
365

Notre Dame Journal of Formal Logic
Volume 29, Number 3, Summer 1988

On the Logic of Continuous Algebras
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Introduction For continuous algebras, i.e., ordered algebras with specified
joins which all operations preserve, the following analogue of the Birkhoff vari-
ety theorem has been proved by Adamek, Nelson, and Reiterman ([3]): a class
of algebras can be described by inequalities between terms iff it is an HSP class.
The terms here are more complicated than those used in universal algebra
because they contain, besides variables and operation symbols, formal join signs.

This paper deals with equational logic (or rather, the logic of inequalities)
appropriate for continuous algebras. We present deduction rules for inequalities
between terms, and, for finitary algebras, we prove that these rules are complete,
i.e., an inequality can be deduced from a collection E of inequalities iff it holds
in each model of E. We also discuss infinitary algebras; the completeness the-
orem holds, e.g., for ω-continuous algebras, but it does not hold in general, and
counterexamples are given.

The terms used in [3] were simpler than those introduced below: they were
"small", i.e., restricted in size, and "regular", i.e., the formal join did not appear
inside operation symbols. For finitary algebras, we prove that each term is syn-
tactically equal to a small, regular term. However, the natural formulation of
the deduction rules requires more complex terms, and they are also needed for
the infinitary case.

The presence of the formal join sign makes terms only partially defined:
for a term t in certain variables, the interpretation of the variables in a given
algebra does not necessarily lead to a computation of t in the algebra.

Consequently, our deduction rules use two kinds of statements: Def{t), the
definability of t (the semantics of which is that t can be computed under each
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interpretation of the variables), and t < s (which entails the definability of both
t and s and then has the obvious semantics).

Our proof of the completeness resembles Henkin's proof for first-order
logic since we work with terms inductively, as opposed to Birkhoff's proof for
equational logic (which was based on free algebras and worked with all terms
at once). This is a natural consequence of the partial definability of terms.

We use classes of terms and of deduction rules below. Although our con-
cept of set and class is naive, there would be no difficulty in formalizing our
results in von Neumann-Gόdel-Bernays set theory, or, in case the subset sys-
tem Z below is definable, in Zermelo-Fraenkel set theory.

/ Separately continuous algebras We recall that a subset system Z assigns
to each poset P a collection Z(P) of subsets of P, such that for each order-
preserving map/: P^Q,XeZ(P) implies f(X) eZ(Q). Examples are Z =
ω (ω(P) consists of all ω-chains in P) and Z = Δ(Δ(P) consists of all directed
subsets of P). A poset P is Z-complete if every Z-set X G Z(P) has a join in
P, and an order-preserving function f:P -> Q is Z-continuous provided it
preserves all existing Z-joins.

For any finitary type Σ of algebras, a separately Z-continuous Σ-algebra is
a Σ-algebra A whose underlying set is a Z-complete poset such that for each
operation σ of arity n9 σ is order-preserving and for each / < n and each 0 Φ
XeZ(A)

σ{au...,a^u\J X,ai+U...) = V σ(au .. .a^ux,ai+u . . . ) .
xex

A subset system Z is normal if P G Z(Q) implies P e Z(PT), where Pτ

is P with a new top element T added. It is proved in [3] that every subset sys-
tem Z is equivalent to a normal one, enabling us to restrict our attention to nor-
mal Z. (Z\ is equivalent to Z2 iff Zx < Z2 and Z2 < Zu where Z2 < Zx means
every Zx -complete poset is Z2-complete and every Z-continuous map is
Z2-continuous.) Further, if J_ < Z (i.e., 0 G Z(P) for each P) then each Z-
complete poset has a smallest element _L = \J 0 and Z-continuous maps are
strict, i.e., preserve J_. We may, and will, assume without loss of generality, that
2 G Z(2), for 2 = (0,1} with 0 < 1.

2 Terms Let Z be a normal subset system and Σ a finitary signature.
The class T*(V) of all terms over the set F(we assume ± £ V) is defined

by induction: T*(V) = \J T*(V) for ordinals a where

(i) TQ(V) is the free (nonordered) algebra of type Σ over V, if _L φ Z, or
over VU {J_}, if ± < Z

(ii) Ta+\(V) is the class of all formal expressions
(a) \J tp where P is a nonempty poset with P G Z(PT) and tp G

PGP

T*(V) for e a c h p e P
(b) σ{tu . ..,tn) where σ G Σ has arity n and ί,- G Γ*(F) for each 1 <

/ < fl

(iii) T*(V)= U Γ |(F) for limit ordinals a.
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Terms which differ only in an order-isomorphic renaming of the index
poset are considered equal.

A term is regular if it is built from terms in TQ(V) by iterating joins only.
More precisely, the class R{V) of all regular terms over the set Vis defined in
exactly the same way, with (iib) omitted.

3 Definability For each separately Z-continuous algebra A and each map
A: V-+A, we define the computation h*(t) of terms t G T*(V) in A as a par-
tial map A#: T*(V) -+A. We put Λ# = | J ha (a ordinal) where ha: T*(V) ->
A is a partial map defined as follows:

(1) Ao: TQ(V) -* A is the unique (total) Σ-homomorphism extending A
(with Λo(-L) = J- if i. < Z)

(2a) For t = \J tpe T*+ι(V)9 ha+ι(t) is defined iff

(i) all ha{tp) are defined
(ii) ha{tp) < ha(tg) whenever p < q in P

(iii) {ha(tp)\p G P j G Z(^4) (equivalently, by the normality of Z and
the Z-completeness of A, {ha(tp)\p G P] has an upper bound in
A)

and in this case

Λ«+i(O= V M ^ )

(2b) For* = σ(ί 1 , . . . , ί Λ ) in Γ*+ 1(K), ha+1(t) is defined iff all Aα('/) are
defined, and then Aα + 1(0 = σ{ha{tλ),... ,Aα(/n))

(3) For a limit ordinal a, ha = [J hβ.

A term ί G Γ*(K) is said to be definable in A if A#(0 is defined for all A:
F-> >1. An inequality s < / (for s,t G Γ*(K)) is satisfied by .4 iff A#(5) and
hu{t) are defined, and h^{s) < A#(0, for all A: V-+A. The notion of an equa-
tion 5 « t being satisfied by 4̂ is defined analogously.

Remark: An inequality t0 < tu is satisfied by a Z-continuous algebra A iff the
term z1 = \J t{ is definable in A or, equivalently, the equation t ~ t is satisfied

by ^4. Thus, classes presented by the definability of a collection of terms are just
the same as classes presented by a collection of inequalities or a collection of
equations.

4 Rules of deduction In this section, we establish rules of deduction which
permit us to deduce an inequality between terms, or the definability of a term,
from a collection of inequalities and (already) definable terms. Our aim is to
prove a completeness theorem for these rules.

Since an inequality is semantically equivalent, and so will also be syntac-
tically equivalent, to the definability of an appropriate term (see the preceding
section), we could have written all deduction rules for definability of terms only.
We have chosen to have deduction rules involving both notions in order to
enhance the intuition behind them.
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We formulate three groups of rules; the first establishes rules of definabil-
ity, the second establishes the order and Z-completeness, and the third deals with
the continuity of the operations.

The very last rule involves the notion of substitution of terms into terms,
which is defined inductively (on the complexity) as follows:

Definition For s E T*(W) and h: W-+T*{V), the term s{x -> h(x)) G
T*(V) is defined as follows:

(i)if s = ye Wthens(x-+h(x)) = h{y)
(ii) if s = σ(su...,sn) thens(x-> h(x)) = σ(sι(x-+ h(x)),... 9sn(x ->

h(x)))
(iii) if 5* = \J sp then s(x-> h(x)) = \J sp{x-+ h(x)).

pGP pGP

Next, we state the rules of deduction:

Definability Rules.

(Dl) VDef(x) for each variable x
VDef{c) for each constant c

(D2) s < t h Def(s) and Def(t)
(D3) Def(σ(tι,... ,tn)) h Def(tj) for each operation σ of arity n and each

/ < n.

Order and Completeness Rules.
(Cl) Def(t)\-t<t
(C2) s < t and t < w h 5 < u
(C3) For each poset Q and each P G Z ( β )

tg < ίr for all q < r in Q h De/f V ^
VPGP /

(C4) Def( \J tλ\-tg< V tp for each g G P
V/7GP / pGP

(C5) De/f V tp) a n d ̂  < w for all p G P h V ^ ^ w

\pep / pep

(C6) £)e/f V ^ \-tp<tg for all /? < <7 in P.

In the case that l < Z w e also have the following deduction rule:

(C7) Dβ/(ί) h ± < t.

Algebraic Rules.
( A l ) Si< / / f o r 1 < / < n V σ(su . . . ,sn) < σ(tl9...,tn)
(A2) If sk= V ^ , then

/?GP

Def(Si) for 1 < / < n V
σ(su. . . ,sn) < V σ(5i, . . . , ^ - 1 , ^ , ^ + 1 , . . . ,sn)

PGP

(A3) For any map h: W-+ T*(V) and any s G Γ*(PΓ), Def(h(x)) for alljcG
^andZ)e/(5) hZ>e/(j(Λr->A(jc))).
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Definition For any collection E of definability statements and inequalities
between terms, a term t (respectively, an inequality s < t) is said to be a con-
sequence of E, denoted

EVDef(t) oτ E\-s< t

iff there is a sequence </>, (/ < a) for some ordinal a, of definability statements
and inequalities, such that φa = Def(t) (or s < t respectively) and for each / <
α, φi can be deduced from E U {φy|y < /) using one of the deduction rules
above.

By a model of E is meant a separately Z-continuous algebra which satis-
fies all the definability statements and all inequalities in E.

Notation: We write E V s « t provided E V s < t and t < s.

Remark 1: By Rules (C3) and (D4), we have for any terms t0 and t u t0 <

t\ V Def[ \J tλ where 2 = {0,1} is the two-element chain, and conversely
\/G2 /

Defί V t\ h tQ < tγ. As a result, for any map A: ίF-> Γ*(F) and any to,tι G
\/G2 /

Γ (FΓ),

[Def(h(x)) for all * G FΓand /0 ^ ίi] H ̂ o (JC->A(Λ:)) < M * - > AW).

Remark 2: Using Rules (Cl) and (Al), we have the "converse" of (D3), namely
Def(ti) for 1 < / < nV Def σ(tu... 9tn).

Remark 3: We also obtain the reverse of the inequality deduced in (A2), namely,
if sk — \j tp then

p<Ξp

D e f (Sf) f o r 1 < / < n h V σ ( 5 < ' , ^ - 1 , ^ , ^ + 1 , , ^ ) ^ σ ( 5 Ί , . . . , s n ) .
pep

We see this as follows:

Def(Si) for 1 < / < Λ hi)e/( V σ(si,. . . , ^ _ ! , ^ , ^ + 1 , . . . ,sn))
\pGP I

by (A2) and (D2)

and we deduce σ(sl9. . . ,sk_l9tp,sk+u... ,sn) < σ ( 5 l s . . . ,sn) for all/7 G P by
(Cl), (C4), and (Al), and hence the result follows from (C5). Thus, if sk =
V tp then

p<ΞP

Def (s^ for 1 < / < n \-σ(su... ,sn) « V σ(5Ί,... , ^ _ ! , ^ , ^ + 1 , . . . ,5Π).

Remark 4: For any P E Z(PT) and any terms 5^,^ (p G P) we have

5P « ^ for all p G P and D^/( \J sp\\- \J sp~ \J tp.
\p<ΞP I p<ΞP p(ΞP
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We see this as follows: for each q G P

sq « tq and Defί V sλ h tq < V SP by (C4) and (C2)
\pGP ) pGP

and for any q < r in P we have

^ « ^ and 5Λ « tr and £te/( V ^ ] Ytq<tr by (C6) and (C2)
\PGP )

and hence, applying (C3) where Q = Pτ and tτ = V ^ w e obtain

j ^ * (pfor al lpGPandZ)β/f V SP) ̂ Def( V ̂ V
\pep / \pep /

But now applying (C5) with w = \J sp we obtain
/?GP

5P « ^ for all p G P and De/( \J sp\ V \J tp< \J sp;
\p<EP ) pGP pep

the reverse inequality is obtained symmetrically.

5 The completeness theorem

Proposition 1 For every term s there is a regular term s in the same variables
such that Def(s) h s ~ s.

Proof: We prove the proposition in case s = σ(sχ9. .. ,sn) for regular terms
S\,... 9sn; the result then follows from this special case by induction on the
complexity of s.

We proceed by showing, by induction on k, that, if sΪ9... ,sk G R(V) and
sk+ι,... ,sn G TQ(V) then there is a regular term s with Def(s) \- s ~ s; the
case k = n is the desired result.

For /: = 0, we have su . . . ,sn G ΓQ (F) and hence 5 G To (K) and so s is
itself regular, so that we simply apply (Cl).

For the induction step k -»k + 1, we proceed by induction on the complex-
ity of sk.

(a) If sk G TQ (V) then we use the induction hypothesis on k.
(b) If sk = \/ tp and for each term

PGP

Up = σ ( s Ί , . . . yS/c-iitptS/ζ+i,... ,sn)

there is a regular term ΰp such that

Def(Up) Yup^Up
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then we put s - \J ΰp. Then s is a regular term and, by Remark 3
PGP

above,

Def(s) Vs~ V UP
pep

and

Def(s) Vup~ ΰp

and hence by Remark 4,

Def(s) h V UP~ V »P**S
pGP p<ΞP

which yields the desired result.

Definition For any class E of terms, let TE(V) be the class of all terms t G
T*(V) such that Def(E) \-Def(t). Define a binary relation s ^ on TEVby:

s =E t iff Def(E) \-s~ t.

Proposition 2 For any class E of terms and any set V, there are at most
2cardτξ{V) eqUiυaιence classes of TE(V) modulo the relation =E.

Proof: It is enough, by the preceding proposition, to prove the analogous result
for RE(V), the class of all regular terms t G R(V) such that Def(E) h Def(t).

For each t GRE(V), define a subset St £ TQ(V) as follows:

(ϊ) forte 7oK, S / = = {t}

(ii)forί= V tp,St= U St

pep pep

Then the desired result follows immediately from the following claim:

(*) for s,t G RE(V), if Ss c ^ then Def(E) h 5 < t.

The latter is proved by induction on the complexity of s:

(i) sETo(V). Proof by induction on the complexity of t: if t G TQ(V)

it is trivial, and if t = V ^ ^ e n ̂  = ί5") - U ^ i m P^^ s that 5 G
PGP pep

Stp for some p and hence (by the induction hypothesis on the second
component), Def(E) \- s < tp and so Def(E) V s < t by Rules (C2)
and (C4).

(ii) s~\Jsp> Then Def(E) V sp< t for each /? by the induction hypoth-

esis, and hence by (C5), Def(E) \-s < t.

Completeness Theorem For any class E of inequalities, an inequality s < t
is a consequence of E iff it holds in each model of E.

Proof: Since an inequality t0 ^ t\ is equivalent, both syntactically and seman-
tically, to the definability of the term \J th it is enough to prove that for any

iei

class E of terms and any term t, Def(E) h Def(t) iff / is definable in each
model of E, i.e., in each separately Z-continuous algebra in which E is definable.
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The "only if" part is clear. For the converse, we construct, for each set V
of variables, a model Ay of E such that

t G T*(V) is definable in A iff Def(E) h Def(t), for all teT*(V).

Let >lκ = Tβ(V)/=E; then by Proposition 2, Av is a set, of cardinality at
most 2cαrί/Γ°*(K). For t G Γl(K), let [ί] be the equivalence class of t modulo
=E. We define operations σ G Σ on Av as follows:

σ([tι],...Λtn]) = [*(*!,...,/„)] for aU/!,...,/„ G TEV.

Note that σ(^, . . .,/„) G Γ|(K) and by (Al) our equivalence =E is a con-
gruence on TE(V).

Av is ordered by: [5] < [t] iff £te/(E) h 5 < t.

Claim 1 ylκ is a Z-continuous algebra.

In fact, we prove the following: for each P G Z(AV) and each choice
of elements tq G TE(V) for # G Λ κ such that [^] = <?, we have Def(E) h

Zte/( V ^ ) and moreover V tp is the join in ^4K of P = {[tp]\p G P}.

For each p < <7 in Av we have Def(E) V tp < tq and hence by (C3) we

obtain Zte/(£) VDef(\J tp\ Thus \/ tp e T%;(V). Moreover, Rules (C4)
V?eP / -pep

and (C5) ensure that V tp = \J [tp], where the latter join is in Av. Thus
\_pGP J /?eP

^4^ is Z-complete.
The fact that the operations preserve nonempty Z-joins in each component

is an immediate consequence of Remark 3.

Claim 2 Every t G E is definable inAv.

Suppose t G E Π Γ* (W), and let Λ: W->Avbe any map; we must prove
that h\t) is defined.

Choose a map £: W-> 7£(K) such that h(x) = [£(*)] for each x G W.
Note that for each subterm s of t, Def(t) YDef{s) by Rules D3, D4, and

D2, and hence by (A3), Def(E) \-Def(s(x-> k(x))). Therefore, s(x-+k(x)) G
THV).

We will prove inductively that for each subterm s of t, h^(s) is defined,
and equals [s(x -* k(x))].

If 5 G PFthen [s(x-+ k(x))] = [/:(5)] = Λ(s), as required.
If 5 = σ(sx,... ,5Λ) with Λ#(5, ) = [j,-(jif->A:(x))] then by definition of Λ#,

we have

h*(s) =σ(h#(Sι),. .,h»(Sn))
= σ([Sι(x-+k(x))],...Λsn(x-+k(x))])
= [σ(Sι(x-*k(x)h...,sn(x^k(x)))]
= [s(x-+k(x))].

Let s = V 5̂  with Λ#(5/?) = [^(x -* A:(x))] for each p G P. Since
pep

Def(E) h Def(s) and hence also sp-< sq-< s for each p < g in P, we conclude
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that Def(E) h sp(x -> k(x)) <sq(x-> k(x)) < s(x -» £(*)) for all /? < # in P
and thus in A v we have

[*,(*->*(*))] < [sq(x-*k(x))] < [s(x->£(*)) ] ;

i.e., hn(sp) < Λ # (^) < [5 (x -> A:(JC))] for all p < q G P. Since P G Z(PT), it
follows that

lh«(sp)\peP}eZ(Άv)

and hence Λ#(5 ) is defined and equals

V h"^p) = V [Sp(x-*kM)] = ί V sp(x-+k(x))] = [*(*->*(*))]

as required.

Claim 3 If t G T*(V) is definable in v4F then Def(E) h Def(t).

To prove this, we show that for the map A: V-+Av given by /z(x) = [x],
if A # (0 is defined then t G Γ l ( F ) and h*{t) = [ ί ] . The proof is by induction
on the complexity of t. This is clear for t G Tζ(V).

If t = σ(tu.. . , /„) , U G Γ l ( F ) and hn{tι) = [/,-] for each / then / G
TOY) and Λ#(/) = σ([/ 1 ] , . . . ,[/ Λ ]) = [ σ ( / l 5 . . . ,/„)] = [t].

If t = \J tp and A # (0 is defined then, by the definition of Λ#, p < q in

Pimplies h*(tp) <h*(tq) and hence [^] < [^],and {A#(^)|/?GP} GZ(^4 F ),
and Λ # (0 = V h^{tp). Now the same argument as in Claim 1 shows that

V h«(tp)= v Up] = V tp\
peP pGP [p€P J

a n d h e n c e h**(t) = [t], a s r e q u i r e d .

6 Small terms and the small completeness theorem We have used, so far,
terms, the complexity of which is an arbitrary ordinal and a proper class of
deduction rules. It is, however, possible to restrict the concept of term in such
a way that both the deduction rules and terms over a given set of variables form
sets only. The basic idea is that any continuous algebra generated by a set Fhas
at most | |F|| points where

||K|| = 2cardτ^V) = 2card(VL)Σ)+*°

as proved in [6]. This makes it possible to restrict terms to the small terms
defined as follows:

Definition The class S(V) of all small terms over the set Fis defined by the
same induction as in Section 2 above except that in (iia), the poset P is required
to have cardinality at most || V\\.

Remark: All small terms clearly have complexity smaller or equal to the first reg-
ular cardinal larger than || V\\. Therefore, S(V) is a set. (Recall that changing
the index poset to an isomorphic one does not change the term.)

In [3], we used the set T(V) = S(V) Π R{V) of small regular terms (called
just terms). These are "sufficient" as the following proposition shows:
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Proposition 3 For each term t there is a small regular term t in the same vari-
ables such that Def(t) h t « t.

Proof: It is enough to prove the claim for regular terms (by Proposition 1), and
this is done by induction on the complexity of t. If / E Ro(V) then t itself is
small.

If t = \/ tp then by the induction hypothesis there are small regular terms
pep

tp, such that

Def{tp) Ytp~ tp, and hence Def(t) Vtp~tp for all p.

Define a quasi-order !Ξ on P by:

p^ q iff Def(t) Vtp<tq.

Note that p < q implies p !Ξ q.
Define a binary relation = on P by:

p^qiffp^q and q E p,

then applying Proposition 2to E = {t],wQ obtain that Q = P/= is a set, with
at most I V\\ elements. Let Q have the order induced from the quasi-order !Ξ,
so that [p] < [q] iff p^q; then the quotient map P-> Q is order preserving,
and hence so is its extension PΓ-> Qτ which maps T to Γ. Since P G Z(PT) it
follows that Q G Z ( Q Γ ) .

For each r G Q, choose p G P with A* = [/?], and let ur = tp. Note that if
r < 5 in Q then Def(t) \- ur< us, since Def(t) V tp<tq for the chosen /?,# with
>*= [/?], s= [q].

Now, w = \J ur is a small regular term, and since Def{t) \- ur < us < t

for all r < s in Q we have Def(t) h Def(u) by Deduction Rule (C3), because
Q E Z(<2Γ). It remains to show that Def(t) V t ~ u.

The inequality u < t comes from the fact that Def(t) V tp< t and tp « /p

for all p E P and hence Def(t) \-ur < t for all r E ζλ By Rule (C5), Def(t) h
w < Λ Conversely, we have Def(t) V tp~tp and ur < u for all /? E P, r E Q
and hence tp < w which, again by Rule (C5), yields / < u.

Definition We define the notion Vs of "small consequence" for small terms
analogously to h introduced above, with the only change that in (C3) the poset
Q is restricted to have cardinality < || V\\, and the set P appearing in rules (D4),
(C4), (C5), and (A2) will also have cardinality < || V\\.

Small Completeness Theorem For any class E of inequalities between small
terms, an inequality s < t between small terms is a small consequence of E iff
it holds in all models of E.

Proof: The proof is the same as the proof of the preceding theorem, with Vs

replacing h; the only time the Deduction Rule (C3) is used in proving that Av

is Z-complete, we only need Q = Av, which has cardinality < | V\\ as required
for small deduction.

7 Jointly continuous algebras The preceding sections have dealt with sep-
arately Z-continuous algebras. Here, we deal with the analogous results for
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jointly continuous algebras. Recall that for any type Σ, a (jointly) Z-continuous
Σ-algebra is a Σ-algebra A whose underlying set is a Z-complete poset such that
for each operation σ of arity n, σ: An -• A is order-preserving and preserves
joins of nonempty Z-sets in An, ordered component-wise. Note that every Z-
continuous algebra is separately Z-continuous, and that the converse is true iff
Σ is finitary and all Z-sets are directed (see [6]). For jointly continuous algebras,
the appropriate terms are the same, and the deduction rules are also the same
as before, with the exception that Rule (A2) must be replaced with

(A2j) If j f = V fp/.then
PGP

Def(Si) for 1 < /< n \-σ(su ... ,sn) = \J σ(tpU . . . ,tpn).
PEP

Note that the Rule (A2j), in the presence of the other rules, implies the

Rule (A2) since we can always use the fact that Def(s) \~Defl \J tp\ and s ~
\p<ΞP )

\J tp where tp = s for all p G P, for any Z-set P.
p<EP

With this change in the rules of deduction, all of the results of the preceding
sections, including the Completeness Theorems, hold.

8 Infinitary algebras—Positive results Logic for infinitary continuous
algebras is the same as in the finitary case but the question of completeness is
more delicate. The appropriate terms are defined just as for the finitary case in
Section 2, although in (iib) σ may now be of infinite rank. Also, the notion of
regular term is defined as before. The deduction rules can also be formulated
analogously to the finitary case.

When trying to extend our proof of the Completeness Theorem to infini-
tary algebras, the basic difficulty is that Proposition 2 may not be valid: there
exist sets Fand classes E of inequalities such that TE{V)/=E is a proper class.
If, however, Tj?(V)/=E is a set, then the proof of the Completeness Theorem
proceeds just as in the finitary case. Moreover, the algebra Av constructed there
will be the relatively free algebra over V in the variety of all algebras which are
models of E. The converse also holds: given a class E of inequalities, if the com-
pleteness theorem holds for E (i.e., E h s < /iff every model of E is a model
of s < t) and if the relatively free algebra over Kin the class of all models of
E exists, then TE(V)/=E is a set.

It has been proved in [1] that whenever Δ < Z, i.e., each directed set is a
Z-set, then jointly Z-continuous algebras have bounded generation. By inspecting
the proof, we easily see that the hypothesis Δ < Z entails, for each term /, the
existence of a regular term /with Def(t) f- / « /. Therefore, in this case, Prop-
osition 2 is valid, and hence by the above remarks we have the following.

Theorem If A < Z, then for each class E of inequalities for (jointly) Z-
continuous algebras, an inequality s <t is a consequence of E iff it holds in all
models of E.

Nevertheless, we will see in the next section that the assumption Δ < Z is
essential: the completeness theorem does not hold in general for infinitary
algebras.
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For separately continuous algebras, the situation is even more subtle. The
completeness theorem does hold for Z = ω, or, more generally, for any Z with
a bound on cardinalities of Z-sets, since in such cases, for any set V, T*(V) is
a set. On the other hand, even for Z = Δ, the completeness theorem is false for
infinitary types; this will be seen in the next section.

9 Infinitary algebras—Counterexamples Here, we present examples of
classes E of inequalities for which every model has only one element, and yet
the equation x-y cannot be derived from Eby our rules of deduction. In fact
the result is, to a certain extent, independent of the choice of deduction rules:
we shall present a proper class model of E. Hence the completeness theorem will
fail for any choice of deduction rules which (like ours) are valid not only for con-
tinuous algebras, but also for their proper-class relatives.

The notion of a "large" or proper-class continuous algebra is defined just
as is that of a continuous algebra, except that the universe of such a "large"
algebra may be a proper class rather than a set. An ordered class C is said to
be Z-complete if it has joins of all Z-sets, i.e., all sets X ^ C for which there
is a set Co <Ξ C with XE: Z(C0). A large algebra is (separately or jointly) con-
tinuous if it is Z-complete and the operations, as usual, preserve (either jointly
or separately) joins of all nonempty Z-sets. The concepts of definability of terms
and satisfiability of equations are defined just as for continuous algebras, and
it is straightforward to see that, for any class E of inequalities, if E h s < t
then any proper class model of E also satisfies s < t.

The examples below depend on the following set-theoretical hypothesis:

(*) There exists a long binary tree (i.e. going through all ordinal levels) with
a leaf at each infinite level, i.e., the tree has a maximal branch of every infi-
nite height.

Remark 1: (*) is equivalent to

(**) There are no subtle cardinals and Ord is not subtle where Ord is the class
of all ordinals. (For the definition of subtle see [4] or [1].)

The proof is analogous to arguments appearing in [1], Theorem 1.

Remark 2: It follows from [4], Proposition 2.5, that every subtle cardinal is the
limit of the strongly inaccessibles below it. In the presence of a "global" choice
function, i.e. a choice function for the class of all sets, the same techniques prove
that if Ord is subtle then there is a proper class of strongly inaccessibles. Hence,
the existence of a global choice function and the nonexistence of strongly inac-
cessible cardinals together imply (*). Thus (*) is consistent with the axioms of
set theory.

Remark 3: It is possible to use α-nary trees instead of binary trees. The (*) could
be weakened to the following assumption: There is only a set of subtle cardi-
nals, and Ord is not subtle. (This is certainly true if there is only a set of strongly
inaccessibles, in the presence of a global choice function.)

We omit the details of this generalization because they are quite analogous
to such considerations in [1].
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9.1 Separate continuity Here, we present a counterexample to the complete-
ness theorem for separately Δ-complete infinitary algebras. We present a class
E of inequalities which has a large model, but does not have any set model with
more than one element.

Let Σ be the type consisting of an ω-ary operation σ, one binary operation
δ, and countably many constants cn, n G ω, and let Z = Δ.

Assume that S is a long binary tree with leaves on all infinite levels. Using
the techniques of [1], Proposition 4, we may assume that S has 2a leaves at
level a for all a > ω. Moreover, we may assume that each chain in 5 has a join,
else embed S in the uniform long binary tree and add the missing joins.

Let S+ = S U {oo j , with s < oo for each s G S; then S+ is a Δ-complete
(even complete) p.o. class.

For each ordinal α, let S(α) be the αth level of S, and let L{a) Q S(a)
be the set of leaves at level a.

For each a > ω, le t/ α : L(a)ω -> S(a + 1) be a surjective map such that

fa((an)neω) =/ α ((*«)«6 ω ) whenever an = bn for almost all n,

where "almost all" means all but a finite number.
Now, define the constants cn in S+ so that they cover the finite levels, i.e.

\J{S(n)\neω} = [c>Gω).

Define σ on S + as follows:

/ α ( ( f l n ) n e J if there exist a and an G L(a) with

an = &„ for almost all n.

o((bn)nGω) = < ̂  if Z?Λ = oo for almost all π

_L else.

Then it is straightforward to check that σ is order-preserving, and the fact that
σ((an)n<Ξω) = σ((bn)n(Eω) whenever an — bn for almost all n ensures that σ is sep-
arately continuous.

Define δ on S+ as follows

{oo if a = oo or b = oo or a and b are incomparable

JL else.

Then it is straightforward to check that δ is order-preserving and separately
Δ-continuous.

Now, all of S is generated from the constants cn by the operation σ and
the formulation of directed joins. Hence for each a G S there is a term ta (with
no variables) whose interpretation in S+ is a. Hence, if a,b G S are different
leaves then S+ satisfies

E: δ(ta,tb) > z and δ(ta9ta) = J_, for all leaves a Φ b G S, where z is a
variable.

Finally, if a separately Δ-continuous algebra A is a model of ii, then we
prove that ,4 is trivial. Since S has a proper class of leaves, there exist leaves
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a,b E S for which the terms ta and tb have the same interpretation in A. Thus,
in A, we have ± = δ(taja) = δ(ta,tb) > γ, so A is trivial.

9.2 Joint continuity Let Σ consist of an ω-ary operation σ, a binary oper-
ation <5, and a constant c. Here, we present a class of inequalities for jointly Δω-
continuous Σ-algebras which has a proper class model but no nontrivial set
model, again under the hypothesis (*). We recall that Δω is the subset system
consisting of all countably directed sets; i.e., X E Δω(P) iff every countable
subset of X has an upper bound in X.

Suppose S is a long binary tree with 2α leaves at level a for all a > ω,
which is chain complete.

Construct a proper class algebra A from S as in [1], Section 4. That is,
A = [x,y,±] U C where C consists of all nonconstant decreasing ω-sequences

s0 > sx > s2 > . . .

of elements of S such that 57 = si+i implies 5/ is a leaf or _L. For s = (5w)ΛGω E
C, the first £ such that sk is not a leaf is called the width of s, and denoted
w(s). Denote C(/) = {sΈ C\s0 E 5(/)} for each /.

The ordering on A is defined as follows: for s9s' E C, sr < s iff 5̂  < 5̂  for
k < w(s) and 5̂  = 5* for all k > w(s). Further, s, x, and y are pair wise incom-
parable for each s E. C, and ± is the smallest element.

We define σ: Aω ->A using auxiliary maps/rt(ω < n < β, cofn < ω) cho-
sen as follows. First, we choose a bijection

/«: {(*θO)ω - W - U c(«)

For each isolated ordinal « > ω we choose a surjective map/^: L(« — l)ω -•
C(n) which merges almost identical sequences. Finally, for each limit ordinal
n with cofinality ω we choose an co-sequence nk< n with n = Σk<ωnk9 and we
choose a surjective map

fn: L(n0) X L{nx) X L(n2) X . . . -+ C(Λ)

which merges almost identical sequences. By abuse of language, we evaluate
fn(so>Si>s29.. )(n Φ ω) also in the case that all but finitely many sk are in
L{n - 1) (for n isolated) or in L{nk) (for cof n = ω).

Now we define σ as follows: for sequences in {x,y}ω we put

σ(x,x,x,...) =y;
σ(zo,Zι,Z2>- ) =fω(zo,Zι,Z2, ) if Zi Φ xfor some /.

For sequences in Cω we put

σί ί 0 ,^ 1 ,^ 2 , . . . ) =fn(s§,s£,s§9... )

provided that

(i) the widths of the sk grow beyond all bonds, i.e., lim^^ w(sk) = 00,

and

(ii) for almost all k < ω we have sβ E L(n - 1) for n isolated, n > ω, or
5^ E £(A2,0 for cof n = ω.
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All the remaining sequences in Aω are mapped by σ to _L.
A proof analogous to the one in [1] then shows that A is a Δω-continuous

proper class σ-algebra, generated by {x}.
Now let A+ = A U {oo}, ordered so that oo > a for all a G A. Define

σ(ao,aι,...) = °° whenever one of the α/s is equal to oo; then σ is Δω-con-
tinuous on A+.

Define δ on A+ as follows:

{oo if α = oo or Z? = oo or αo is incomparable with bn

_L else

where a0 is the first member of a if a is an ω-sequence, and is just a if a is x,

y, or -L.
Then it is straightforward to check that δ is order-preserving and separately

Δω-continuous. Hence, since δ is binary and Δω < Δ, it follows that δ is jointly
Δω-continuous.

Let the constant c be interpreted as the generator x.
Now, there is a proper class D QA such that δ(a,b) — oo for all a Φ b in

D. For each a E D there is a term ta9 with no variables, whose interpretation in
A+ is a. Thus A+ satisfies

E: δ(ta9ta) = ± and δ(tajb) > y for all tf * b in 2).

However, just as in the preceding example, any set model of this class E
of inequalities is trivial.

Open problems:

1. The preceding examples provide classes E of inequalities which have a
proper class model but no nontrivial set model. Is there such an exam-
ple, either for jointly or separately continuous algebras, where E is a set
of inequalities?

2. Two interesting special cases of infinitary separately continuous algebras
are:

(a) distributive lattices with arbitrary joins and countable meets (i.e., Σ
has one ω-ary operation which is interpreted as meet, and every set
is a Z-set)

(b) σ-frames (that is complete lattices satisfyingXΛ\J Y=\J {xΛy\yE:
Y}) with countable meet as an operation.

For both these examples, there are no relatively free algebras, and there is a
proper class of terms over a countable set (see [5]). Does the completeness the-
orem fail in these settings?

REFERENCES

[1] Adamek, J., V. Koubek, E. Nelson, and J. Reiterman, "Arbitrarily large continu-
ous algebras on one generator," Transactions of the American Mathematical Soci-
ety, vol. 291 (1985), pp. 681-699.



380 JΪRI ADAMEK, ET AL.

[2] Adamek, J. and E. Nelson, "Separately continuous algebras," Theoretical Computer
Science, vol. 27 (1983), pp. 225-231.

[3] Adamek, J., E. Nelson, and J. Reiterman, "The Birkhoff variety theorem for con-
tinuous algebras," Algebra Universalis, vol. 20 (1985), pp. 328-350.

[4] Baumgartner, J. E., "Ineffability properties of cardinals I," pp. 109-135 in Infinite
and Finite Sets, Vol. 1, ed. A. Hajnal, R. Rado, and V. T. Sos, North-Holland,
Amsterdam, 1975.

[5] Garcia, O. and E. Nelson, "On the non-existence of free complete distributive lat-
tices," Order, vol. 1 (1985), pp. 399-403.

[6] Nelson, E., "Z-continuous algebras," pp. 315-334 in Continuous Lattices, LNM
871, ed. B. Banaschewski and R.-E. Hoffmann, Springer-Verlag, Berlin, 1981.

J. Adamek A. H. Mekler
Faculty of Electrical Engineering Department of Mathematics and Statistics
Technical University of Prague Simon Fraser University
16627 Praha 6 Burnaby, British Columbia
Czechoslovakia Canada V5Λ 1S6

E. Nelson (deceased) J. Reiterman
Department of Mathematics and Statistics Katedra Matematiky
McMaster University Technical University of Prague
Hamilton, Ontario Praha 1
Canada L8S 4K1 Czechoslovakia




