A Relational Representation of Quasi-Boolean Algebras

J. MICHAEL DUNN*

1 Introduction We follow Białynicki-Birula and Rasiowa [2] in defining a *quasi-Boolean algebra* to be a structure (A, V, v, h, \sim) , where (A, v, h) is a distributive lattice with greatest element V and \sim is a unary operation on A which is an *involution*, i.e.,

(1)
$$\sim a = a$$

(2) $\sim (a \lor b) = \sim a \land \sim b$.

It is easy to verify that setting $\Lambda = \sim V$ gives a least element, and that (2) may be replaced with either of

(2') $\sim (a \land b) = \sim a \lor \sim b$, or (2'') $a \leq b$ only if $\sim b \leq \sim a$.

Essentially identical structures have been investigated by Moisil and Monteiro (cf. [6]) under the name "de Morgan lattices" and by Kalman under the name "distributive *i*-lattices," except Moisil, etc., did not require the existence of a greatest (and least) element. But trivially a de Morgan lattice can always just have these elements appended (if it doesn't already have them), and so we do not bother to distinguish work done on these *technically* two different kinds of structures. De Morgan lattices have been discussed widely in the literature on constructive logic with strong negation (cf. [6]), and in the literature on relevance logic (cf. [1]), where their representation theory can be thought of as playing a role in the semantics of (first-degree) relevant implication (cf. [4] for a discussion of the relationship of the competing Routley and Dunn semantical treatments of negation to such representation theorems).

^{*}I wish to thank the referee for his suggestions and corrections.

Various interesting representation theorems have been given for de Morgan lattices, or quasi-Boolean algebras to return to our preferred terminology here. A summary, showing that they are all effectively equivalent can be found in [3] (cf. also [6]). An early and central one of these is due to Białynicki-Birula and Rasiowa and goes as follows. Let U be a nonempty set and let $g: U \rightarrow U$ be such that it is of period two, i.e.,

(3) g(g(x)) = x, for all $x \in U$.

(We shall call the pair (U,g) an *involuted* set-g is the *involution*, and is clearly 1-1.) Let Q(U) be a lattice of subsets of U (closed under \cap and \cup) closed as well under the operation of "quasi-complement"

 $(4) \quad \sim X = U - g[X] \quad (X \subseteq U).$

 $(Q(U), U, \cup, \cap, \sim)$ is called a *quasi-field of sets* and is a quasi-Boolean algebra.

Representation theorem of Białynicki-Birula and Rasiowa Every quasi-Boolean algebra is isomorphic to a quasi-field of sets.

Although this representation is highly informative, it must be counted as somewhat artificial. It is the purpose of this paper to give a new, more "natural" representation.

2 Representation as relations One way to try to find a more natural representation is to think of naturally occurring transformations g of period two. One that comes quickly to mind is the component-interchange transformation on ordered pairs:

(5)
$$(x, y) = (y, x).$$

.

This gives rise to the induced transformation of ordinary conversion on relations (sets of ordered pairs):

(6)
$$\widetilde{R} = \{(x, y) : (x, y) \in R\} = \{(y, x) : (x, y) \in R\}.$$

Indeed, let U be a set, ρ a fixed symmetric relation on $U \ (\rho \subseteq U^2)$, and let $Q(U,\rho)$ be a lattice of subsets of ρ closed under the operation

(7) $\sim R = \rho - \widecheck{R}$ $(R \subseteq U \times U).$

Let us call $(Q(U,\rho), \rho, \cap, \cup, \sim)$ a quasi-Boolean algebra of relations. Clearly this terminology is justified, since obviously every quasi-Boolean algebra of relations is a quasi-field of sets, and hence a quasi-Boolean algebra. We show that the converse is also true (up to isomorphism).

Theorem 1 Every quasi-Boolean algebra (A, V, \cup, \cap, \sim) is isomorphic to a quasi-Boolean algebra of relations.

Proof: Our proof will be based upon the Representation of Białynicki-Birula and Rasiowa stated above. Let

(8)
$$f: A \to \mathcal{P}(U)$$

be the isomorphism of Białynicki-Birula and Rasiowa, with g the given map of

period two. Our desired isomorphism sends each $a \in A$ to g restricted to f(a), in symbols:

(9) $h(a) = g \upharpoonright f(a) = g \cap (f(a) \times \operatorname{Rng}(g)) = g \cap (f(a) \times U).$

It will turn out that the *h*-image of A is a quasi-Boolean algebra of relations Q(U,g).

We first verify that h is a homomorphism. Thus:¹

(10) $g \upharpoonright f(a \lor b) = g \upharpoonright (f(a) \cup f(b))$ (11) $= (g \upharpoonright f(a)) \cup (g \upharpoonright f(b))$

and so h preserves \lor . That h preserves \land is similar. As for h preserving \sim ,

(12)	$h(\sim a) = g \upharpoonright f(\sim a)$	
(13)	$=g \upharpoonright (U - g[f(a)])$	[f is an isomorphism]
(14)	$= (g \upharpoonright U) - g \upharpoonright (g[f(a)])$	[Thm. 32 of [7]]
(15)	$= g - g \upharpoonright (g[f(a)])$	$[\operatorname{Dom}(g) = U]$

Let us leave this dangling to verify the following

Lemma Let g be any 1-1 function. Then

(16)
$$g \upharpoonright A = g \upharpoonright g[A]$$

Verification: $(x, y) \in g \upharpoonright A \Leftrightarrow (y, x) \in g \upharpoonright A \Leftrightarrow y \in A$ and $g(y) = x \Leftrightarrow$ (since g is 1-1) $x \in g[A]$ and $g(y) = x \Leftrightarrow x \in g[A]$ and $(x, y) \in g \Leftrightarrow (x, y) \in g \upharpoonright g[A]$.

Returning now to the main thrust,

$$(17) \quad \sim h(a) = g - g \upharpoonright f(a) \qquad [def. of ~]$$

$$(18) \quad = g - g \upharpoonright g[f(a)] \qquad [Lemma]$$

$$(19) \quad = g - g \upharpoonright g[f(a)] \qquad [g = g \text{ since } g \text{ of period two}]$$

Finally, $h(\sim a) = \sim h(a)$ results from (15) and (19).

As for h being one-one, if $a \neq b$, then $f(a) \neq f(b)$ since f is known to be one-one. Supposing without loss of generality that $x \in f(a)$ while $x \notin f(b)$, then $(x,g(x)) \in g \upharpoonright f(a)$, but $\notin g \upharpoonright f(b)$. So $h(a) \neq h(b)$, as desired.

Remark: Clearly the representation would be even "more natural" if in the definition of a quasi-Boolean algebra of relations we could always require that ρ = the universal relation U^2 . This cannot be done, as the reader can easily verify considering the three-element quasi-Boolean algebra defined on $\{-1, 0, +1\}$ with the usual ordering and with $\sim a = -a$. One problem is that since $\sim 0 = 0$, there must be some relation Z (the image of 0) so that

(20) $U^2 - \overline{Z} = Z$, i.e., (21) $(b,a) \notin Z \Leftrightarrow (a,b) \in Z$ (for all $a, b \in U$).

But since U must be nonempty (having at least three relations on it), there exists $a \in U$, so

(22) $(a,a) \notin Z \Leftrightarrow (a,a) \in Z$,

an impossibility.

3 Connections to relation algebras There is another way of algebraizing quasi-Boolean algebras which is already implicit in the Representation Theorem of Białynicki-Birula and Rasiowa, and which is reasonably explicit in Meyer's [5], but seems to receive new meaning set in the context of our Theorem 1. The idea is that

(23) $\sim a = -(a*),$

where * is an automorphism of period two on some underlying Boolean algebra and - is the Boolean complement. What reflection on Theorem 1 contributes is the idea that we should regard * as an abstract converse operation.

Being more explicit we define a *converse algebra* to be a structure $(B, V, \land, \lor, -, *)$, where $(B, V, \land, \lor, -)$ is a Boolean algebra and * satisfies

(24) $(a \land b)^* = a^* \land b^*, (a \lor b)^* = a^* \lor b^*, (-a)^* = -(a^*)$ (25) $a^{**} = a.$

It is an easy verification that with \sim defined on a converse algebra by (23) we obtain a quasi-Boolean algebra (B, V, \wedge , \vee , \sim). And of course since quasi-Boolean algebras are equationally definable, all of its subalgebras are quasi-Boolean algebras as well. Theorem 1 (or less vividly, the Representation Theorem of Białynicki-Birula and Rasiowa) says that (up to isomorphism) all quasi-Boolean algebras may be obtained as such subalgebras.

All of this suggests the project of providing a natural representation for converse algebras.² To this end we define a converse algebra of relations (a concrete converse algebra) to be a structure $(C(U,\rho), \rho, \cap, \cup, -, -)$, where $C(U,\rho)$ is a field of subsets of $\rho \subseteq U^2$ (- is complement relative to ρ) and \smile is the ordinary converse operation on the relations in $C(U,\rho)$. We can now state

Theorem 2 Every converse algebra is isomorphic to a converse algebra of relations.

Proof: A more or less standard Stone-style construction, and all details are left to the reader. U = the set of maximal filters of B, $\rho = \{(M, [M]^*): M \in U\}$, and for $a \in B$, we define the isomorphism

(26) $h(a) = \{(M, [M]^*): a \in M\}.$

NOTES

- 1. Theorems 30-32 of [7] Ch. 3, saying $f \upharpoonright (A \cup B) = (f \upharpoonright A) \cup (f \upharpoonright B)$, and similarly for $A \cap B$ and A B, are key in the following verifications.
- 2. It is perhaps worth noting that converse algebras are just the usual algebras of relations minus the operation of relative product, and that there are well-known difficulties (Tarski, Lyndon) with representing the full-relation algebras.

REFERENCES

Anderson, A. R. and N. D. Belnap, Jr., *Entailment: The Logic of Relevance and Necessity*, Vol. 1, Princeton University Press, Princeton, New Jersey, 1975.

- [2] Białynicki-Birula, A. and H. Rasiowa, "On the representation of quasi-Boolean algebras," Bulletin of the Polish Academy of Sciences, Cl. III, 5 (1957), pp. 259-261.
- [3] Dunn, J. M., "The effective equivalence of certain propositions about de Morgan lattices," *The Journal of Symbolic Logic*, vol. 32 (1967), pp. 433-434.
- [4] Dunn, J. M., "Intuitive semantics for first-degree entailments and 'coupled trees'," *Philosophical Studies*, vol. 29 (1976), pp. 149-168.
- [5] Meyer, R. K., "A Boolean valued semantics for R," Canberra, typescript (1976).
- [6] Rasiowa, H., An Algebraic Approach to Non-Classical Logics, North-Holland Co., Amsterdam, 1974.
- [7] Suppes, P., Axiomatic Set Theory, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1960.

Department of Philosophy Indiana University Bloomington, Indiana 47405