C Xp is not in Γ^ it
suffices to show that for every A e ωω Π Γ, player II has winning strategy in
G(A, B).

Example 1: Π?. Suppose p is the similarity type containing one unary relation
symbol P. In this case Xp = 2ω. If 01/ 1= \fxP(x), then [00] is a single point of
Xp. Since no point of Xp is isolated it cannot be Σ? (i.e., open).

Example 2: Π? Λ Σ?. In the same space let 01/ model the sentence:

3x P(x) Λ \fy\/z(P(y) Λ P(z))-+y = z

(i.e., 3\xP(x)).
Suppose that i = 0 Π C where 0 C ωω is open and C C ωω is closed. Let us
give a winning strategy for player II in G{A, [00]). Let ω<ω be a set of all
finite sequences of elements of ω. Because 0 C ωω is open there exists
OC ω<ω such that:

O = ί / e ω G ; l 3 ^ / ^ e θ ! .

Also, since C C ωω is closed there exists C C ω<ω such that

C={feωω\Mnf\neC\.

Now we describe player IPs winning strategy. Player II plays 01/n 1= "VxnP(x)"
until Player I plays / Is n e 0 (if this never happens he continues to play such 00n

forever). At that point, he plays OOn V
1 "3!xP(x)'\ He continues to play models

of 3\xP(x) unless player I plays / t m i C. At that point player II plays
am ^"3x3y(xΦy^P(x)AP(y)γ\

Example 3: Π£, η. Let p be the similarity type with one binary relation (so

Xp = 2ωXω). Let η be a dense linear order without end points. It is easily seen

that [17] is Πξ,. To see that it is not Σ§ let's use Wadge games. Suppose

A - Π On is any Πξ? subset of ωω (each 0n open). The strategy for player II is
n<ω

to wait to fill in gaps until player I has put f \ m e 0n for some new n. That is,

he plays OOm+ι 2 OOm an end extension (i.e., for every x e Am a n d y e Am+1 -

Am, x < y) unless there exists n such that f\me\\θi but ft (m - 1) i f ] Of
i<n i<n

and then he plays 00m+\ 2 O0m so that for all x, y e Am there exists 2 e
Am+ι x <z <y and there exists z0, z1 e Am+ι zo<x andy <zv

Example 4: Πf Λ ΣξJ, 1 + 17 + 1. Let 1 + η + 1 be the countable dense linear
order with endpoints. It is easily seen to be Πξ? Λ Σ ^ Let "3°V' abbreviate
"there exist infinitely many n" and let "V°V abbreviate "for all but finitely
many «". It is easily seen that every Π^ subset of ωω is Wadge reducible to the
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set of models of "Ξ^nPin)". Thus every Π§ Λ Σξ> set is reducible to the models
of "3°°nP(n) Λ \f°°nQ(nY\ To see that the set of models of "3°°nP(n) Λ
V°°nQ(n)" reduces to the isomorphism class of 1 + η + 1 is easy. Use P(n) to fill
in gaps as in Example 3 and use Q(n) to pick the endpoints. That is, whenever
iQ(n) appears arrange things so that there exists x0, xι e An+1 such that for all
yeAn,x0<y<xx.

Example 5: Π3, ω. It is easy to see that the isomorphism class of ω (i.e., the
order type of ω) is Π3. It is also easy to see that every Π3 set is reducible to the
models of "VrcV°°mC(rc, m)". To reduce the models of "VnV^mCCπ, m ) " to the
isomorphism class of ω one strategy for player II can be roughly described as
follows: Imagine that he first plays a copy of ω. In each interval [n, n + 1 ] he
plays α2+1 < αz for each i such that Ί C ( « , /). Thus if there exist infinitely i such
that ~iC(n, i) a copy of cυ* is jammed between [n, n + 1], otherwise [n, n + 1]
is finite.

Remarks: Some other structures are also easy to do using Wadge games. For
example, (ω, S) (where S is the successor function) has an isomorphism class
which is complete ΠξJ Λ Σ°. A slightly more difficult argument (see [6]) can be
used to show that the model consisting of ω many copies of (ω, S) and ω many
copies of (Z, S) (Z is the integers) has an isomorphism class which is complete
Π .̂ This example was motivated by the fact that every finite valency structure
has an isomorphism class which is Πj. (For the definition of finite valency
structure, see [5].) This shows Π4 is best possible.

3 Ehrenfeucht games or back and forth properties Here we review some
material which is well known. In this section let d/ and # be countable models
in the same similarity type. Define for a. an ordinal, 00 -* -# by induction on α.
Define 00 -* 13 iff 00 and 13 model the same quantifier-free sentences. Define
00 -2 13 iff for all β < a and a e A<ω there exists b e B<ω such that ( # , b) f

Lemma 3.1 00 -+ -& iff every Σ° sentence true in 00 is true in 13.

Proof: Note that the right-hand side is equivalent to every Π£ sentence true in
13 is true in 00. The proof is by induction. If

\fj 3xnθn(xn)

is true in 00 where each θn is Π ^ for some βn < a, then choose a e A<ω and n
such that

θn(a)

is true in &. Let b e B<ω be such that ( # , b) ^ ( ^ , a). By inductive hypo-
thesis, θk(b) is true in 13. To prove the converse, suppose every Σ£ sentence
true in 00 is true in 13. Given a e An and β < a, it is enough to find b e Bn such
that every Σ$ sentence true in ( # , b) is true in {00, a). If not, then for all b e Bn

there exists a Σ$ formula θζ(x) such that:

00, h \= θfth



ISOMORPHISM CLASS 29

but

(*M) t=-ιβκ(fl).

But then ^ models the Σ° formula:

33c /XV -iθ£(x)
teBn

but # does not.

Lemma 3.2 Suppose ^ is not isomorphic to 13 and 01/ ̂ > Ή, then [ ^ ] is
not Σ° and [ # ] is not Π°.

Proof: This is an immediate Corollary of Lemma 3.1 and Vaught's Theorem.

Next, we prove some facts about ordinals which are basically due to
Ehrenfeucht [2] (see also Karp [4]). For any ordinal a, we use a to stand for
the model in the language of one binary relation < of order type a. We need to
strengthen the notion 01/ -+ 13 by using the idea of a (δ-) elementary sub-
structure.

Define 01/ ~άδ 13 iff 01/ is a substructure of 13 and for all a e y l < ω a n d
β < δ, (13, a)γ (00, a). We will say that a is δ oblivious iff for any yλ > y0 > 1,

Lemma 3.3 If a is δ oblivious, then a-ω is δ + 2 oblivious.

Proof: See the proof of Theorem 12 in [2].

Lemma 3.4 For λ /zmzY and n<ω, ωλ+n is λ + 2n + 1 oblivious.

Proof: First note that ω is 3 oblivious (i.e., if a < ]3 are limit ordinals, then
α ^ 3 ]3). Use the identity for the first move from a to β and use the fact that a
is a limit on the second move from β to α. For n - 0 and λ a limit we want
to prove that if 1 < yQ < y1 and a e coλ-y0, then (ωλ-yίfa) -f (ωλ-y0,a).
But 01/ Ϋ 13 iff for all β < λ ^ >̂ # . By induction if β < λ and /3 + a = λ,
then ω^ ( ω α 7o) ^ ω^ (ω t t γ θ . Thus ( ω λ γ l f a) = (ω^ ( ω α γO, 5) ^
( ω ^ ( ω α 7o),^) = ( ω λ 7o,α).

Using Lemma 3.4 it is easy to compute the Borel class in which the
isomorphism class of each countable ordinal lies.

Lemma 3.5 // 7 = ω λ + m n + δ where λ is a limit, n,m<ω, and δ < ω λ + m ,
then if n = I, then [7] w Π£+2m+i 6Mί λzo/ Σ j + 2 m + 1 , z/ n > I, ί/ze^ [7] is

Πλ+2m+l Λ ^λ+2m+l ^ ^ ^ n o ί Π^+2w+i v ^λ+2m+i

Proof: The computation of the upper bound on complexity is left to the
reader.

For example, to see that [ω] is Π3 say that it is a linear order with no
greatest element (Π2) and every element has finitely many predecessors. To see
that [co + co] is Π3 Λ Σ3 say that it is a linear order with no greatest element
(Π2), there exists a nonzero limit point (Σ3), and for all x < y either x has
finitely many predecessors or y has finitely many predecessors greater than
x (Π3). Now we verify the lower bound.
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Since ωλ+m is λ + 2m oblivious, we have that:

Here we are using the fact that if a. •+ β, then (a + δ) ^ (β + δ). From the first
arrow we get that ω λ + m + δ cannot be Σ ° + 2 m + 1 and for n > 1, ωλ+m n + δ
cannot be U.χ+2m+1. From the second arrow we get that ωλ+m'Π + δ cannot be

Remarks: For any countable ordinal a let WO(a) be the subset of 2ωXω of all
well ordering ω of type less than a. Stern, in [11] and [12], showed, for
example, that for any limit λ and n < ω, W0(ωλ+n) is Σ°+2« but not Π^+2rt. His
argument used a variant of Steel's forcing. He also calculated the Borel class of
the set of well-founded trees of rank less than a. This characterization had been
found earlier by Garland [3] using continuous reducibility (and not forcing). I
don't know how to use continuous reducibility to do the ordinal case. Also, the
use of forcing allowed Stern to prove more. He showed that assuming
MA +-\CH any Borel set which is the union of Kx Σ° sets must be Σ°. This
result can also be proved by using the Vaught transform and Ehrenfeucht's
analysis of well-orderings in place of forcing. For example, let us show that the
isomorphism class of the order type of ω is not the ω1 union of Σ3 sets
(assuming MA + ~\CH). Since [ω] is a minimal invariant set, it is enough to
show that any invariant set which is the ωλ union of Σ3 sets is the ωx union of
invariant Σ% sets. But note that Vaught [13] shows that for any Σ§ set By BA is
an invariant Σ^ set. Also under MA + ~\CH it is easy to see that:

( u Baγ= u Bt
Also the fact that W0(ω + ω) is not Π3 can be proved using Ehrenfeucht

games. This was proved in the appendix of [12] using forcing. It is not hard to
see that W0(ω + ω) is Π3 Λ Σ3. Games can be used to show that for any Σ3
sentence θ true in (ω + ω*, <) there is an n < ω such that θ is true in
(ω + n, <) .

4 Some finitely axiomatizable theories and other examples In this section
we begin by giving some examples of finitely axiomatizable, first-order,
N0-categorical theories.

Construction 1 Given two models d/ and # in the same language and
/ = 0, 1,2, the model &i can be described as follows. Let ^ and < be two new
binary relations. In #7 « is an equivalence relation and < densely orders (order
type 77) the ^ equivalence classes. Each equivalence class is isomorphic to either
Ct/ or Ή and in £7 exactly / are isomorphic to β/. The proofs of the next two
claims are left to the reader.

Claim 1 If Cfr -+ -ff, then O0-^ &\~^[ ^2> a n d therefore by Lemma 3.2
£ M Σ° + 1 and £ M Σ° + 1 v Π°+1.

Claim 2 If \O/\ and [ # ] are Δ ^ + 1 ( « > 2 ) , finitely axiomatizable, and
complete (i.e., no finite models), then [OQ] is Π£+1, finitely axiomatizable, and
complete and [O^ is Π $ + 1 Λ Σ#+ 1, finitely axiomatizable, and complete.
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Now starting with η and 1 + η + 1 (Examples 3 and 4 of Section 2) and
noting that η -f 1 + η + 1 we get examples for all the Borel classes Π° and
Π ° Λ Σ ° f o r 3 < r c < ω .

Construction 2 Given two structures d/ and 19 in the same language, we
construct two models &0 and J&Ί similar to the first construction. The new <
and ^ are the same as in the &i and every equivalence class is isomorphic to
either d/ or # , and both d/ and 13 are isomorphic to some equivalence class.
In addition, every equivalence class isomorphic to d/ is < every equivalence
class isomorphic to 13. The only difference between ffx and j^ois that in J¥x

there is a < greatest class isomorphic to d/ and in /?0 there isn't. The following
claims are easy to verify.

Claim 1 If \d/\ and [19] are Δ°+1 (n > 1), finitely axiomatizable, and
complete, then [ J¥o] is Π£+2 finitely axiomatizable and complete and [ J¥x] is
Σ^+2 finitely axiomatizable and complete.

Remark: In case n + 2 = 3 we should take for d/ and # t h e one-element and
two-element models in the empty language.

Claim 2 If d/ -* 13 then Λ70 ^ &* a n d t h u s b y L e m m a 3.2 ^ is not Π°+2.

This construction gives examples for all the Borel classes Σ° for 3 < n < ω.
The ordinals give examples for all Borel classes Π^ and Π^ Λ Σ^ for odd a > 3.
Coupled with these two constructions we get examples for all Borel classes not
ruled out, except for Γl£, Σ°+1, Σ£+ 2 for λ an infinite limit ordinal. We now give
examples for Π£ and Σ^+2. For simplicity let λ = ω. The isomorphism class of
the model tf/ω = (ωω, <, P) where P = {ωn: n < ωl is easily seen to be Π^. Let
d/n = (ωΛ + 1, <9P) where P = !ωz': i<n) U {ωn-m: m<ω\. It is not hard to
show that for each n, d/n τ> ^ ω , thus [ d/ω] is not Π̂  for any n<ω.

Construction 3 Let 13x be the model (Q, <, cn)n<0J where β is the rationals
and cn a sequence strictly increasing to 0. Let # 0 be ^ i minus 0 (i.e., the cn's
have no supremum). Let 13% be obtained from ^^ by replacing each cn by a
copy of d/n and each other element of Q by a copy of ^ ω . Similarly construct
^o It is easily shown that

Therefore, [-̂ *] is not Π^+ 2. On the other hand, direct calculation shows that
[ # * ] is Σ^ + 2 .

5 Λ/ί ^^categorical theory properly of class Yi°ω In this section we give an
example of a K0-categorical, first-order theory whose model has an iso-
morphism class which is Π^ but not Σ^. It is a variation of an (unpublished)
example of Kueker and Baldwin of a countable, ft0-categorical theory which
has the property that no finite extension is model complete.

For TV < ω let TN be the following universal theory in the language: R, S
binary relations and Qn n + l-ary relation for n each < N. The axioms of 7# say:

(1) R and S are symmetric and irreflexive,
(2) for n <N, Qn is symmetric and irreflexive, and
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(3) for n + 1 < N, nothing in Qn+ί is totally connected (by R if n even, S if n
odd) to anything in Qn.

More formally by (3) for n even I mean:

Vx Vj7(QΛ(3c) Λ Qπ + 1(?)) •+ W ~iR(xi, yf);
i<n

j<n+l

and for n odd the same sentence with S in place of R.

Lemma 5.1 Jyv has the amalgamation and joint embedding properties.

Proof: What these properties say is that any two models of T^ can be em-
bedded into a third model (joint embedding) or amalgamated over a common
submodel (amalgamation). The proof is trivial since (3) can be made true
simply by making Qn(x) fail for all x which are new.

Lemma 5.2 Suppose Cfr 1= TN, a e An+1, n + 1 < N (n even), and 0/ t=

Ίβ π + 1 (2) , then there exists # 1= TN, tf D a,, and Ή \= 3b Qn(b) Λ /X\ R(bit at).

(Similarly for n odd with S in place of R.) /<n+i

Proof: Let B = A U {δ0, δi, . ., bn\\ for k Φ n let Qξ = Q$\ let Q^ = Q$ U
ίS': S' is a permutation of 51; let S 5 = 5 ^ , and let Λ 5 = 7?^ U \{ait ty), (bjf flz ):
/ < « + 1, / < n\. Here is where we needed both R and S, since β^-i might hold
on some subset of a.

Let a^N be the universal homogeneous countable model of T^. That is,
every finite model of Γ/y is isomorphic to a substructure of C^N and every
isomorphism of finite substructures of C^N extends to an automorphism of
ύ^M The Theory of d/^ is £ V c a t e β o r i c a l F ° r any k <ΛΠet ££^be the reduct
of tf/N to the language R, Sy Qf. i < k. By Lemma 5.2 it is easy to see that every
Qi is definable in &h, thus the theory of Cfrlf is also frVcateβ°Γical. We will
show that [ d/ι

ω\ is not Π^ for any n<ω. First note that for n < m < ω, CZsl

n is
not isomorphic to Ct/)n. This is because ^ ^ satisfies 3x Qn(x) but fl/\ does not
(we mean here the definition of Qn from {R, S, Qo\). This in turn is proved like
Lemma 5.2. Define Cfr Zn -β iff a, ^ # and ̂  ^ ^ .

Lemma 5.3 // A: + 1 < min(7V, TV'), ί/z^ if ( ^ \ a) Ξ o ( ^ ^ \ α'), then
(&k

N, a) Σλ {a,k

N; a').

Proof: Let b e A^ω. Construct a model C in the language {R, S, Qn: n <N'\ as
follows. Let C = a U b, let &k be isomorphic to (5 U b, R, S, Qn\ n < k) via the
given map taking a to a and the identity on b, and for n with k ^n <Nf let

Claim ί> t= TN'.

We only need to check (3). Suppose & t= "Qn{c) Λ Qn+i(d) Λ C and d are
totally connected by .R (if « even, 5 if rc odd)". By construction of C* it cannot
be that n + 1 < k. If n > k then both c and d are subsets of a and again there is
no problem. The remaining case is n + 1 = k. From the construction we have
that d must be contained in a and so Qk holds on its image in 5, since by
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assumption (a, R, S, Qn, n<k) is isomorphic to (a, R, S, Qn, n <k) . But
Qk-ι holds on the image of c in a U b, a contradiction. This proves the claim.

But now since CI/N' is universal homogeneous, we know there exists V in
ύ^Nf such that O is isomorphic to (a U &', R, S, Qn: n <Nr) (extending the
identity on a). Therefore, {0/\> a, b) Ξo {&%', a, $').

Lemma 5.4 If k + I < min(7V, N'), then if (frft1, a) Sf (&p\ a), then
(&k

N,ά)zi+ι(&k

N>jf).

Proof: Play the game for / steps, then get through one more step by
dropping Qk.

Lemma 5.5 / / k + 1 = min(7V, N')f then O/ι

N Ak Osl

N>.

Proof: Immediate from Lemma 5.4.

This lemma gives immediately that [d/\^ is not Π^ for any k<ω.

Remark: The proper generalization to admissible λ > ω is given by the
Λ-self-hyp-characterizable models of [9].

REFERENCES

[1 ] Barwise, J., Admissible Sets and Structures, Springer-Verlag, New York, 1975.

[2] Ehrenfeucht, A., "An application of games to the completeness problem for for-
malized theories," Fundamenta Mathematicae, vol. 49 (1961), pp. 129-141.

[3] Garland, S., "Borel rank and the derivative ordering," unpublished (1966).

[4] Karp, C, "Finite-quantifier equivalence," in The Theory of Models, North-Holland,
New York (1965), pp. 407-412.

[5] Korec, Peretiatkin, and Rautenberg, "Definability in structures of finite valency,"
Fundamenta Mathematicae, vol. 81 (1974), pp. 175-181.

[6] Miller, A., "Some problems of set theory and model theory," unpublished Ph.D.
Dissertation, University of California, Berkeley (1978).

[7] Miller, A., "Hierarchies, ultrafilters, and a categorical theory," abstract in the Notices

of the American Mathematical Society, vol. 24 (1978), A-361.

[8] Miller, D. E., "The invariant Il£ separation principle," Transactions of the American
Mathematical Society, vol. 242 (1978), pp. 185-204.

[9] Makkai, M., "An example concerning Scott heights," The Journal of Symbolic Logic,

vol. 46 (1981), pp. 301-318.

[10] Scott, D., "Invariant Borel sets," Fundamenta Mathematicae, vol. 56 (1964),

pp. 117-128.

[11] Stern, J., "Evaluation du rang de Borel de certains ensembles," Des Comptes Rendus:
Des Seances de ΓAcademie des Sciences, 286 (1978), pp. 855-857.

[12] Stern, J., "On the notion of rank in the theory of Borel sets," to appear (1978).



34 ARNOLD W. MILLER

[13] Vaught, R., "Invariant sets in topology and logic," Fundament a Mathematicae, vol.
82 (1974), pp. 269-294.

[14] Van Wesep, R., "Wadge degrees and descriptive set theory," in Cabal Seminar 76-77,
Lecture notes 689, Springer-Verlag, New York, 1978, pp. 151-170.

Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712




