A Note on the Principle of Predication

GIANGIACOMO GERLA*

Let A be a well-formed formula of first-order modal logic whose only free variable is \underline{x} . We shall use the following abbreviations:

 $\underline{Mat}(A) \text{ for } (\underline{x})[\Diamond A \land \Diamond \sim A]$ $\underline{Form}(A) \text{ for } (\underline{x})[\Box A \lor \Box \sim A]$ $\underline{Ban}(A) \text{ for } ((\underline{x})\Box A) \lor ((\underline{x})\Box \sim A)$ $\underline{Pred}(A) \text{ for } Form(A) \lor Mat(A).$

We read <u>Mat(A)</u>, <u>Form(A)</u>, and <u>Ban(A)</u> respectively as: "A is material", "A is formal", and "A is banal"; Pred(A) is the assertion of the Principle of Predication for A.

We prove that if F and M are formulas whose only free variable is \underline{x} such that $\underline{Ban}(F)$, $\underline{Form}(F)$, and $\underline{Mat}(M)$ are true in any suitable T-model, then $\underline{Pred}(F \land M)$ and $\underline{Pred}(F \lor M)$ are not acceptable as axioms.

Theorem The formulas:

(1) $\sim \underline{Ban}(F) \wedge \underline{Form}(F) \wedge \underline{Mat}(M) \supset \sim \underline{Pred}(M \wedge F)$

(2) $\sim \underline{Ban}(F) \land \underline{Form}(F) \land \underline{Mat}(M) \supset \sim \underline{Pred}(M \lor F)$

are T-valid.

Proof: Let $\langle W, R, D, Q, V \rangle$ be a *T*-model ([1], p. 171) and $w_i \in W$. If $V(\sim \underline{Ban}(F) \land \underline{Form}(F) \land \underline{Mat}(M), w_i) = 1$ then $V(\sim \underline{Ban}(F), w_i) = 1$ and there exist *a*, $b \in D_i$ such that:

(3) $V^a(\Diamond \sim F, w_i) = 1$ and $V^b(\Diamond F, w_i) = 1$

where V^a and V^b are just like V except for assigning a and b, respectively, to <u>x</u>.

Received April 10, 1981; revised September 21, 1981

^{*}Work supported by the G.N.S.A.G.A. of Italian C.N.R.

Since $V(Form(F), w_i) = 1$, we have $V^a(\Box F \lor \Box \sim F, w_i) = 1$ and $V^b(\Box F \lor \Box \sim F, w_i) = 1$; hence by (3),

(4) $V^{a}(\Box \sim F, w_{i}) = 1$ and $V^{b}(\Box F, w_{i}) = 1$.

By hypothesis, $V(\underline{Mat}(M), w_i) = 1$ and therefore $V^b(\Diamond M \land \Diamond \sim M, w_i) = 1$. Then there exist w_h , $w_k \in W$ such that $w_i R w_h$, $w_i R w_k$, $V^b(M, w_h) = 1$, $V^b(\sim M, w_k) = 1$; and by (4):

(5)
$$V^b(M \wedge F, w_h) = V^b(\sim(M \wedge F), w_k) = 1.$$

Now if we assume that $V(\underline{Mat}(M \land F), w_i) = 1$, it follows that $V^a(\Diamond(M \land F) \land \Diamond(\sim(M \land F)), w_i) = 1$ and therefore $V^a(\Diamond F, w_i) = 1$, which contradicts (4). If we assume that $V(\underline{Form}(M \land F), w_i) = 1$, it follows that $V^b(\Box(M \land F) \lor \Box(\sim(M \land F)), w_i) = 1$ which contradicts (5). Consequently, $V(\sim\underline{Mat}(M \land F) \land \sim\underline{Form}(M \land F), w_i) = V(\sim\underline{Pred}(M \land F), w_i) = 1$, which completes the proof of (1).

The *T*-validity of (2) follows from that of (1) in view of the fact that $\underline{Ban}(A)$, $\underline{Form}(A)$, $\underline{Mat}(A)$, and $\underline{Pred}(A)$ are respectively equivalent to $\underline{Ban}(\sim A)$, $\underline{Form}(\sim A)$, $\underline{Mat}(\sim A)$, and $\underline{Pred}(\sim A)$.

In [2] it is proved that if $\underline{Pred}(A)$ is an open formula, then $\underline{Pred}(A)$ is not acceptable as an axiom. Consequently the author proposes the following formalization of Von Wright's Principle of Predication:

(**PP***) If $\underline{Pred}(A)$ is closed then $\underline{Pred}(A)$ is valid.

Now the formulas $\underline{Pred}(F \land M)$ and $\underline{Pred}(F \lor M)$ of the above theorem are closed. It follows that the principle **PP*** is also unsound.

REFERENCES

- [1] Hughes, G. E. and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London 1972.
- [2] Tichy, P., "On de dicto modalities in quantified S5," Journal of Philosophical Logic, vol. 2 (1973), pp. 387-392.

Istituto di Matematica Scienze University of Naples Italy