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A Note on Initial Segment Constructions

in Recursively Saturated Models

of Arithmetic

C. SMORYftSKI*

This note is something of an addendum to our earlier paper [5], in which,
with the aid of a simple method of constructing elementary initial segments
of recursively saturated models of arithmetic, we constructed a continuum
of elementarily inequivalent structures (31; 1 ) , where 31 was a fixed countable
recursively saturated model of PA and 1 a recursively saturated elementary
initial segment of 31. Herein we take a close look at this method, recounting
past glories, offering new facts, and citing a few minor open problems.

The basic construction we are referring to was originally performed in
joint work with Jonathan Stavi. In Section 1, we review this construction and
the original application from [7], and follow it up with a few related observa-
tions. Section 2 reviews the application cited above and, again, follows it up
with a few related observations. This application produces a large variety of
pairs, (31; 1 ) , with 1 a recursively saturated elementary initial segment of a
given countable recursively saturated model 31. In Section 3, we ask the ques-
tion of obtaining variety without the basic construction. This question has two
senses: First, can we construct a large number of decidedly distinct such pairs,
(31; 1 ) , without using the basic construction? And second, can we construct
such a large number of such pairs, (31; 1 ) , where 1 is not of the form provided
by the basic construction? We have only partial, but positive, solutions to

*The new results presented herein were obtained during the author's stay in Warsaw. He
would like to thank Cecylia Rauszer for the invitation and the organisors of the Founda-
tions Seminar for the necessity of preparing the lecture which resulted in the present note.
Thanks are also due to Roman Kossak and Henryk Kotlarski for observations noted within.
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offer at present. Finally, there is a small appendix containing some observations
of Henryk Kotlarski made after the rest of the paper had been written.

The notation used is reasonably near-standard. Anything unfamiliar is
explained in our earlier papers [4] and [5]. (Although it is probably not neces-
sary, it would be helpful if the reader had these papers at hand.) An important
local notational convention we should stress is this: Except for the first half
of Section 1, the letters -ft and 1 will denote countable recursively saturated
models of arithmetic. Moreover, we will usually regard 1 as an elementary
initial segment of 5ft — although which of the two models is fixed and which is
variable or to be constructed will depend on the context. Finally, we only
consider countable models—even in the first part of Section 1, where the
assumption is not needed.

1 Introduction to the basic construction For the time being, let ,5ft be a
fixed countable nonstandard model of PA, We do not yet assume 5ft to be
recursively saturated.

We begin with some preliminary definitions and explanatory remarks.

1.1 Definition Let a,b e |5ft|. We say a and b belong to the same sky,
written a « b, if there are parameter-free Skolem functions F,G such that
b < Fa and a < Gb. The equivalence class of an element a e | 5ft | with respect
to this relation is called its sky, and is written

Sk(a) = {be | f t | :a«ft l .

The skies of 5ft inherit the ordering of the model,

Sk{a) < Skib) iff a < ft and Sk(a) ¥= Sk(b).

We also write a « b for Sk(a) < Sk(b).

In general the only restriction on the ordering of the skies of 5ft is that
there be a least sky; if, however, 5ft is recursively saturated, the remaining
skies are ordered in the type of the rationals.

Concerning our next definition, recall that every natural number codes
a finite sequence of natural numbers. If x codes (x0,. . ., xn-x), we write n =
lh(x) and x,- = (x);. This notation extends to nonstandard codes.

1.2 Definition Let b e |5ft|. We say b codes an ascending sequence of skies
in 5ft., written b e ASS(K), if both

i. lh(b) is nonstandard
ii. for c < d < lh(b), we have (b)c « ( b ) d .

In general, ASS(%1) can be empty. If, however, 5ft is recursively saturated,
elements of ASS(%1) exist in abundance. Indeed, it was proven in our joint
work with Stavi [7] that this is characteristic of recursively saturated models:

1.3 Theorem The following are equivalent:

i. 5ft is recursively saturated
ii. \/ae |5ft| 3b e ASSW)[(b)0>a]

iii. \/ae\ft\3beASS(3l)[lh(b)>a].
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As we said, the proof appears in [7], the title of which paper states an
immediate corollary.

It is because of this theorem and our evident interest in elements coding
ascending sequences of skies that we will assume ft to be recursively saturated.
But we do not make this assumption quite yet. We first wish to introduce the
simple initial segment construction cited in the introduction and remark on its
role in the proof of Theorem 1.3.

1.4 Definition Let b e ASS(^l) and let / Ce ft be a proper initial segment
of ft closed under successor, with I< lh(b). We define 1 (I,b)<€ ft by

I «(7,6)1 = U [0,(6)/],
iel

where [0,c] is the initial segment \d e | ft |: d < c\ of ft.

[That 1 (7,5) is an elementary substructure of ft follows from the closure
of 11(7,6)1 under Skolem functions-which follows from the fact that there
is no last sky represented by the (6)z's for / e 7. ]

This operation bears on the proof of Theorem 1.3 via the following result
of [7].

1.5 Theorem Let b e ASS(?fl)and let I Ce JI be a proper initial segment of
ft closed under successor, with I < lh(b). Then: 1 (7,6) is recursively saturated.

If ft is already recursively saturated, the recursive saturation of 1(7,6) is
not particularly remarkable, If, however, ft is not assumed to be recursively
saturated, an argument is required. [Briefly: Because 1(7,6) has no greatest
sky, we can assume any recursive type TV to contain a bound, say: v < (6)fQ.
Moreover, since the Skolem functions cannot reach from one (6)/ to the next,
the quantifiers in all formulae of TV can be bounded by projections of b.
Thus TV is reduced from being a recursive type over 1 (7,6) to being a recursive
type of A0-formulae over ft (over ft since the parameter 6 is not in | 1 (7,6)|).
But a Zrtruth definition and Overspill promptly realise the new type and,
from the bound v < (b)f0, it follows that the realisation actually takes place
in 1(7,6). For further details, consult [7].]

We can now assume that ft, as well as any other model of arithmetic
we happen to consider, is recursively saturated. If we do this, then, as we
have already said, Theorem 1.5 becomes quite unremarkable—except, of
course, as a means of producing recursively saturated elementary initial seg-
ments.

The importance of the construction 1(7,6) as a producer of initial seg-
ments will be demonstrated in the next section and discussed in that following
it. For the moment, we wish simply to discuss the converse to Theorem 1.5.
That this theorem possesses converses was pointed out to us in conversation
by Roman Kossak. Indeed, it has a very strong converse:

1.6 Theorem Let 1 be recursively saturated and I ^e 1 an initial segment
of 1 closed under successor. There is a recursively saturated elementary end
extension ft >e 1 and an element b e ASSi^l), with lh(b) > 7, such that
1 = 1(7,6) m ft.



396 C. SMORYNSKI

The easy case of this is that in which I = GO: Let 31 be an isomorphic
copy of 1 and note that, for any b e ASS(3l), 1 (CJ ,6) is isomorphic to
1 (since it possesses the same isomorphism invariants—cf. e.g. [4]). The iso-
morphism preserves GO.

A slightly less obvious case is that in which / = | 11. This is actually quite
simple via the following result of [ 5 ]:

1.7 Theorem Let (ft;ffi) be recursively saturated with 1 <e 31. Then:
1 = 1 (7,6) in 31 for some b e ASS(3l) andI=\W\.

The proof of Theorem 1.7 is a simple matter of describing the recursive
type over the pair (ft; I ) that 6 must realise for I to be 1 (| I \,b) in 31.

The use of Theorem 1.7 in settling the problem at hand is simple: Let
31 be an isomorphic copy of 1 and appeal to resplendence to find § <e 31
such that (3l;§) is recursively saturated. Evidently 1 is isomorphic to § and
/ = 11 | is preserved under the corresponding identification.

Roman Kossak and Henryk Kotlarski both noted the relevance of the
following result to the general case of Theorem 1.6 in which / ^e 1 is a proper
initial segment other than GO:

1.8 Theorem Let I C.e § <e 1, where £, 1 are recursively saturated and
both extensions are proper. Then:

i. ( £ ; 7 ) - ( ! ; / )
ii. ( $ ; / ) < ( ! ;/).

The proof of this theorem lies beyond the scope of the present note. It
is a back-and-forth argument with special care taken to preserve a nonfinite
amount of information. A detailed proof can be found in [6].

To apply Theorem 1.8 to the remaining case of Theorem 1.6, let 7 ^ 1
be a proper initial segment of 1 closed under successor. Let § = 1(7,6) in
1 for some b e ASS(SR ) and note that, since the isomorphism (£ ;7) s (1 ;7)
preserves 7, it makes 1 = 1 (7,6) inside the large copy of 1 .

2 On the use of the basic construction in providing variety One of the
basic facts about recursively saturated models of arithmetic is that a countable
recursively saturated model 31 has a continuum of recursively saturated elemen-
tary initial segments 1 <e 31 and that, in fact, all these segments are iso-
morphic to 31. However, these segments cease to be automatically isomorphic
to each other if we take into account not only them, but also the manners
in which they fit into 31. There are nonisomorphic pairs (31; l 0 ) and (31; 1 x)
with 1 0 , 1 ! isomorphic recursively saturated proper elementary initial seg-
ments of 31. Indeed, there are some obvious possible differences between such
pairs:

i. (31; l 0 ) is recursively saturated and (31; l j ) is not
ii. 1 0 is of the form I (7, b) in 31 and 1! is not

iii. sJJlois semiregular (regular) [strong] {etc.l in 31 and l x is not (not) [not]
{etc.!.
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Aside from the individual questions of which of these possibilities is realised,
there is the general question: How great is the variety among such pairs (5ft; ! ) ?
In [5], we exploited the basic construction to give the following answer:

2.1 Theorem Let 5ft be recursively saturated. There are continuum many
pairwise nonisomorphic structures of the form (5ft; 1 ) , where 3JI is a recursively
saturated elementary initial segment of 5ft.

The idea of the proof is simple: By work of Jensen and Ehrenfeucht [1],
there are continuum many elementarily inequivalent initial segments / Qe 5ft
modeling PA. For each such /, we pick b e ASS(^l) with / < lh(b) and note
that / is parametrically definable in (5ft; !(/,&)) via the parameter b to get a
continuum of distinct types—which require a continuum of nonisomorphic
models in which to realise all of them.

This theorem is not the last word—assuming each / Qe 5ft used in the
above proof to be semiregular in 5ft (which is always possible by a remark
in [2]), we can avoid the use of the parameter in defining / in (5ft; 1 (/,&)):

2.2 Theorem Let 5ft be recursively saturated. There are continuum many
pairwise elementarily inequivalent structures of the form (5ft;l), where 1 is
a recursively saturated elementary initial segment of 5ft.

For detailed proofs of these two theorems, we refer the reader to [5].
The relevant fact about the proof for our present discussion is this: If we allow
b E ASS(^fl) and / < lh{b) to vary, we obtain a continuum of decidedly distinct
pairs (5ft; 1 (/,/?)).

One of the most simple-minded questions that one can ask when pre-
sented with a construction depending on two parameters is: What happens
if we fix one of the parameters? And here the answer is simple: If we fix
b e ASS($l), we still get our continua;if we f i x /C e 5ft, we do not.

That b e ASS(ft) can be held fixed and we can still get a continuum of
elementarily inequivalent structures of the form (5ft; 1(7,b)) is not difficult
to see. As observed by Lipshitz [3], any Diophantine correct model of PA
possessing the same standard system as 5ft can be initially embedded below
lh(b) in 5ft. The methods of Jensen and Ehrenfeucht [ 1 ] still yield a continuum
of elementarily inequivalent such models and, again, they can be assumed
semiregularly embedded.

That we do not similarly get a continuum by fixing / and varying b G
ASS(yi) is trivial—there are only countably many &'s in ASS(^l). But we can
ask if varying the b's as far as they can be varied does give any variety to the
pairs (5ft; !(/,&)): For fixed /, is there a countable infinity of pairwise noniso-
morphic (or: elementarily inequivalent) such pairs? For semiregular /, the
answer is no. There are at most two such pairs.

The following example will first explain why there can be two pairs
instead of just one:

2.3 Example Let 5ft be recursively saturated. There are semiregular / Qe 5ft
and a,b e ASS(Vl) with I< lh(a)Jh(b) such that

(5ft ; t ( / , a ) ) ^ (5ft ;!(/,£)).
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Proof: Let (ft; 1) be recursively saturated with 1 <e ft and / = 111 semi-
regular in 3ft. Choose a e ;4SS(3ft) by Theorem 1.7 so that 1 = 1(7, a) in ft; and
choose b e ASS(ft) with / < lh{b) and / < (Z?)o. The two models (ft; »(/,*))
and (ft;l(7,fr)) are elementarily inequivalent because: (i) 11 (I,a)\ = / is
semiregular in ft, while 11 (7,&)| is not, and (ii) the semiregularity of an initial
segment / in ft is a first-order property of the pair (ft;/). QED

We claim that this is essentially the only variety available to us: If, for a
fixed semiregular I ^e ft, we have a,b e ASS(3l) of sufficient length which
do not map / into itself, then (ft;!(/,#)) s (ft ;!(/,£)). We first prove the
following special case of this result:

2.4 Theorem Let ft be recursively saturated and a,b e ASS(Vl). Then:

(ft ; l(co,a))-(ft ; l(a; ,5)).

Proof: We will construct a number d e ASS($l) such that both

i. for some c > co, ra\c = r^c

ii. for all x e OJ, (Z?)x < (d)* < (b)x+1,

where, for any element e e |ft|, re denotes the type of e over ft and e\c
denotes the restriction of the sequence coded by e to coordinates / < c. This
will prove the theorem since any automorphism of ft mapping a\c to d\c will
make

(ft;l(co,a))-(ft;t(co,rf))

since 11 (co,a)\ will be mapped onto 11 (co,d)|, while

(»;ffl(co,d)) = (a,ffl(co,ft))

byii: |a(co,d)| = |B(co,ft)|.
The constructions of d and c are by recursive saturation. To verify the

consistency of the necessary type, we construct an auxiliary sequence
dOidu . . . such that, for dx = (d0, . . ., d^-i), we have

i- T
dx ~ra\x

ii. (b)t < di < (b)i+1 for i < x - 1
iii. J Q ^ • • • < ^ ^ - i -

This sequence is constructed by induction.

Basis. Without loss of generality, we can assume (a)Oi(b)o » 0. We need a
small lemma:

2.5 Lemma Let § be recursively saturated and let e » 0 in §. Then
rev is realised arbitrarily highly in §.

Proof: Suppose d bounds all elements realising rev. Then

Th{ § ) + reu + Tdv0\~ v < v0,

i.e., for some 0O, . . ., <j>m.x e re and i//0, . . ., fa-i e Td>

§ 1= \/vvo[/A(j)iV A /A\JjjV0-> v <v0].
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Letting d* = (JLVO[/X\4/JVQ] we see ̂  <cf*, contrary to our assumption that
e » 0. QED

We can now complete the proof of the basis step: Let § <e 5ft be recur-
sively saturated such that

(6)o€|§K(i),

and let (d0) > ((6)0) realise ra\x in § . [We note that, since ( f r ) 0 » 0, ra\x can
be realised below (b)0 in 5ft—whence in §.] Conditions i and ii are automat-
ically satisfied and iii is vacuous.

Induction step. We do the same sort of thing. First, we relativise the lemma
to some parameters:

2.6 Lemma Let § be recursively saturated and e » / » 0 in £>. Then
TefVg is realised arbitrarily highly in § for any g realising Tf.

We omit the proof as it consists merely in sticking parameters into the
previous proof.

To finish the proof of the induction step, let § <e 5ft be recursively
saturated such that

00* * I & | < (&)*+i

and choose dx e | § | realising T(a)Xtatx(v,dx) with dx > (b)x. Conditions i-iii
are again satisfied.

Having the sequence do,dti . . ., we now proceed to use only its existence.
Let rv0Viob be the set of formulae:

i. (j)(dhi) «* 0(uo^i)> all <j> with only one free variable
ii. \/v2 < i;i~2[F((i;o)u2) < (vo)V2+i], all parameter-free Skolem functionsF

iii. Vi/2 < vr2{(b)V2 < (vo)V2 < (b)V2+T]
iv. ux < lh{a) Ayx < lh(b)
v. y 1 > 0 , i ; 1 > l , . . . .

By the existence of the dx 's, rvovxab is a type. It is also recursive and so realised
by some d,c. But, by v, c > 00 and, by i, ra\c = T^C. QED

As we said, Theorem 2.4 is but a special case of a more general result on the
isomorphism of all pairs (5ft ; 1 (/,Z?)) where / is semiregular in 5ft and b e
ASS(yi) is of proper length and maps / beyond itself. By truncating a,b e
ASS(yi) if necessary, we can state this result in the following form more closely
analogous to that of Theorem 2.4:

2.7 Theorem Let 5ft be recursively saturated and let I Qe 5ft be semiregular
in n.Foranya,b e ASS(^l) with I<lh(a\lh{b\ if K(a)0,(b)0, then:

(5ft;l(/,a))-(5ft;l(/,Z7)).

We shall not give the proof here. It requires the same special back-and-
forth technique used to prove Theorem 1.8 and, like the proof of this latter
theorem, it fits more naturally in [6] (in rather a strong sense: There it will
be (modulo a small trick supplied by Kotlarski to handle a key difficulty)
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just another of several applications of a simple, but moderately powerful, tool.
Here, without a reasonably leisurely digression explaining the method, it would
give an undue impression of depth and/or cleverness.).

One quick thing we can say about the proof of Theorem 2.7 is that it does
follow the main line of the proof of Theorem 2.4: To get the isomorphism,
it suffices to construct an element d e ASS(3l) onto a large initial segment of
which one can map a corresponding segment of a by some automorphism
preserving /. Both the construction of the element d and the subsequent con-
struction of the automorphism require special care.

3 Variety without the basic construction We hope that, through the
results of Sections 1 and 2, we have established the interest of the basic con-
struction. If so, our new countergoal might appear perverse: We wish in this
section to avoid the basic construction. We do so on general principle: To
understand a phenomenon, it often helps to understand its nonoccurrence
as well as its occurrence, and, additionally, the occurrence of other related
phenomena.

Stated less grandiloquently: We wish to consider the possibilities of:
(i) constructing recursively saturated elementary initial segments 1 <e ft not
of the form 1(7,6) in ft; (ii) obtaining a variety of such segments; and
(iii) barring (ii), at least obtaining a variety of initial segments without the
use of the basic construction. One may view such consideration as the modest
beginning of a search for further constructions of utility and interest com-
parable to that of the basic construction. We confess to (and complain of)
only partial success in all these endeavours.

It is a pleasure to acknowledge the fact that the results of the present
section were obtained in response to a question of Roman Kossak: Are all
recursively saturated 1 <e ft of the form 1 = 1(7,6) in ft? We hope that the
results and problems offered below will attest to the fruitfulness of this ques-
tion. Belying such fruitfulness is an immediate negative answer to this question:

3.1 Theorem Let 1 <e ft be recursively saturated and suppose | ft | - 111
has a minimum sky. Then: 1 is not of the form 1 (I,b) in ft for any I,b.

Proof: Suppose 1 = 1(7,6) for some b e ASS(Vl) and some / Ce ft closed
under successor, with 7 < lh(b). Let c be an element of the minimum sky of
I ft | - 111. Observe that 7 is parametrically definable in ft: For all / e | ft |,

/ e 7 iff ft 1= (6)/ < c.

But, an initial segment closed under successor cannot be defined in any model
of PA, and we have a contradiction. QED

Given ft, there are only countably many 1 <e ft for which |ft| - 111
has a minimum sky. A plethora of counterexamples to the basic construction
is provided by the following result:

3.2 Theorem Let ft be recursively saturated. There are continuum many
recursively saturated 1 <e ft which are not of the form 1 = 1(7,6) in ft.

Proof: The proof is a simple co-step construction. We alternate between
diagonalising on 6 e ASS($l) (even-numbered stages) to guarantee the outcome
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not to be of the form 1(7,6) and making a sequence of binary choices (odd-
numbered stages) to guarantee a continuum of possible outcomes.

Let bQ,bx, . . . enumerate all elements bn e ASS(%1) for which (bn)0 = 0.
(This restriction is inessential.) Toward the diagonalisation, we will construct
successively smaller intervals [an,cn], setting /„ = [0,an]. This will require
an < ^ cn- Moreover, to guarantee that / = Un/W is the domain of a recursively
saturated elementary initial segment 1 <e 5ft, we require a0 <<Lax « . . . .

On to the construction:

Stage 0. Set a0 = (bo)o, c0 = (bo)h Jo = [0,a0], Note that b0 will not code any
cofinal map I-+J when we are finished.

Stage 2n + 1. We are given

ao«. . . «a2n « c 2 n < . . .<c 0 ,

and J2n - [0,a2n]' Choose c* such that

and either set

a2n+l = c > C2n+l ~ C2n> J2n+\ ~ [^•>a2n+\\

or set c2n+i = c* and choose a2n+i such that

a2n « a 2 w + 1 « c *

and set J2n+i = [0,a2n+l],

Stage 2n + 2. We are given

a0 « « a2n+l « c2n+1 < . . . < c0

and J2n+1 = [0,a2n+1]. Consider bn+1.
If, for all / < lh(bn+1), (bn+1)i < Sk(a2n+l), then we simply let a2n+2 be such

that a2n+1 <K a2n+2 « c2n+1 and set c2n+2 = c2w+1, and/2«+2 = [0,a2w+2]. Note
that Z?w+1 will not code any cofinal map I->J when we are finished.

If there is an / < lh(bn+l) such that (bn+l)( < Sk(a2n+l) and (bn+1)i+1 »
#2«+i5 w e choose c2w+2 such that

a2n+1 « c2rt+2 « min\(bn+1)i+1,c2n+1\,

and further choose ^2w+2 such that a2n+1 « <22w+2 « c2n+2, and set /2w+2 =
[0,a2n+2]. Again, bn+1 will not code any cofinal map I -> / when we are
finished.

Finally, suppose there is an 7 < lh(bn+l) closed under successor such that,
for all / e 7, (bn+l)i « . a2n+1 and, for all i $ 7, if/ <lh(bn+1) we have a2n+1 «
(6w+i)z-. [Note: Since 7 is closed under successor and lh(bn+l) - 7 is closed under
predecessor, we cannot have (bn+l)i e Sk(a2n+1) for any / < lh(bn+l).] If, for
I < i < lh(bn+1), one always has (bn+1)j > Sk(c2n+1), then we simply choose
a2n+2 such that a2n+1 « a2n+2 <3C c2w+1 and let c2n+2 = c2w+1 and J2n+2 =
[0,a2n+2]. If, however, for some I < i < lh(bn+1), it happens that a2n+l «
(6W+1)/ « c2n+i, then choose «2w+2 = (bn+1)f and c2w+2 = min\(bn+1)i+l9c2n+1}
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and J2n+2 = W^2n+2^ Either way, neither / nor any other initial segment can
ever again threaten to be mapped cofinally into / by bn+1.

We finish the proof by letting/ = UnJn = Un [0,an ]. From the inequalities,
a0 « ax « . . ., it follows that / is closed under Skolem functions and con-
stitutes the domain of a recursively saturated elementary initial submodel
I <e ft. Varying our choices in the odd-numbered stages, we obtain con-
tinuum many distinct such segments /, hence continuum many distinct such
models I . Moreover, for each bn, either, for some i < lh(bn), we have (&„)/ e
I1 | and (bn)i+l t \W\, or, for all / < lh(bn), we have (*„), e | 11 (and so all
{bn)i bounded in / by (bn)ih(bn)-i)- Hence, for no b e ASS(Vl) and / ^e ft do
we have I = I (I,b) in ft. QED

By Theorems 3.1 and 3.2 there are both natural and many examples of
initial segments 1 <e ft with 1 not of the form !(/,&) in ft. But is there
any variety to such segments? The models of Theorem 3.1, though only count-
able in number, do offer as much variety as possible: As shown in [5], there
is a countable infinity of pairwise elementarily inequivalent structures of the
form (ft; 1), where 1 <e ft are recursively saturated and | ft| - 111 possesses
a minimum sky. While this is as much as we can say at present, it does suggest
an eventual positive solution to the following problem:

3.3 Open Problem Let ft be recursively saturated. Do there exist con-
tinuum many pairwise elementarily inequivalent (or, at least, nonisomorphic)
structures of the form (ft; SOI), where 1 is a recursively saturated elementary
initial segment of ft not of the form 1 (/,Z?) in ft?

As indicated, we do not know how to construct a continuum of pairwise
nonisomorphic pairs ( f t ; ! ) with ft not of the form !(/,&) in ft. However,
we can construct a continuum for which we do not know 1 to be of the form
1 (/,&) in ft—i.e. we can reprove Theorem 2.1 without using the basic construc-
tion. To do so, we introduce a new construction very similar to, but definitely
different from, our basic construction.

3.4 Definition Let <r be a primitive recursive ordering of the natural
numbers in the type of the rationals. Let b e |ft|. We say b codes a rational
sequence of skies in ft, written b e RSSiVl), if

i. lh(b) is nonstandard
ii. for c4 < lh(b\ (b)c « (b)d iff ft \=c <r d.

If ft is recursively saturated, thtnRSS{^i) is nonempty.

3.5 Definition Let b e RSS(Vl) and let C be a Dedekind cut in (co,<r). We
define W[C,b]<e ft by

|![C,Z?]|= |J [0,(6),],
x<rC

where x ranges over a?.

[That M[C,b] is a recursively saturated elementary substructure of ft
follows, as usual, from the fact that | ! [C,b]\ has no highest sky. (This, inci-
dentally, is the reason both for using the strict inequality ("x <r C") in the
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definition and for restricting x in the definition to OJ. In the case of a rational
cut, the strict inequality keeps us from providing 11 [C,b]\ with a maximum
element. Similarly, restricting x t o w guarantees us to be choosing a cut in a
dense linear order—funny things can happen in the nonstandard part. (Another
reason for this restriction will emerge in the proof of the next theorem.))]

We shall now use this new construction to give a new proof of Theorem
2.1. We should stress that this new proof is more elementary than the old
insofar as it replaces the appeal to the results of Jensen and Ehrenfeucht [ 1 ] by
a simple reference to the existence of a continuum of Dedekind cuts in the
rationals.

3.6 Theorem Let ft be recursively saturated. There are continuum many
pairwise nonisomorphic structures of the form (ft; I [C,b]), where b e RSS(%1)
and C is a Dedekind cut.

Proof: Fix b e RSS(yi) and, for C any Dedekind cut, define

C*={a< lh(b): 3x e o(a <r x <r C)\.

For Cj ^ C2, we clearly have CfHcj =£ CfHco.
We get our continuum by noting C* to be uniformly definable in

(ft;l[C,Z?];Z?): Fora e |ft|,

a e C*iff (3ffc;»[C,&];&) \=a<lh(b) A(b)z e \ W.[C9b]\.

The continuum of distinct C*'s defined in the pairs (-ft; 1 [C,b]) by a single
formula with parameter b gives us a continuum of distinct types realised by
Z?'s in these models and require, as before, a continuum of nonisomorphic
models in which to realise them. QED

This new construction raises all sorts of questions. An obvious first one
is whether or not Theorem 2.2 can be obtained by means of the new con-
struction.

3.7 Open Problem Let ft be recursively saturated. Is there a continuum
of pairwise elementarily inequivalent structures of the form (ft; 1 [C,b])l

There is no reason to believe that C, under any special assumptions, can
be recovered without b from (ft;I[C,Z?]) in analogy to the recovery of /,
under assumption of semiregularity, from (ft ; ! ( / , £ ) ) . However, the situation
is not hopeless. The expressive power of the structure (ft; 1 [C,b]) is very great
and it is likely that the differences between many such pairs can be expressed
without parameters.

Of course, both Theorem 3.6 and an affirmative solution to Problem 3.7
might cease to be interesting should the new models 1[C,6] coincide with
the old models !(/,&)• As to the relations between these two types of models,
we can find examples of 1 <e ft such that

i. 1 has neither the form 1(7,5) nor 1 [C,b] in ft
ii. 1 has the form I (7,5), but not the form I [C,6], in ft

iii. 1 has both forms in ft.
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Specifically, we have: (i) a continuum of examples of the first sort, with at
least a countable infinity of pairwise elementarily inequivalent pairs (5ft ; 1 ) ;
(ii) a continuum of examples of the second sort, comprised of a countable
infinity of elementary equivalence classes; and (iii) a countably infinite single
isomorphism class of examples of the third sort.

The first continuum is given by modifying the construction of the proof
of Theorem 3.2: While we see no way of obtaining models of the form 1 [C,b]
by means of this construction, we can easily modify it so as to avoid models
of such a form: We simply change it to a congruence-mod-3 construction in
which every third step diagonalises against the new construction 1 [C,b].

The countable families of elementary equivalence classes of structures
(5ft ; 1 ) with 1 obtainable by neither of our constructions or only by the
basic construction are given by Theorems 3.1 and 1.7, respectively:

3.8 Theorem Let 1 <e 5ft be recursively saturated.

I If 15ft | - | 1 | has a minimum sky, then 1 is neither of the form 1(7, b)
norof the form 1 [C,b] in 11.

ii. / / (5ft;!) is recursively saturated, then 1 is of the form M (I,b), but not of
the form 1 [C9b],in 5ft.

Proof: The information regarding the form 1(7,6) has already been estab-
lished. It thus suffices to show 1 not to be of the form 1 [C,b] in each of
these two cases:

i. Let a belong to the minimum sky of |5ft| - | 1 | and suppose 1 =
1 [C,b] in 5ft. We will construct c e ASS(3l) and show I = l(co,c) in 5ft,
which we know not to be the case.

Fix i0 e oo such that (b)iQ<a and define F by primitive recursion:

F0 = i0

fn + i) = /M/[(&)i < (&)/<a] , if such exists
1 b, otherwise

Set d = fii[Fi = b] and simply let

c = ((b)FOi. . . ,(*)F((*-I))-

Obviously c e ASS(Vl).
It remains to be seen that 11 (co,c)\ = | SB [C,b]\. Clearly

|»(a>,c) |C|ff l[C,6] | .

To see the converse inclusion, let (b)x <.r C for some x e CJ. The only way x
cannot occur in the list F0, . . ., Fx is for (b)x < (b)py for some y < x. Thus,
the set \{c)x: x e coi is cofinal in 11 [C,6]|.

We have thus proven the contradictory claim that I = !(co,c) in 5ft for
some c e ASS(yi) and must discard our assumption I = 1 [C,b],

ii. Let (5ft ; 1 ) be recursively saturated. To see that 1 is not of the form
1 [C,b] in 5ft, we note that co cannot be parametrically defined in any recur-
sively saturated model (5ft;!) and show that co is parametrically definable in
each structure (5ft ; I [C,6]).
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To define co in (5/1; 1 [C,Z?]), recall from the proof of Theorem 3.6 the
definability of

C*=ia<lh(b):(b)ae | » [C ,6 ] | i .

Using this definition, define

Iv: 3i/0 e | 1 [C,b]\ V ^ < i ; ^ e C* -> (6)^ < i;0].

Iv defines the initial segment of those a < lh(b) such that the intersection
of | I [C,b]\ with the range of b\a is not cofinal in | 1 [C,£]|. A moment's
thought reveals that Iv defines co. QED

The existence of a countable infinity of pairwise elementarily inequiva-
lent pairs (5ft;!) of each of the two given forms of the theorem was estab-
lished in [5]. There are only countably many such pairs in which |5ft| - | E |
has a minimum sky (indeed, they are indexed by the minimum skies), but
a continuum of recursively saturated pairs—forming a countable family of
isomorphism (= elementary equivalence) classes.

Our models of the third sort are very simple:

3.9 Theorem Let 5ft be recursively saturated and a e ASS(%1). Then:
I (co,fl) is of the form 1 [C,b] in 5ft.

Proof: Let a e ASS(ft).
Let xy e <JO correspond, for each y e co, to 1 - \/y in (co,<r) and define

the recursive type rva to consist of all formulae

(v)^ = (ja)y9 (*)

and all those formulae which together assert v e RSS(%1). Thus, if b e |K|
realises rva, then b e RSS(%1). Moreover, if C is the cut determining 1 in
(cj,< r), then by (*) and the fact that lim xy = 1 we have | SB [C9b]\ = I SK(co,a)|.

^ ° ° QED

As we proved in Section 2, the models of the form !(co,a) in 5ft all result
in isomorphic pairs (5ft; !(to,fl)).

Let us add to this short unstructured list of facts one obvious open
problem.

3.10 Open Problem Let 5ft be recursively saturated. Is any 1 <e 5ft of both
the form 1 [C9b] and the form ! ( / ,#) in 5ft, where, in the latter case, / is a
semiregular initial segment of 5ft other than co?

A negative answer to this problem would be quite nice.
Finally, let us remark that our new construction 1 [C,b] seems to be of

some minor interest in its own right, irrespective of any relation it might or
might not have with our earlier construction !(/,&). We list a few interesting
facts about W[C,b]:

3.11 Facts Let 5ft be recursively saturated.

i. co is uniformly (nonparametrically) definable in the structures (5ft; 1 [C,b ]).
ii. Satisfaction for M[C,b] is uniformly (nonparametrically) definable in the

structures (5ft; 1[C,6]).
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iii. A model M[C,b] has cofinality oo in 5ft iff it is also of the form l(co,a)
in 5ft.

The first two facts are established exactly as the analogous facts were
established for (5ft; 1 ) , with |5ft | - 11 | possessing a minimum sky, in [5]: We
start with our parametric definition of oo (from the proof of 3.8.ii) and
quantify it out. Using oo, we get a parametric definition of satisfaction for
1 [C,b]; but, again, we can quantify out the parameter (cf. [5] for details).

The third point is more interesting. For, at first glance, all the models
1 [C,b] look like they should have cofinality oo.

First, we explain that an initial segment / Qe 5ft is said to have cofinality
oo in 5ft if there is an element a e | 5ft | such that

/= U [0,(a)J,
xeto

where the sequence coded by a is assumed (without loss of generality) to be
strictly increasing.

Proof of 3.11. iii: Clearly, if I = I (co,a) in 5ft, then 1 has cofinality oo in
5ft. Thus, assume 1 = 1[C,&] has cofinality oo in 5ft and let the sequence
coded by a witness this cofinality. First, fix /0,/0 e oo SO that

(b)io<(a)io.

[Note: Since /0,/0 e co, it follows that (b)io e | SR [C,Z?]|.] Now define functions
F,G by simultaneous recursion:

F0 = io G0=jo

G(i + 1) =ilJL}3v^b>}Fi < (b\ < ( a H i f s u c h e x i s t s

I b, otherwise,

F(i + 1) = iwWifi < (fy < (fl)c?(/+i)]> i f s u c h e x i s t s

1 Z ? , otherwise.

Letting d - fxi[Fi = b] and defining

c = ((b)F0,. . .,(6V(rf-i)),

as before, we quickly see | » [C,b]\ = I * (co,c)|. QED

One last pair of facts of interest is the following:

3.12 Facts Let 5ft be nonstandard, not necessarily recursively saturated.

i. The following are equivalent:
a. 5ft is recursively saturated
b. \/a e 15ft | 36 e RSS(3t)[(b)0 = a].

ii. For any b e RSS(3l) and any cut C, 1 [C,b] is recursively saturated.

Proof: These reduce quickly to Theorem 1.5. For, though it is difficult to
make 1 [C,b] assume the form 1 (co,c), we can easily construct c e ASS($l)
such that W[Qb] C W(u,c).

Fix x e oo such that | 1 [C,b]\ < (b)x. Define the usual sort of function
F by primitive recursion:



INITIAL SEGMENT CONSTRUCTIONS 407

F0=x

F(i + 1) = <fM/[(^F' < <^H if such exists

I b, otherwise.

Set d = ixi[Fi = b] and c = ((b)FOi . . ., (&)F(<M>) and note that c e ASSW
and ffl[C,6]C l(co,c). QED

Appendix After we wrote the preceding, Henryk Kotlarski pointed out the
utility of topological tools for an analysis of recursively saturated elementary
initial segments of a given recursively saturated model of arithmetic.

For a fixed recursively saturated 5ft, define

R = i I <e W: I is recursively saturated!,

where we assume <e to indicate a proper inclusion.

A.1 Fact R is ordered in the type of the reals by <e.

The quickest proof of this fact is given by noting the skies of 31 to be
ordered in the type of the rationals and the obvious correspondence between
cuts (with rational cuts putting the rationals on the right) in this ordering and
elements of R. (This was apparently first noticed by Kotlarski.)

Another proof can be found in [7], where it is shown that the set of
models of the form l(oo,6) for b e ASS(Vl) is dense in this ordering. Despite
this density, Kotlarski noted the following:

A.2 Theorem The following sets are of the first category in (R, <e):

i. \slk{I,b):I<lh{b)andb e ASS($l)\
ii. I» [C,b]: Cisacutin(oj,<r)andb e RSSWl

Proof: i. For each fixed b e ASS(^l) we show the set of models of the form
1 (I,b) to be nowhere dense in (R,<e).

Note that any pair a « c in 31 determines a nonempty open interval
(a,c)R = ! I e R: a e \ 11 < c\ inR. We must find a nonempty open subinter-
val containing no model 1(7,6). But this is easy: If there is no or only one
(b)i, with / < lh(b), such that a < (b)j < c, then (a,c)R will do; otherwise there
are (6),-,(6),-+1, with / + 1 < lh(b\ such that a < (b)t < (b)i+i <c and the inter-
val ((b)iXb)i+l)R will do.

ii. Again fix b e RSS(^l). We can quickly reduce ourselves to considering
intervals ((b)x,(b)y)R for x,y e co with x <r y. We must find an open subinter-
val of this interval containing no models 1 [C,b],

By the density of <r and Overspill, there is an infinite / < lh(b) such that
(b)x<{b)i<(b)y."Let

Q = {zeco:(fc)z <(&)/*

be the cut determined by (6)/ and let 1/ be the maximum element of R
below (b)i'.

| » / | = { a e |3t|: a « (&) , -} .
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Since \%l\ - | I / | has a minimum sky, Theorem 3.8.i tells us that the
inclusion,

W[Ci9b]<e » i ,

is indeed proper. Looking at skies of elements a e | 1 , - | - | 1 [Q,b]\, one
quickly sees that the open interval

/ = { » e R: W[Chb]<e ^ <e 1/1

is nonempty. Moreover, for any cut C ^ C/, we have either

W[C,b]<e «[C/,ft]or 1 / ^ 1 [C ,6 ] ,

whence no model 1 [C9b] is in the interval/. QED

By the Baire Category Theorem, A2 yields the existence of uncountably
many models 1 e R of neither the form 1 (7,6) nor the form 1 [C,b] in ft.
Unfortunately, sets of the second category need not have the power of the
continuum unless the continuum hypothesis is assumed, and, since most
logicians fail to agree on the obvious truth of this hypothesis, we are stuck
with the more complicated proof of Theorem 3.2 and the later remark general-
ising this if we wish to know the exact cardinalities of the sets of nonexamples
of our constructions. Nonetheless, Kotlarski's topological observation does
seem to shed some additional light on the situation.
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