Semantical Analysis of Superrelevant Predicate Logics with Quantification

MIROSŁAW SZATKOWSKI

As is well-known, the definition of the Kripke-type semantics for the relevant propositional logics was given by Routley and Meyer in [9], but the definition of the algebraic semantics of these logics was given by Dunn in [2]. The Kripke-type semantics (called the relevant RPg-spaces) and the algebraic semantics (which we call the simple C_{R}-matrices) for relevant propositional logics were also defined by Maksimova ([5]). It can be easily proved that Routley and Meyer's semantics are equivalent to relevant RPg-spaces, and that Dunn's semantics are equivalent to simple C_{R}-matrices. In [5], Maksimova showed that there exists a close relationship between relevant RPg -spaces and simple C_{R}-matrices. An essential aspect of this relationship is that for any relevant RPg -space there exists the respective simple C_{R}-matrix, the contents of which are identical with the contents of the relevant RPg -space; and with any simple G_{R}-matrix it is possible to correlate the respective relevant RPg-space. However the contents of that relevant RPg-space need not be identical with the contents of the initial matrix, though in the case of finite matrices the identity of contents holds.

In this paper we pick up the subject of semantics for quantified relevant logics, which is an important and underdeveloped one. Some basic problems and solutions in this field were noted by Routley in [8]. We introduce here two types of semantics which we call respectively general relevant RPg-spaces (g.r. RPgspaces) and structurally general relevant RPg-spaces (s.g.r. RPg-spaces). In general, by a g.r. RPg-space we mean any triple $\langle\underline{S}, V, \mathscr{U}\rangle$ such that \underline{S} is a relevant RPg -space, V is a nonempty set, and \mathfrak{A} is a nondegenerate (V, S)-simple $C_{R Q^{-}}$ matrix, and by an s.g.r. RPg-space we mean any triple $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ such that \underline{S}_{0} and \underline{S}_{1} are relevant RPg-spaces and V is a nonempty set. We state that though the contents of any g.r. RPg-space as well as the contents of any s.g.r. RPgspace determine some superrelevant predicate logic, i.e. a predicate logic containing the relevant predicate logic $R Q$; for the superrelevant predicate logics they are incomplete.

The g.r. RPg-spaces are a generalization of the Kripke-type structures $\langle\underline{S}, V\rangle$, where \underline{S} is a relevant RPg -space and V is a nonempty set (cf. the relevant quantificational model structures defined in [9]), and of the algebraic structures $\langle\mathfrak{A}, V\rangle$, where \mathfrak{A} is an \mathfrak{m}-simple $C_{R Q}$-matrix and V is a nonempty set (the structures of the type $\langle\mathfrak{A}, V\rangle$ amounting to De Morgan monoid-valued models of $R Q$ and its supersystems, cf. [1]), in the following sense: (1) If $\langle\underline{S}, V, \mathscr{Y}\rangle$ is a g.r. RPg-space such that \mathfrak{A} is a two-element Boole algebra, then $\langle\underline{S}, V, \mathfrak{U}\rangle$ and $\langle\underline{S}, V\rangle$ determine the same superrelevant predicate logic; and (2) if $\langle\underline{S}, V, \mathfrak{X}\rangle$ is a g.r. RPg-space such that \underline{S} is a one-element relevant RPg-space, then $\langle\underline{S}, V, \mathfrak{Q}\rangle$ and $\langle\mathfrak{A}, V\rangle$ determine the same superrelevant predicate logic. Having introduced g.r. RPg-spaces and knowing the relationship between relevant RPg-spaces and simple C_{R}-matrices, it would be natural to introduce s.g.r. RPg-spaces too. However every s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ could be replaced by the direct product $\left\langle\underline{S}_{0} \times \underline{S}_{1}, V \times V\right\rangle$ because contents of these structures are the same; thus it is not essentially a new kind of structures. In the case of g.r. RPg-spaces the similar trick cannot be used. The direct product of \mathfrak{m}-simple $C_{R Q}$-matrices does not have to be an m-simple $C_{R Q}$-matrix.

Our reason for introducing the g.r. RPg-spaces is the fact that, thanks to these structures it is possible to characterize a wider class of the superrelevant predicate logics, in comparison to structures of the type $\langle\underline{S}, V\rangle$ and structures of the type $\langle\mathfrak{A}, V\rangle$. However the s.g.r. RPg-spaces are useful to get many solutions characterizing the g.r. RPg-spaces.

The paper is divided into three parts. In the first part we introduce the definitions of the general relevant RPg-space and the structurally general relevant RPg-space, and we also state theorems on the contents of these structures. In the second part we give proofs of the incompleteness of these semantics for superrelevant predicate logics. ${ }^{1}$ Finally, in the third part we state some relations between the g.r. RPg-spaces and the s.g.r. RPg-spaces.

1 Given the symbols: $p^{(n)}, q^{(n)}, r^{(n)}, \ldots$ of n-ary predicate variables, $n \in$ ω, and the countably infinite set $\left\{x, y, z, \ldots, x_{0}, y_{0}, z_{0}, \ldots\right\}$ of individual variables we define in the standard way the set $A T$ of atomic formulas. By $F O R$ we denote the set of all formulas built up by means of connectives: $\wedge, \vee, \rightarrow, \neg, \forall$, \exists (conjunction, disjunction, relevant implication, negation, universal quantifier, and existential quantifier, respectively) and atomic formulas. The symbol $\operatorname{Var}(\alpha)$ denotes the set of all free variables occurring in α. When $\operatorname{Var}(\alpha) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, we shall write $\alpha\left(x_{1}, \ldots, x_{n}\right)$. The symbol $\alpha\left(x_{i} / x_{j}\right)$ is used to denote the result of simultaneous substitution of x_{j} for every free occurrence of x_{i} in α, with normal restrictions.

Let $C_{R Q}: 2^{F O R} \mapsto 2^{F O R}$ be the consequence operation defined as follows: for all $X \subseteq F O R$ and $\alpha \in F O R, \alpha \in C_{R Q}(X)$ iff α is provable from X by means of some instances of axiom schemas of system relevant implication with quantification $R Q$ (see [9]) together with the rule of modus ponens, the rule of adjunction, and the rule of generalization. In the case when C_{1} and C_{2} are consequence operations in $F O R$ and $C_{1}(X) \subseteq C_{2}(X)$ for all $X \subseteq F O R$, we shall write $C_{1} \leq C_{2}$.

We say that $\alpha, \beta \in F O R$ are similar (in symbols $\alpha \sim \beta$) if one of them can
be obtained by changing some bound variables in the other one (for the formal definition of similarity see [7]). By a substitution in FOR we shall understand any function $h: F O R \mapsto F O R$, which is a homomorphism with respect to \wedge, \vee, $\rightarrow, \neg, \forall x_{1}, \forall x_{2}, \ldots, \exists x_{1}, \exists x_{2}, \ldots$ and which satisfies the following conditions (cf. [4]):
(i) $\operatorname{Var}(h(\alpha)) \subseteq \operatorname{Var}(\alpha)$, for all $\alpha \in F O R$
(ii) for every $\alpha \in A T$ and for every $i, j \in \omega$, there is some $\beta \in F O R$ of a special form (see [6]) such that $h(\alpha) \sim \beta$ and $h\left(\alpha\left(x_{i} / x_{j}\right)\right) \sim \beta\left(x_{i} / x_{j}\right)$.

For a given $X \subseteq F O R$ by the symbol $\operatorname{Sb}(X)$ we shall denote the closure of X under all substitutions in $F O R$. Each subset $X \subseteq F O R$ such that $R Q \subseteq X$ and $X=C_{R Q}(S b(X))$ will be called a superrelevant predicate logic.

By a relevant RPg-space we shall mean by Maksimova [5] (cf. also [9]) any quadruple $\underline{S}=\langle S, R, P, g\rangle$, where S is a nonempty set, R is a ternary relation on $S, P \subseteq S, g: S \mapsto S$ is a mapping, and which satisfies the following conditions for any $a, a_{1}, b, b_{1}, c, c_{1} \in S$:

RPg1 There exists $d \in P$ such that $R d a a$
RPg2 There exists $d \in P$ such that Rada
RPg3 If $a_{1} \leq_{\underline{s}} a$ and $R a b c$, then $R a_{1} b c$, where " $a \leq_{\underline{s}} b$ " means "there exists $d \in P$ such that $R d a b$ "
RPg4 If $b_{1} \leq_{\underline{S}} b$ and Rabc, then $R a b_{1} c$
RPg5 If $c \leq_{\underline{s}} c_{1}$ and Rabc, then $R a b c_{1}$
RPg6 If Rabc, then Rabd and Rdbc for some $d \in S$
RPg7 If Rabc and Rcde, then Radd d_{1} and $R b d_{1} e$ for some $d_{1} \in S$
RPg8 If Rabc and Rcde, then Radd ${ }_{1}$ and $R d_{1}$ be for some $d_{1} \in S$
RPg9 $\quad g(g(a))=a$
RPg10 If Rabc, then $\operatorname{Rag}(c) g(b)$
RPg11 Rag (a)a.
Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be a matrix, such that $\underline{A}=\langle A, \wedge, \vee, \rightarrow, \neg\rangle$ is an algebra similar to $F O R_{\{\Lambda, v, \rightarrow, \neg\}}$ ($=$ a set of formulas whose all connectives belong to $\{\wedge, \vee, \rightarrow, \neg\})$ and $\langle A, \wedge, \vee\rangle$ is a distributive lattice in which D is a filter having the property: $a \wedge b=a$ iff $a \rightarrow b \in D$ for all $a, b \in A$; and moreover, the following conditions are satisfied for all $a, b, c \in A$:
(1) $a \rightarrow b \leq(b \rightarrow c) \rightarrow(a \rightarrow c)$
(2) $a \leq(a \rightarrow b) \rightarrow b$
(3) $a \rightarrow(a \rightarrow b) \leq a \rightarrow b$
(4) $(a \rightarrow b) \wedge(a \rightarrow c) \leq a \rightarrow(b \wedge c)$
(5) $(a \rightarrow c) \wedge(b \rightarrow c) \leq(a \vee b) \rightarrow c$
(6) $a \rightarrow \neg b \leq b \rightarrow \neg a$
(7) $\neg \neg a=a$,
where " $a \leq b$ " means " $a=a \wedge b$ ".
In this case, we say that $\mathfrak{A}=\langle\underline{A}, D\rangle$ is a simple C_{R}-matrix (cf. [5]). A simple C_{R}-matrix $\mathfrak{A}=\langle\underline{A}, D\rangle$ will be called \mathfrak{m}-simple $C_{R Q}$-matrix, if for each set T, $2 \leq \overline{\bar{T}} \leq \mathfrak{m}$, it satisfies:
(8) The algebra \underline{A} is m-complete; i.e., there exists $\bigwedge_{t \in T} a_{t}$ and $\bigvee_{t \in T} a_{t}$ for any subset $\left\{a_{t} \mid t \in T\right\} \subseteq A$
(9) The filter D is m-complete; i.e., $\left\{a_{t} \mid t \in T\right\} \subseteq D$ implies $\bigwedge_{t \in T} a_{t}$, $\bigvee_{t \in T} a_{t} \in D$
(10) If $\bigvee_{t \in T} a_{t} \in D$, then $a_{t} \in D$ for some $t \in T$
(11) $\bigwedge_{t \in T}\left(a \rightarrow b_{t}\right) \leq a \rightarrow \bigwedge_{t \in T} b_{t}$
(12) $\bigwedge_{t \in T}\left(a_{t} \rightarrow b\right) \leq \bigvee_{t \in T} a_{t} \rightarrow b$

$$
\begin{equation*}
\bigwedge_{t \in T}\left(a \vee b_{t}\right) \leq a \vee \bigwedge_{t \in T} b_{t} \tag{13}
\end{equation*}
$$

(14) $\bigwedge_{t \in T} a_{t} \wedge \bigwedge_{t \in T} b_{t} \leq \bigwedge_{t \in T}\left(a_{t} \wedge b_{t}\right)$.

By a general relevant RPg -space we mean a triple $\langle\underline{S}, V, \mathfrak{Q}\rangle$ satisfying the following conditions:
(i) \underline{S} is a relevant RPg -space
(ii) V is a nonempty set
(iii) \mathfrak{H} is a nondegenerate $\kappa(V, S)$-simple $C_{R Q}$-matrix, where $\kappa(V, S)$ is the smallest cardinal number both greater than $\overline{\bar{V}}$ and $\overline{\overline{\left.\langle b, c\rangle \in S^{2} \mid R a b c\right\}}}$ for any $a \in S$.
By an interpretation function in the g.r. RPg-space $\langle\underline{S}, V, \mathfrak{X}\rangle$ we shall understand any function J such that:
(1) For each 0 -ary predicate variable $p^{(0)}$ and each $a \in S, J\left(p^{(0)}, a\right) \in A$; and if $a \leq_{S} b$, then $J\left(p^{(0)}, a\right) \leq J\left(p^{(0)}, b\right)$
(2) For each n-ary predicate variable ($n \geq 1$) and each $a \in S, J\left(p^{(n)}, a\right)$ is a function from V^{n} to A; and if $a \leq_{S} b$, then $J\left(p^{(n)}, a\right)\left(a_{0}, \ldots, a_{n-1}\right) \leq$ $J\left(p^{(n)}, b\right)\left(a_{0}, \ldots, a_{n-1}\right)$ for any $a_{0}, \ldots, a_{n-1} \in V$.
A general relevant RPg-model (g.r. RPg-model) is a quadruple $\langle\underline{S}, V, \mathfrak{Q}, J\rangle$, where $\langle\underline{S}, V, \mathfrak{U}\rangle$ is a g.r. RPg-space and J is an interpretation function in $\langle\underline{S}, V, \mathfrak{U}\rangle$. By an assignment for the g.r. RPg-space $\langle\underline{S}, V, \mathfrak{U}\rangle$ we shall understand any function \tilde{a} from the set of all individual variables to the set V. The definition of the value-function v for the g.r. RPg-model $\langle\underline{S}, V, \mathfrak{A}, J\rangle$ is inductively given in this way that for any assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{R}\rangle$ and for each $a \in S$:
(i) $v\left(p^{(0)}, a\right)=J\left(p^{(0)}, a\right)$
(ii) $v\left(p^{(n)} x_{0} \ldots x_{n-1}, \tilde{a}, a\right)=J\left(p^{(n)}, a\right)\left(\tilde{a}\left(x_{0}\right) \ldots \tilde{a}\left(x_{n-1}\right)\right), n \geq 1$
(iii) $v(\alpha \wedge \beta, \tilde{a}, a)=v(\alpha, \tilde{a}, a) \wedge v(\beta, \tilde{a}, a)$
(iv) $v(\alpha \vee \beta, \tilde{a}, a)=v(\alpha, \tilde{a}, a) \vee v(\beta, \tilde{a}, a)$
(v) $v(\alpha \rightarrow \beta, \tilde{a}, a)=\bigwedge(v(\alpha, \tilde{a}, b) \rightarrow v(\beta, \tilde{a}, c) \mid b, c \in S$ and Rabc)
(vi) $v(\neg \alpha, \tilde{a}, a)=\neg v(\alpha, \tilde{a}, g(a))$
(vii) $v(\forall x \alpha, \tilde{a}, a)=\bigwedge\left(v\left(\alpha, \tilde{a}^{\prime}, a\right) \mid \tilde{a}^{\prime}\right.$ is an assignment that agrees with \tilde{a} except on x)
(viii) $v(\exists x \alpha, \tilde{a}, a)=\bigvee\left(v\left(\alpha, \tilde{a}^{\prime}, a\right) \mid \tilde{a}^{\prime}\right.$ is an assignment that agrees with \tilde{a} except on x).
We say that $\alpha \in F O R$ is satisfied in the g.r. RPg-model $\langle\underline{S}, V, \mathfrak{Q}, J\rangle$, if there exists an assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{U}\rangle$ such that $v(\alpha, \tilde{a}, a) \in D$ for any $a \in$
P. If for every assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{X}\rangle$ the formula α is satisfied in the $\langle\underline{S}, V, \mathfrak{U}, J\rangle$, we say that α is true in $\langle\underline{S}, V, \mathfrak{Q}, J\rangle$. And the formula α is true in g.r. RPg-space $\langle\underline{S}, V, \mathfrak{R}\rangle$, if α is true in every g.r. RPg-model $\langle\underline{S}, V, \mathfrak{A}, J\rangle$. The set of all formulas true in the g.r. RPg-model $\langle\underline{S}, V, \mathfrak{A}, J\rangle$ (in the g.r. RPg-space $\langle\underline{S}, V, \mathfrak{A}\rangle$) - the contents of $\langle\underline{S}, V, \mathfrak{A}, J\rangle$ (the contents of $\langle\underline{S}, V, V, \mathfrak{U}\rangle$)-will be denoted by $E(\underline{S}, V, \mathfrak{A}, J)(E(S, V, \mathfrak{A}))$.

Theorem 1.1 For every g.r. RPg-space $\langle\underline{S}, V, \mathfrak{A}\rangle, E(\underline{S}, V, \mathfrak{A})$ is a superrelevant predicate logic.

Proof: Considering each axiom of $R Q$ separately we get that it is true in any g.r. RPg-model and that the rules of $R Q$ preserve truth.

By a structurally general relevant $R P g$-space we mean any triple $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$, which satisfies the following conditions:
(i) $\underline{S}_{0}=\left\langle S_{0}, R_{0}, P_{0}, g_{0}\right\rangle$ and $\underline{S}_{1}=\left\langle S_{1}, R_{1}, P_{1}, g_{1}\right\rangle$ are relevant RPg-spaces
(ii) V is a nonempty set.

A function J is said to be an interpretation function in the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$, if for each $a \in S_{0}$ and for each $w \in S_{1}$:
(1) For any 0 -ary predicate variable $p^{(0)}, J\left(p^{(0)}, a, w\right) \in\{1,0\}$; and if $a \leq_{\underline{s}_{0}} b, w \leq_{\underline{S}_{1}} u$ and $J\left(p^{(0)}, a, w\right)=11$, then $J\left(p^{(0)}, b, u\right)=11$
(2) For any n-ary $(n \geq 1)$ predicate variable $p^{(n)}, J\left(p^{(n)}, a, w\right) \subseteq V^{n}$; and if $a \leq_{\underline{S}_{0}} b$ and $w \leq_{\underline{S}_{1}} u$, then $J\left(p^{(n)}, a, w\right) \subseteq J\left(p^{(n)}, b, u\right)$.
A structurally general relevant RPg-model (s.g.r. RPg-model) is a quadruple $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$, where $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ is an s.g.r. RPg-space and J is an interpretation function in $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$. Any function \tilde{a} from the set of all individual variables to the set V is called an assignment for the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$. The definition of the value-function v for the s.g.r. RPg-model $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ is inductively given in this way that for any assignment \tilde{a} for $\left\langle S_{0}, V, S_{1}\right\rangle$, for each $a \in S_{0}$ and for each $w \in S_{1}$:
(i) $v\left(p^{(0)}, a, w\right)=1$ iff $J\left(p^{(0)}, a, w\right)=1$
(ii) $v\left(p^{(n)} x_{0} \ldots x_{n-1}, \tilde{a}, a, w\right)=\mathbb{1}$ iff $J\left(p^{(n)}, a, w\right) \tilde{a}\left(x_{0}\right) \ldots \tilde{a}\left(x_{n-1}\right), n \geq 1$
(iii) $v(\alpha \wedge \beta, \tilde{a}, a, w)=1$ iff $v(\alpha, \tilde{a}, a, w)=1$ and $v(\beta, \tilde{a}, a, w)=1$
(iv) $v(\alpha \vee \beta, \tilde{a}, a, w)=1$ iff $v(\alpha, \tilde{a}, a, w)=1$ or $v(\beta, \tilde{a}, a, w)=1$
(v) $v(\alpha \rightarrow \beta, \tilde{a}, a, w)=11$ iff for each $b, c \in S_{0}$ and for each $u, z \in S_{1}$: if $R_{0} a b c$ and $R_{1} w u z$ and $v(\alpha, \tilde{a}, b, u)=1$, then $v(\beta, \tilde{a}, c, z)=11$
(vi) $v(\neg \alpha, \tilde{a}, a, w)=11$ iff $v\left(\alpha, \tilde{a}, g_{0}(a), g_{1}(w)\right)=0$
(vii) $v(\forall x \alpha, \tilde{a}, a, w)=11$ iff for every assignment \tilde{a}^{\prime} which agrees with \tilde{a} except on $x, v\left(\alpha, \tilde{a}^{\prime}, a, w\right)=1$
(viii) $v(\exists x \alpha, \tilde{a}, a, w)=\rrbracket$ iff for some assignment \tilde{a}^{\prime} which agrees with \tilde{a} except on $x, v\left(\alpha, \tilde{a}^{\prime}, a, w\right)=11$.
We say that $\alpha \in F O R$ is satisfied in the s.g.r. RPg-model $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$, if there exists an assignment ã for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ such that $v(\alpha, \tilde{a}, a, w)=1 /$ for each $a \in P_{0}$ and for each $w \in S_{1}$. If for every assignment \tilde{a} for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ the formula α is satisfied in the $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$, we say that α is true in $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$. And the formula α is true in the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$, if α is true in every s.g.r. RPg-model $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$. The set of all formulas true in the s.g.r.

RPg-model $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ (in the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$) - the contents of $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ (the contents of $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$) - will be denoted by $E\left(\underline{S}_{0}, V, \underline{S}_{1}, J\right)$ $\left(E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)\right)$.

Theorem 1.2 For every s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle, E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$ is a superrelevant predicate logic.
Proof: Enlarges with minor modifications the corresponding proof of Routley and Meyer ([9]) showing that the axioms of $R Q$ are true in any s.g.r. RPg-model and that the rules of $R Q$ preserve truth.

2 If for the superrelevant predicate logic L there exists a set $\left\{\left\langle\underline{S}_{i}, V_{i}, \mathfrak{H}_{i}\right\rangle \mid i \in\right.$ I \} of g.r. RPg-spaces such that $L=\bigcap_{i \in I} E\left(\underline{S}_{i}, V_{i}, \mathfrak{A}_{i}\right)$, then we say that L has characteristic class of g.r. RPg-spaces. Similarly, if L is a superrelevant predicate logic and if there exists a set $\left\{\left\langle\underline{S}_{0}^{i}, V^{i}, \underline{S}_{1}^{i}\right\rangle \mid i \in I\right\}$ of s.g.r. RPg-spaces such that $L=\bigcap_{i \in E} E\left(\underline{S}_{0}^{i}, V^{i}, \underline{S}_{i}^{i}\right)$, then we say that L has characteristic class of s.g.r. RPg-spaces.

Let the symbol $R Q F$ denote the superrelevant predicate logic $R Q+F(F=$ $\exists x(p(x) \rightarrow \forall y p(y)))$ and let the symbol H denote the formula $\left(q^{(0)} \rightarrow r^{(0)}\right) \vee$ $\left(r^{(0)} \rightarrow q^{(0)}\right) \vee \forall x \forall y(s(x) \rightarrow s(y))$.

Lemma 2.1 $H \notin R Q F$.

Proof: We define the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ as follows:
Let $A \mathbb{I}=\left\langle A, \leq_{A}\right\rangle$ be the poset such that $A=\{a, b, c\}$ and $\leq_{A}=\{\langle x$, $x\rangle \mid x \in A\} \cup\{\langle c, a\rangle,\langle c, b\rangle\}$. Let $A^{-}=\left\{x^{-} \mid x \in A\right\}, A^{+}=\left\{x^{+} \mid x \in A\right\}, \leq^{-}=$ $\left\{\left\langle x^{-}, y^{-}\right\rangle \mid y \leq_{A} x\right\}$ and $\leq^{+}=\left\{\left\langle x^{+}, y^{+}\right\rangle \mid x \leq_{A} y\right\}$. Let $\left\langle S_{0}, \leq\right\rangle$ be the poset such that $S_{0}=A^{-} \cup A^{+} \cup\{0\}$, where $0 \notin A^{-} \cup A^{+}$, and $\leq=\leq^{-} \cup \leq^{+} \cup$ $\{\langle 0,0\rangle\}$. Now we define the relevant RPg-space $\underline{S}_{0}=\left\langle S_{0}, R_{0}, P_{0}, g_{0}\right\rangle$ in the following way: $P_{0}=\{0\} ; g_{0}$ is the function $S_{0} \mapsto S_{0}$ such that $g_{0}\left(x^{-}\right)=x^{+}$, $g_{0}\left(x^{+}\right)=x^{-}$for all $x \in A$ and $g_{0}(0)=0 ; R_{0}=\left(A^{-} \cup A^{+}\right)^{3} \cup\{\langle 0, x, y\rangle \mid x \leq$ $y\} \cup\{\langle x, 0, y\rangle \mid x \leq y\} \cup\left\{\langle x, y, 0\rangle \mid y \leq g_{0}(x)\right\}$. Because $\leq_{\underline{S}_{0}}=\leq$, then the order $\leq_{\underline{S}_{0}}$ may be indicated by the diagram

Let $\left\langle S_{1}, \leq\right\rangle$ be the poset such that $S_{1}=\left\{u^{+}, u^{-}, 0\right\}$ and $\leq=\left\{\langle x, x\rangle \mid x \in S_{1}\right\}$. We set the mapping $g_{1}: S_{1} \mapsto S_{1}$, defined as follows: $g_{1}\left(u^{+}\right)=u^{-}, g_{1}\left(u^{-}\right)=$ u^{+}and $g_{1}(0)=0$. Moreover we put $P_{1}=\{0\}$ and $R_{1}=\left\{u^{+}, u^{-}\right\}^{3} \cup\{\langle 0, x, x\rangle \mid x \in$ $\left.\left\{u^{+}, u^{-}\right\}\right\} \cup\left\{\langle x, 0, x\rangle \mid x \in\left\{u^{+}, u^{-}\right\}\right\} \cup\left\{\langle x, x, 0\rangle \mid x \in\left\{u^{+}, u^{-}\right\}\right\} \cup\{\langle 0,0,0\rangle\}$. So
we have defined the relevant RPg-space $\underline{S}_{1}=\left\langle S_{1}, R_{1}, P_{1}, g_{1}\right\rangle$. The order can be demonstrated by the following diagram:

$$
\dot{u}^{+} \quad \dot{0} \quad \dot{u}^{-}
$$

Let $V=\{a, b\}$. This gives us the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$.
Now we define the interpretation function in the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ putting:

$$
\begin{aligned}
& \text { for }\langle x, y\rangle \in\left\{\langle 0,0\rangle,\left\langle b^{+}, 0\right\rangle,\left\langle c^{+}, 0\right\rangle\right\}, J\left(q^{(0)}, x, y\right)=0 \\
& \quad \text { and } J\left(q^{(0)}, x, y\right)=1 \text { otherwise } \\
& \text { for }\langle x, y\rangle \in\left\{\langle 0,0\rangle,\left\langle a^{+}, 0\right\rangle,\left\langle c^{+}, 0\right\rangle\right\}, J\left(r^{(0)}, x, y\right)=0 \\
& \quad \text { and } J\left(r^{(0)}, x, y\right)=11 \text { otherwise } \\
& a \in \bigcap\left(J(s, x, y) \mid\langle x, y\rangle \in\left(S_{1} \times S_{2}\right)-\{\langle 0,0\rangle\}\right) \text {, and } \\
& \quad b \in \bigcap\left(J(s, x, y) \mid\langle x, y\rangle \in\left(S_{1} \times S_{2}\right)-\left\{\langle 0,0\rangle,\left\langle c^{+}, 0\right\rangle\right\}\right) .
\end{aligned}
$$

Then we have $H \notin E\left(\underline{S}_{0}, V, \underline{S}_{1}, J\right)$. It remains to prove that for any formula $\alpha(x)$ constructed by $q^{(0)}, r^{(0)}$, and $s, \exists x(\alpha(x) \rightarrow \forall y \alpha(y)) \in E\left(\underline{S}_{0}, V, \underline{S}_{1}, J\right)$. Suppose to the contrary, i.e. that $\exists x(\alpha(x) \rightarrow \forall y \alpha(y)) \notin E\left(\underline{S}_{0}, V, \underline{S}_{1}, J\right)$. Hence it follows that for every assignment \tilde{a} for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle, v(\alpha(x) \rightarrow \forall y \alpha(y)$, $\tilde{a}, 0,0)=0$. Let \tilde{a} and \tilde{a}^{\prime} be assignments for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ such that $\tilde{a}(x)=a$ and $\tilde{a}^{\prime}(x)=b$. Therefore there exist $a_{0}, b_{0} \in S_{0}$ and $w_{0}, u_{0} \in S_{1}$ and such that $R_{0} 0 a_{0} b_{0}, R_{1} 0 w_{0} u_{0}, v\left(\alpha(x), \tilde{a}, a_{0}, w_{0}\right)=11$, and $v\left(\forall y \alpha(y), \tilde{a}, b_{0}, u_{0}\right)=0$. Hence we obtain that $v\left(\alpha(x), \tilde{a}, b_{0}, u_{0}\right)=1$ and $v\left(\alpha(x), \tilde{a}^{\prime}, b_{0}, u_{0}\right)=0$. Analogically, there exist $a_{1}, b_{1} \in S_{0}$ and $w_{1}, u_{1} \in S_{1}$ such that $R_{0} 0 a_{1} b_{1}, R_{1} 0 w_{1} u_{1}, v\left(\alpha(x), \tilde{a}^{\prime}\right.$, $\left.a_{1}, w_{1}\right)=1$, and $v\left(\forall y \alpha(y), \tilde{a}^{\prime}, b_{1}, u_{1}\right)=0$. Consequently, $v\left(\alpha(x), \tilde{a}^{\prime}, b_{1}, u_{1}\right)=$ 1 and $v\left(\alpha(x), \tilde{a}, b_{1}, u_{1}\right)=0$. It can easily be seen that $b_{0} \notin A^{-}$and $b_{1} \notin A^{-}$, because for each $a \in A^{-}$and for each $w \in S_{1}, v(\alpha(x), \tilde{a}, a, w)=v\left(\alpha(x), \tilde{a}^{\prime}\right.$, $a, w)$. The elements b_{0}, b_{1} cannot be compared with respect to the relation $\leq_{\underline{S}_{0}}$, since then $v\left(\alpha(x), \tilde{a}, b_{0}, u_{0}\right)=v\left(\alpha(x), \tilde{a}^{\prime}, b_{1}, u_{1}\right)=1$ and $v\left(\alpha(x), \tilde{a}, b_{1}, u_{1}\right)=$ $v\left(\alpha(x), \tilde{a}^{\prime}, b_{0}, u_{0}\right)=0$ could not occur. Hence either $b_{0}=a^{+}, b_{1}=b^{+}$or conversely $b_{1}=a^{+}, b_{0}=b^{+}$. But one can check, that for any $a \in\left\{a^{+}, b^{+}\right\}$and for any $w \in S_{1}, v(\alpha(x), \tilde{a}, a, w)=v\left(\alpha(x), \tilde{a}^{\prime}, a, w\right)$, which contradicts the assumption that $\exists x(\alpha(x) \rightarrow \forall y \alpha(y)) \notin E\left(\underline{S}_{0}, V, \underline{S}_{1}, J\right)$.

Lemma 2.2 For any g.r. RPg-space $\langle\underline{S}, V, \mathfrak{Q}\rangle, F \in E(\underline{S}, V, \mathfrak{Q})$ implies $H \in$ $E(\underline{S}, V, \mathfrak{R})$.
Proof: If $\overline{\bar{V}}=1$, then for any g.r. RPg-space $\langle\underline{S}, V, \mathfrak{U}\rangle, H \in E(\underline{S}, V, \mathfrak{U})$. Suppose that $\overline{\bar{V}} \geq 2$ and $H \notin E(\underline{S}, V, \mathfrak{Q})$. Then there exists an interpretation function J in the g.r. RPg-space $\langle\underline{S}, V, \mathfrak{Q}\rangle$ such that $H \notin E(\underline{S}, V, \mathfrak{R}, J)$. Hence for some element $a_{0} \in P, v\left(\left(q^{(0)} \rightarrow r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)}\right), a_{0}\right) \notin D$. Let u_{0} be an element of V. Consider now the interpretation function J_{1} in $\langle\underline{S}, V, \mathfrak{R}\rangle$ such that for any $a \in S: J_{1}\left(q^{(0)}, a\right)=J\left(q^{(0)}, a\right) ; J_{1}\left(r^{(0)}, a\right)=J\left(r^{(0)}, a\right) ; J_{1}(p, a)(u)=J\left(q^{(0)}, a\right)$ if $u=u_{0} ; J_{1}(p, a)(u)=J\left(r^{(0)}, a\right)$ if $u \neq u_{0}$. Let v_{1} be the value-function for the g.r. RPg-model $\left\langle\underline{S}, V, \mathfrak{A}, J_{1}\right\rangle$. Then it is obvious that for any assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{H}\rangle, v_{1}(\exists x(p(x) \rightarrow \forall y p(y)), \tilde{a}, a)=v_{1}\left(\left(q^{(0)} \rightarrow \forall y p(y)\right) \vee\left(r^{(0)} \rightarrow \forall y p(y)\right)\right.$, $\tilde{a}, a)=v_{1}\left(\left(q^{(0)} \rightarrow q^{(0)} \wedge r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)} \wedge r^{(0)}\right), a\right)$. So, if $v_{1}\left(\left(q^{(0)} \rightarrow q^{(0)} \wedge\right.\right.$ $\left.\left.r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)} \wedge r^{(0)}\right), a\right) \in D$, then after an easy calculation we obtain that also $v_{1}\left(\left(q^{(0)} \rightarrow r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)}\right), a\right) \in D$, and $v\left(\left(q^{(0)} \rightarrow r^{(0)}\right) \vee\left(r^{(0)} \rightarrow\right.\right.$ $\left.\left.q^{(0)}\right), a\right) \in D$. Therefore, on the strength of the assumptions, $v_{1}(\exists x(p(x) \rightarrow$
$\left.\forall y p(y)), \tilde{a}, a_{0}\right) \notin D$ for any assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{U}\rangle$, and consequently $F \notin$ $E(\underline{S}, V, \mathfrak{R})$.
Theorem 2.1 The superrelevant predicate logic RQF does not possess characteristic classes of the g.r. RPg-spaces.
Proof: On the strength of Lemmas 2.1 and 2.2.
Lemma 2.3 For any s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{0}\right\rangle, F \in E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$ implies $H \in E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$.
Proof: If $\overline{\bar{V}}=1$, then for any s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle, H \in E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$. Suppose that $\overline{\bar{V}} \geq 2$ and $H \notin E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$. Therefore there exists an interpretation function J in the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ such that $H \notin E\left(\underline{S}_{0}, V\right.$, $\left.\underline{S}_{1}, J\right)$. Hence for some elements $a_{0} \in P_{0}$ and $w_{0} \in P_{1}, v\left(\left(q^{(0)} \rightarrow r^{(0)}\right) \vee\left(r^{(0)} \rightarrow\right.\right.$ $\left.\left.q^{(0)}\right), a_{0}, w_{0}\right)=0$. Let u_{0} be an element of V. Consider now the interpretation function J_{1} in $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ such that for any $a \in S_{0}$ and for any $w \in S_{1}$: $J_{1}\left(q^{(0)}, a, w\right)=J\left(q^{(0)}, a, w\right) ; J_{1}\left(r^{(0)}, a, w\right)=J\left(r^{(0)}, a, w\right) ; J_{1}(p, a, w) u_{0}$, if $J\left(q^{(0)}, a, w\right)=1$; and $J_{1}(p, a, w) u$ iff $J\left(r^{(0)}, a, w\right)=1$, for every $u \in V$ and $u \neq u_{0}$. If v_{1} is the value-function for the s.g.r. RPg-model $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J_{1}\right\rangle$, then we obtain that for any $a \in S_{0}$, for any $w \in S_{1}$, and for any assignment \tilde{a} for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ the following equivalences hold: $v_{1}(\exists x(p(x) \rightarrow \forall y p(y)), \tilde{a}, a, w)=$ 11 iff $v_{1}\left(\left(q^{(0)} \rightarrow \forall y p(y)\right) \vee\left(r^{(0)} \rightarrow \forall y p(y)\right), \tilde{a}, a, w\right)=11$ iff $v_{1}\left(\left(q^{(0)} \rightarrow q^{(0)} \wedge\right.\right.$ $\left.\left.r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)} \wedge r^{(0)}\right), a, w\right)=1$. The last identity implies the identity $v_{1}\left(\left(q^{(0)} \rightarrow r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)}\right), a, w\right)=11$, which is equivalent to $v\left(\left(q^{(0)} \rightarrow\right.\right.$ $\left.\left.r^{(0)}\right) \vee\left(r^{(0)} \rightarrow q^{(0)}\right), a, w\right)=11$. Therefore for any assignment \tilde{a} for $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$, $v_{1}\left(\exists x(p(x) \rightarrow \forall y p(y)), \tilde{a}, a_{0}, w_{0}\right)=0$, and consequently $F \notin E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)$.
Theorem 2.2 The superrelevant predicate logic RQF does not possess characteristic classes of the s.g.r. RPg-spaces.
Proof: On the strength of Lemmas 2.1 and 2.3.
By Lemmas 2.1 and 2.2 it is easily seen that the incompleteness result holds for the semantics of the type $\langle\mathfrak{A}, V\rangle$. Also, by Lemmas 2.1 and 2.3 we get that the incompleteness result holds for the semantics of the type $\langle\underline{S}, V\rangle$.

3 Let $S=\langle S, R, P, g\rangle$ be a relevant RPg-space. A subset $H \subseteq S$ is called a $\leq_{\underline{s}}$-hereditary if for any $a, b \in S$ it follows from $a \in H$ and $a \leq_{\underline{s}} b$ that $b \in H$.
Theorem 3.1 For any s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ there exists s.g.r. RPgspace $\left.\underline{S}_{0}^{*}, V, \underline{S}_{1}^{*}\right\rangle$ such that
(i) $\underline{S}_{0}^{*}=\left\langle S_{0}^{*}, R_{0}^{*}, P_{0}^{*}, g_{0}^{*}\right\rangle$ and $\underline{S}_{1}^{*}=\left\langle S_{1}^{*}, R_{1}^{*}, P_{1}^{*}, g_{1}^{*}\right\rangle$
(ii) $\leq_{S_{0}^{*}}$ and $\underline{S}_{S_{1}^{*}}^{*}$ are partial orderings on S_{0}^{*} and S_{1}^{*}, respectively
(iii) P_{0}^{*} is a $\leq_{S_{0}^{*}}$-hereditary subset of S_{0}^{*} and P_{1}^{*} is a $\leq_{\underline{S}_{1}^{*}}$-hereditary subset of S_{1}^{*}
(iv) $E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)=E\left(\underline{S}_{0}^{*}, V, \underline{S}_{1}^{*}\right)$.

Proof: Suppose that $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ is an s.g.r. RPg-space. Let $P_{0}^{0}=\left\{a \in S_{0} \mid\right.$ there exists $b \in P_{0}$ such that $\left.b \leq_{S_{0}} a\right\}$ and $P_{1}^{0}=\left\{a \in S_{1} \mid\right.$ there exists $b \in P_{1}$ such that $\left.b \leq_{S_{1}} a\right\}$. By an easy verification we obtain that $\underline{S}_{0}^{0}=\left\langle S_{0}, R_{0}, P_{0}^{0}, g_{0}\right\rangle$ and $\underline{S}_{1}^{0}=\left\langle S_{1}, R_{1}, P_{1}^{0}, g_{1}\right\rangle$ are relevant RPg-spaces, and that $\leq_{\underline{S}_{0}}=\leq_{\underline{S}_{0}^{0}}$ and $\underline{\underline{S}}_{1}=$
$\leq_{\underline{S}_{1}}$. Next, given the equivalence relations $\equiv_{\underline{S}_{0}}$ (for any $a, b \in S_{0}, a \equiv \underline{S}_{0} b$ iff $a \leq_{\underline{S}_{0}^{0}} b$ and $b \leq_{\underline{S}_{0}^{0}} a$) and $\equiv_{\underline{S}_{1}}$ (for any $a, b \in S_{1}, a \equiv_{\underline{S}_{1}} b$ iff $a \leq_{\underline{S}_{1}^{0}} b$ and b $\leq_{S_{1}}^{0} a$), we construct in the standard way the quotient relevant RPg -spaces $\underline{S}_{0}^{*}=\left\langle S_{0}^{*}, R_{0}^{*}, P_{0}^{*}, g_{0}^{*}\right\rangle$ and $\underline{S}_{1}^{*}=\left\langle S_{1}^{*}, R_{1}^{*}, P_{1}^{*}, g_{1}^{*}\right\rangle$ corresponding to \underline{S}_{0}^{0} and \underline{S}_{1}^{0}, respectively. The final and crucial step of the proof consists in showing that the following condition holds:
(*) Let $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ be an s.g.r. RPg-model and let v be the value-function for the $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$. Then for any $\alpha \in F O R$, if $v(\alpha, \tilde{a}, a, w)=1$ and $b \geq_{\underline{S}_{0}} a, u \geq_{\underline{S}_{1}} w$, then $v(\alpha, \tilde{a}, b, u)=11$.
But then the condition (*) does not call for a new proof, since it is a well-known lemma of Routley and Meyer ([9]). So by the condition (*) it can easily be seen that (iv) holds.

In the remainder of this paper we will discuss only s.g.r. RPg-spaces $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$, where P_{0}, P_{1} are hereditary subsets of S_{0} and S_{1} with respect to the partial orderings $\leq_{\underline{S}_{0}}$ and $\leq_{\underline{S}_{1}}$, respectively. G.r. RPg-spaces will be also discussed as g.r. RPg-spaces $\langle\underline{S}, V, \mathfrak{H}\rangle$, in which the relevant RPg -space $\underline{S}=$ $\langle S, R, P, g\rangle$ is such that $P \subseteq S$ is a hereditary subset with respect to the partial ordering $\leq_{\underline{S}}$.

The following construction allows the correlation with any relevant RPg space \underline{S} of the respective matrix. Let $\underline{S}=\langle S, R, P, g\rangle$ be a relevant RPg-space. The symbol $A(\underline{S})$ denotes the class of all $\leq \underline{s}$-hereditary subsets of \underline{S}, whereas the symbol $\operatorname{Alg}(\underline{S})$ denotes the algebra with universum (\underline{S}) and operations defined as follows: for any $H_{1}, H_{2} \in A(\underline{S}), H_{1} \wedge H_{2}=H_{1} \cap H_{2}, H_{1} \vee H_{2}=$ $H_{1} \cup H_{2}, H_{1} \rightarrow H_{2}=\left\{a \in S \mid\right.$ for every $b, c \in S:$ if $R a b c$ and $b \in H_{1}$, then $c \in$ $\left.H_{2}\right\}, \neg H_{1}=\left\{a \mid g(a) \notin H_{1}\right\}$. It is obvious that in $\operatorname{Alg}(\underline{S})$ there exist $\bigwedge_{t \in T} H_{t}$ and $\bigvee_{t \in T} H_{t}$, where T is a set of any power, Let $D(\underline{S})=\{H \in A(\underline{S}) \mid P \subseteq H\}$.

Lemma 3.1 For any relevant $R P g$-space $\underline{S}=\langle S, R, P, g\rangle$ such that the set P has the least element, $\mathfrak{A}(\underline{S})=\langle A \lg (\underline{S}), D(\underline{S})\rangle$ is an \mathfrak{m}-simple $C_{R Q}$-matrix, where m is any cardinal.
Proof: It suffices to verify that: (i) the class $A(\underline{S})$ is closed with respect on the operations $\wedge, \vee, \rightarrow$, \neg; (ii) $D(\underline{S})$ is a filter; and (iii) conditions $1, \ldots, 14$ defining an m -simple $C_{R Q}$-matrix hold (cf. also [5]).

Theorem 3.2 For any s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ such that the set $P_{1} \subseteq S_{1}$ has a least element, $E\left(\underline{S}_{0}, V, \underline{S}_{1}\right)=E\left(\underline{S}_{0}, V, \mathfrak{A}\left(\underline{S}_{1}\right)\right)$.
Proof: Suppose that $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$ is an s.g.r. RPg-model and v is the valuefunction for the $\left\langle\underline{S}_{0}, V, \underline{S}_{1}, J\right\rangle$. Let \tilde{a} be an assignment for the s.g.r. RPg-space $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$. We define the interpretation function J_{1} in the g.r. RPg-space $\left\langle\underline{S}_{0}, V, \mathfrak{A}\left(\underline{S}_{1}\right)\right\rangle$ as follows: $J_{1}\left(p^{(0)}, a\right)=\left\{w \in S_{1} \mid J\left(p^{(0)}, a, w\right)=11\right.$ and $J_{1}\left(p^{(n)}\right.$, a) $\left(\tilde{a}\left(x_{0}\right), \ldots, \tilde{a}\left(x_{n-1}\right)\right)=\left\{w \in S_{1} \mid J\left(p^{(n)}, a, w\right) \tilde{a}\left(x_{0}\right) \ldots \tilde{a}\left(x_{n-1}\right)\right\}$, for $n \geq 1$. Let v_{1} denote the value-function for the $\left\langle\underline{S}_{0}, V, \mathfrak{A}\left(\underline{S}_{1}\right)\right\rangle$. It is easy to verify that, for any $\alpha \in F O R$, for any assignment \tilde{a} for the $\left\langle\underline{S}_{0}, V, \underline{S}_{1}\right\rangle$ and for each $a \in S_{0}$, $v_{1}(\alpha, \tilde{a}, a)=\left\{w \in S_{1} \mid v(\alpha, \tilde{a}, a, w)=11\right\}$. The proofs of the remaining steps are easy and will be omitted.

Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be an \mathfrak{m}-simple $C_{R Q}$-matrix. We say that a proper \mathfrak{m} complete filter F of the algebra \underline{A} is an \mathfrak{m}-prime filter if it has the following property: for any $\overline{\bar{T}} \leq \mathfrak{m}$, if $\bigvee_{t \in T} \bar{a}_{t} \in F$ then $\left\{a_{t} \mid t \in T\right\} \cap F \neq \varnothing$. If $\mathfrak{m}<\aleph_{0}$ then we identify m-prime filters with prime filters.
Lemma $3.2 L e t \mathfrak{A}=\langle\underline{A}, D\rangle$ be an \mathfrak{m}-simple $C_{R Q}$-matrix. Then
(i) If $\mathfrak{m} \geq \aleph_{0}$, then the \mathfrak{m}-complete filter generated by a nonempty subset A_{0} of the universum of the algebra \underline{A} is the set of all elements $a \in A$ such that $a \geq$ $\bigwedge_{t \in T} a_{t}$ for some elements $a_{t} \in A_{0}, t \in T$, and for some $\overline{\bar{T}} \leq \mathfrak{m}$
(ii) If $\mathfrak{m}<\aleph_{0}$, then the \mathfrak{m}-complete filter generated by a nonempty subset A_{0} of the universum of the algebra \underline{A} is the set of all elements $a \in A$ such that $a \geq a_{0}$ $\wedge \ldots \wedge a_{n-1}$ for some elements $a_{0}, \ldots, a_{n-1} \in A_{0}$.
Proof: By an easy verification.
It follows easily from Lemma 3.3 that
Lemma 3.3 Let a_{0} be an element of the universum of the algebra \underline{A} and let F be an \mathfrak{m}-complete filter of the algebra \underline{A}. Then $\left[F, a_{0}\right)=\left\{a \in A \mid a \geq a_{0} \wedge c\right.$ and $c \in F\}$ is the m-complete filter generated by the set $F \cup\left\{a_{0}\right\}$.

Let the symbol \mathbb{G}_{0} denote the set of all proper m-complete filters of the m-simple $C_{R Q}$-matrix $\mathfrak{A}=\langle\underline{A}, D\rangle$. Let $\mathbb{G}=\mathbb{G}_{0} \cup\{\varnothing, A\}$. For any $F_{1}, F_{2} \in \mathbb{G}$ let $F_{1} \cdot F_{2}=\left\{z \mid\right.$ there exist $x \in F_{1}$ and $y \in F_{2}$ such that $\left.x \leq y \rightarrow z\right\}$. By the symbol \mathbb{F}_{p} we denote the set of all m-prime filters of the algebra \underline{A}. Let $\mathbb{F}=\mathbb{F}_{p} \cup$ $\{\varnothing, A\}$. We now introduce certain specific definitions (cf. [5]), namely: for any $F, F_{1}, F_{2} \in \mathbb{F}, R\left(F, F_{1}, F_{2}\right)$ holds iff $F \cdot F_{1} \subseteq F_{2}, P=\{F \mid F \in \mathbb{F}$ and $F \supseteq D\}$, and $g(F)=\{x \in A \mid g(x) \notin F\}$.
Lemma 3.4 Let $\mathfrak{U}=\langle\underline{A}, D\rangle$ be an \mathfrak{m}-simple $C_{R Q}$-matrix such that the settheoretic union of any chain of \mathfrak{m}-complete filters of the algebra \underline{A} is an \mathfrak{m} complete filter. Let $F_{1}, F_{2} \in \mathbb{G}$ and $F \in \mathbb{F}$. Then
(i) If $F_{1} \cdot F_{2} \subseteq F$, then there exists $F_{1}^{*} \in \mathbb{F}$ such that $F_{1} \subseteq F_{1}^{*}$ and $F_{1}^{*} \cdot F_{2} \subseteq F$
(ii) If $F_{1} \cdot F_{2} \subseteq F$, then there exists $F_{2}^{*} \in \mathbb{F}$ such that $F_{2} \subseteq F_{2}^{*}$ and $F_{1} \cdot F_{2}^{*} \subseteq F$.

Proof: Let us note that if $\mathfrak{m}<\aleph_{0}$ then we consider filters and thus each algebra \underline{A} of the m -simple $C_{R Q}$-matrix $\mathfrak{A}=\langle\underline{A}, D\rangle$ satisfies the condition: the settheoretic union of any chain of filters is a filter. We only prove the lemma for the case when $\mathfrak{m} \geq \mathcal{\aleph}_{0}$. To prove (i) let us assume that $K=\left\{F^{\prime} \mid F \in \mathbb{G}, F_{1} \subseteq F^{\prime}\right.$ and $\left.F^{\prime} \cdot F_{2} \subseteq F\right\}$. The collection K is nonempty, since $F_{1} \in K$. Let \mathcal{C} be a chain in $\langle K, \subseteq\rangle$ and let $P=\bigcup(X \mid X \in \mathcal{C})$. Since $F_{1} \subseteq F^{\prime}$ for each $F^{\prime} \in \mathbb{C}$, then $F_{1} \subseteq$ P. Since $P \cdot F_{2}=\bigcup\left(F^{\prime} \cdot F_{2} \mid F^{\prime} \in \mathcal{C}\right)$, then $P \cdot F_{2} \subseteq F$. In the case when $P \in$ $\{\varnothing, A\}$, then we conclude the proof. Let us assume that $P \notin\{\varnothing, A\}$. Now, on the strength of the assumptions of the lemma, P is an m-complete filter. Hence, by the Kuratowski-Zorn lemma, K has a maximal element F^{*}. Let us assume that $F^{*} \notin \mathbb{F}_{p} \cup\{A\}$. Then there exist elements $a_{t} \in A, t \in T$, and $\overline{\bar{T}} \leq \mathfrak{m}$, such that $\bigvee_{t \in T} a_{t} \in F^{*}$ and $\left.a_{t} \mid t \in T\right\} \cap F^{*}=\varnothing$. For each $t \in T$, let $F_{t}^{*}=\left[F^{*}, a_{t}\right)$ be an \mathfrak{m}-complete filter generated by the set $F^{*} \cup\left\{a_{t}\right\}$. Hence $F_{t}^{*} \supset F^{*}$ for each $t \in T$. Therefore for all $t \in T$ there exist $b_{t}, c_{t} \in A$ such that $b_{t} \rightarrow c_{t} \in F_{t}^{*}$, $b_{t} \in F_{2}$, and $c_{t} \notin F$. By Lemma 3.3 there exist $x_{t} \in F^{*}, t \in T$, so that $x_{t} \wedge$
$a_{t} \leq b_{t} \rightarrow c_{t}$. Let $x=\bigwedge_{t \in T} x_{t}$. Now, by an easy verification we get that $x \wedge a_{t} \leq$ $\bigwedge_{t \in T} b_{t} \rightarrow \bigvee_{t \in T} c_{t}$ for all $t \in T$, and, consequently, $\bigvee_{t \in T}\left(x \wedge a_{t}\right) \leq \bigwedge_{t \in T} b_{t} \rightarrow \bigvee_{t \in T} c_{t}$. Since $x \wedge \bigvee_{t \in T} a_{t} \leq \bigvee_{t \in T}\left(x \wedge a_{t}\right)$ then $x \wedge \bigvee_{t \in T} a_{t} \leq \bigwedge_{t \in T} b_{t} \rightarrow \bigvee_{t \in T} c_{t}$. Hence it follows that $\bigwedge_{t \in T} b_{t} \rightarrow \bigvee_{t \in T} c_{t} \in F^{*}$, but because $\bigwedge_{t \in T} b_{t} \in F_{2}$, then $\bigvee_{t \in T} c_{t} \in F-$ a contradiction, since F is an \mathfrak{m}-prime filter.

The proof of case (ii) is entirely analogous to the previous proof, and therefore is omitted.

Lemma 3.5 For any $F, F_{1} \in \mathbb{G}$:
(i) $F \cdot F_{1} \in \mathbb{G}$
(ii) $D \cdot F=F$
(iii) $F \cdot D \subseteq F$.

Proof: To prove (i) observe that if $F \cdot F_{1} \in\{\varnothing, A\}$ then $F \cdot F_{1} \in \mathbb{G}$. Now let us assume that $\left\{a_{t} \mid t \in T\right\} \subseteq F \cdot F_{1} \notin\{\varnothing, A\}$. Hence we get that there exist $b_{t} \in F_{1}$ for each $t \in T$ such that $b_{t} \rightarrow a_{t} \in F$. Then $\bigwedge_{t \in T} b_{t} \in F_{1}$ and $\bigwedge_{t \in T}\left(b_{t} \rightarrow a_{t}\right) \in F$. Since $\bigwedge_{t \in T}\left(b_{t} \rightarrow a_{t}\right) \leq \bigwedge_{t \in T} b_{t} \rightarrow \bigwedge_{t \in T} a_{t}$ then $\bigwedge_{t \in T} b_{t} \rightarrow \bigwedge_{t \in T} a_{t} \in F$ and, consequently, $\bigwedge_{t \in T} a_{t} \in F \cdot F_{1}$. Now, assuming that $a \in F \cdot F_{1}$ and $a \leq b$ we get immediately that there exists $c \in F_{1}$ such that $c \rightarrow a \in F$ and that $c \rightarrow a \leq c \rightarrow b$. Then $c \rightarrow b \in F$ yields $b \in F \cdot F_{1}$.

To prove (ii) observe that if $x \in D \cdot F$ then there exists $y \in F$ such that $y \rightarrow x \in D$. Hence $y \in x$ and so $x \in F$. Next, assuming that $x \in F$ we get that also $x \in D \cdot F$ by virtue of the fact that $x \rightarrow x \in D$.

To prove (iii) suppose that $x \in F \cdot D$. Thus for some $y \in D, y \rightarrow x \in F$. Therefore $(y \rightarrow x) \rightarrow x \in D$ and so $y \rightarrow x \leq x$. Hence $x \in F$.

Lemma 3.6 Let $\mathfrak{N}=\langle\underline{A}, D\rangle$ be an \mathfrak{m}-simple $C_{R Q}$-matrix such that the settheoretic union of any chain of \mathfrak{m}-complete filters of the algebra \underline{A} is an \mathfrak{m} complete filter. Then $\mathbb{F}(\mathfrak{H})=\langle\mathbb{F}, R, P, g\rangle$ is a relevant $R P g$-space.

Proof: In the first place we shall show that the following condition holds:
(*) For any $F_{1}, F_{2} \in \mathbb{F}, F_{1} \subseteq F_{2}$ iff there exists $F \in P$ such that $R\left(F, F_{1}, F_{2}\right)$.
Let us assume that $F_{1} \subseteq F_{2}$. Hence by Lemma 3.5(ii) $D \cdot F_{1} \subseteq F_{2}$. If $D \in$ $\mathbb{F}_{p} \cup\{A\}$ then on the strength of Lemma 3.4(i) there exists $F \in \mathbb{F}$ such that $D \subseteq F$ and $F \cdot F_{1} \subseteq F_{2}$. Therefore, $F \in P$ and $R\left(F, F_{1}, F_{2}\right)$. Conversely, let $R\left(F, F_{1}, F_{2}\right)$ for some $F \in P$. Then $F \cdot F_{1} \subseteq F_{2}$. Since $F \in P$ then $D \subseteq F$. Hence $D \cdot F_{1} \subseteq F_{2}$, and consequently by Lemma 3.5 (ii) $F_{1} \subseteq F_{2}$.

Remembering about the possibility of applying Lemmas $3.4,3.5$, and Condition $(*)$ the reader should not have any difficulties in supplying all the proofs that are omitted here.

To verify $\operatorname{RPg} 9$ observe that if $F \in \mathbb{F}$ then $g(F) \in \mathbb{F}$. Applying the definition of the set $g(F)$ one gets that $x \in g(g(F))$ iff $\neg x \in g(F)$ iff $\neg \neg x \in F$ iff $x \in F$.

To prove RPg 10 suppose to the contrary that $F \cdot F_{1} \subseteq F_{2}$ and $F \cdot g\left(F_{2}\right) \nsubseteq$ $g\left(F_{1}\right)$. Hence there exists $y, z \in A$ such that $y \rightarrow z \in F, y \in g\left(F_{2}\right)$ and $z \notin$
$g\left(F_{1}\right)$. Since $y \rightarrow z \leq \neg z \rightarrow \neg y$, therefore $\neg z \rightarrow \neg y \in F$ and $\neg z \in F_{1}$, and consequently $\neg y \in F_{2}$. Hence we conclude that $y \notin g\left(F_{2}\right)$-a contradiction.

To prove RPg 11 let us note only that for any $x, y \in A, x \wedge \neg y \leq \neg(x \rightarrow$ y), since the proofs of the remaining steps are easy.

Lemma 3.7 (cf. [3]) Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be a finite simple $C_{R Q}$-matrix. Then \mathfrak{A} and $\mathfrak{A}\left(\mathbb{F}_{p}(\mathfrak{H})\right)$ are isomorphic.

Proof: The fact that $\mathbb{F}_{p}(\mathfrak{C})=\left\langle\mathbb{F}_{p}, R, P, g\right\rangle$ is a relevant RPg-space is proved in an analogous manner to the proof of Lemma 3.6. We add, however, that in every finite simple $C_{R Q}$-matrix the set-theoretic union of any chain of filters is a filter. Now, we define the function $h: A \mapsto A\left(\mathbb{F}_{p}(\mathfrak{H})\right)$ as follows: $h(x)=$ $\left\{F \in \mathbb{F}_{p} \mid x \in F\right\}$ for every $x \in A$. We omit the proof that the thus-defined function h is a well-defined function and that h is a bijection. And, moreover, the reader can easily verify that the function h preserves operations \wedge, \vee, \neg; and that for each $x \in A, x \in D$ iff $h(x) \in D\left(\mathbb{F}_{p}(\mathfrak{H})\right)$. To prove the inclusion $h(x \rightarrow$ $y) \subseteq h(x) \rightarrow h(y)$ assume that $F \in h(x \rightarrow y)$ and $F \notin h(x) \rightarrow h(y)$. Then we get that $x \rightarrow y \in F$ and there exist $F_{1}, F_{2} \in \mathbb{F}_{p}$ such that $R\left(F, F_{1}, F_{2}\right), F_{1} \in h(x)$, and $F_{2} \notin h(y)$. Hence we have $F \cdot F_{1} \subseteq F_{2}, x \in F_{1}$ and $y \notin F_{2}$. Thus $y \in F \cdot F_{1}$, and consequently $y \in F_{2}$-a contradiction. Now, we shall prove that for all $y \in A$ and all $x \in A, x \neq 0_{A}, h(x) \rightarrow h(y) \subseteq h(x \rightarrow y)$. Let us assume that for some $F \in \mathbb{F}_{p}, F \notin h(x \rightarrow y)$. Hence $x \rightarrow y \notin F$. Let us consider the sets $F_{1}=$ $\{z \mid x \leq z\}$ and $F \cdot F_{1}$. Thus $y \notin F \cdot F_{1}$, because if $y \in F \cdot F_{1}$ then $z \rightarrow y \in F$ for some $z \in F_{1}$ and so $x \rightarrow y \in F$ on the strength of $z \rightarrow y \leq x \rightarrow y$. Let F_{2} be an element in the set \mathbb{F}_{p} such that $F \cdot F_{1} \subseteq F_{2}$ and $y \notin F_{2}$. On the basis of Lemma 3.4(ii) there exists $F^{*} \in \mathbb{F}_{p}$ such that $F_{1} \subseteq F^{*}$ and $F \cdot F^{*} \subseteq F_{2}$. Hence we obtain that $R\left(F, F^{*}, F_{2}\right), F^{*} \in h(x)$, and $F_{2} \in h(y)$, therefore $F \notin h(x) \rightarrow h(y)$. In this way, it remains to prove that $h\left(0_{A}\right) \rightarrow h(y) \subseteq h\left(0_{A} \rightarrow y\right)$ for all $y \in A$. But since \mathfrak{A} is a finite simple $C_{R Q}$-matrix, then in the algebra \underline{A} there exists a greater element 1_{A} and $0_{A} \rightarrow y=1_{A}$. Hence $h\left(0_{A} \rightarrow y\right)=\mathbb{F}_{p}$.
Theorem 3.3 Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be a $\kappa(V, S)$-simple $C_{R Q}$-matrix such that the set-theoretic union of any chain of $\kappa(V, S)$-complete filters of the algebra \underline{A} is $a \kappa(V, S)$-complete filter. Then $E(\underline{A}, V, \mathfrak{A}(\mathbb{F}(\mathfrak{H}))) \subseteq E(\underline{S}, V, \mathfrak{A})$.
Proof: By the construction of the relevant RPg-space $\mathbb{F}(\mathfrak{H})=\langle\mathbb{F}, R, P, g\rangle$ the set P has a least element. So by Lemma $3.1 \mathfrak{H}(\mathbb{F}(\mathfrak{t}))$ is a $\kappa(V, S)$-simple $C_{R Q^{-}}$ matrix. Let h be the function from A into $A(\mathbb{F})$ given by: $h(x)=\{F \in \mathbb{F} \mid x \in$ $F\}$ for every $x \in A$. Let us assume that $\alpha \notin E(\underline{S}, V, \mathfrak{U})$. Hence there must exist a g.r. RPg-model $\langle\underline{S}, V, V, \mathfrak{U}, J\rangle$ such that $\alpha \notin E(\underline{S}, V, \mathfrak{A}, J)$. Now, we define the interpretation function J_{1} in the g.r. RPg-space $\langle\underline{S}, V, \mathfrak{A}(\mathbb{F}(\mathfrak{H}))\rangle$ as follows: $J_{1}\left(p^{(0)}, a\right)=h(u)$, if $J\left(p^{(0)}, a\right)=u$; and $J_{1}\left(p^{(n)}, a\right)\left(\tilde{a}\left(x_{0}\right), \ldots, \tilde{a}\left(x_{n-1}\right)\right)=$ $h(u)$, if $J\left(p^{(n)}, a\right)\left(\tilde{a}\left(x_{0}\right), \ldots, \tilde{a}\left(x_{n-1}\right)\right)=u, n \geq 1$.

Let v_{1} denote the value-function for $\langle\underline{S}, V, \mathfrak{H}(\mathbb{F}(\mathscr{H}))\rangle$. We shall prove that
(*) For any formula α, for any assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{H}\rangle$ and for each $a \in S$: $v_{1}(\alpha, \tilde{a}, a)=h(u)$, if $v(\alpha, \tilde{a}, a)=u$.

The proof of $(*)$ goes by induction with respect to the length of the formula α. We verify only the cases when $\alpha=\beta \rightarrow \gamma$ and $\alpha=\forall x \beta$, because the verification of the remaining cases is easy. By the proof of Lemma 3.7, $h(x \rightarrow y) \subseteq h(x) \rightarrow$
$h(y)$ for any $x, y \in A$. To prove the inclusion $h(x) \rightarrow h(y) \subseteq h(x \rightarrow y)$ assume that for some $F \in \mathbb{F}, F \notin h(x \rightarrow y)$. Hence $x \rightarrow y \notin F$. Let $F_{1}=\{z \mid x \leq z\}$. Therefore $y \notin F \cdot F_{1}$, because if $y \in F \cdot F_{1}$ then $z \rightarrow y \in F$ for some $z \in F_{1}$ and so $x \rightarrow y \in F$ on the strength of the $z \rightarrow y \leq x \rightarrow y$. Let us consider $F_{2} \in \mathbb{F}$ such that $F \cdot F_{1} \subseteq F_{2}$ and $y \notin F_{2}$. By Lemma 3.4(ii) there exists $F^{*} \in \mathbb{F}$ such that $F_{1} \subseteq F^{*}$ and $F \cdot F^{*} \subseteq F_{2}$. Hence it follows that $R\left(F, F^{*}, F_{2}\right), F^{*} \in h(x)$, and $F_{2} \notin h(y)$, so $F \notin h(x) \rightarrow h(y)$. In order to show that $h\left(\bigwedge_{t \in T} a_{t}\right)=\bigwedge_{t \in T} h\left(a_{t}\right)$ for each T such that $\overline{\bar{T}} \leq \kappa(V, S)$ let us note that $F \in h\left(\bigwedge_{t \in T} a_{t}\right)$ iff $\bigwedge_{t \in T} a_{t} \in F$ iff for each $t \in T, a_{t} \in F$ iff for each $t \in T, F \in h\left(a_{t}\right)$ iff $F \in \bigwedge_{t \in T} h\left(a_{t}\right)$. Let $\alpha=\beta \rightarrow \gamma$. In this case we have: $v_{1}(\beta \rightarrow \gamma, \tilde{a}, a)=\bigwedge\left(v_{1}(\beta, \tilde{a}, b) \rightarrow v_{1}(\gamma, \tilde{a}\right.$, $c) \mid b, c \in S$ and $R a b c)=\bigwedge(h(v(\beta, \tilde{a}, b)) \rightarrow h(v(\gamma, \tilde{a}, c)) \mid b, c \in S$ and $R a b c)=$ $\bigwedge(h(v(\beta, \tilde{a}, b) \rightarrow v(\gamma, \tilde{a}, c)) \mid b, c \in S$ and $R a b c)=h(\bigwedge(v(\beta, \tilde{a}, b) \rightarrow v(\gamma, \tilde{a}$, $c) \mid b, c \in S$ and $\operatorname{Rabc}))=h(v(\beta \rightarrow \gamma, \tilde{a}, a))$. If $\alpha=\forall x \beta$, then we obtain that $v_{1}(\alpha, \tilde{a}, a)=\bigwedge\left(v_{1}\left(\beta, \tilde{a}^{\prime}, a\right) \mid \tilde{a}^{\prime}\right.$ is an assignment that agrees with \tilde{a} except on $x)=\bigwedge\left(h\left(v\left(\beta, \tilde{a}^{\prime}, a\right)\right) \mid \tilde{a}^{\prime}\right.$ is an assignment that agrees with \tilde{a} except on $\left.x\right)=$ $h\left(\bigwedge\left(v\left(\beta, \tilde{a}^{\prime}, a\right)\right) \mid \tilde{a}^{\prime}\right.$ is an assignment that agrees with \tilde{a} except on $\left.x\right)=h(v(\alpha$, $\tilde{a}, a)$).

Since $\alpha \notin E(\underline{S}, V, \mathfrak{A}, J)$, then there exists an assignment \tilde{a} for $\langle\underline{S}, V, \mathfrak{Q}\rangle$ and $a \in P$ such that $v(\alpha, \tilde{a}, a) \notin D$. Thus, on the strength of the $(*), v_{1}(\alpha, \tilde{a}, a)=$ $h(v(\alpha, \tilde{a}, a)) \notin h(D)=D(\mathbb{F}(\mathfrak{A}))$, and consequently $\alpha \notin E(\underline{S}, V, \mathfrak{H}(\mathbb{F}(\mathfrak{H})))$.
Corollary 3.1 Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be a $\kappa(V, S)$-simple $C_{R Q}$-matrix such that the union set-theoretical of any chain of $\kappa(V, S)$-complete filters of the algebra \underline{A} is $a \kappa(V, S)$-complete filter. Then $E(\underline{S}, V, \mathbb{F}(\mathfrak{H})) \subseteq E(\underline{S}, V, \mathfrak{H})$.
Proof: If follows from Theorems 3.2 and 3.3.
Theorem 3.4 Let $\mathfrak{A}=\langle\underline{A}, D\rangle$ be a finite $C_{R Q}$-matrix. Then $E(\underline{S}, V, \mathfrak{U})=$ $E\left(\underline{S}, V, \mathfrak{A}\left(\mathbb{F}_{p}(\mathfrak{A})\right)\right)$.
Proof: It follows from Lemma 3.7.

NOTE

1. It should also be mentioned that $R Q$ is incomplete for the standard ternary relation semantics and yet complete for a nonstandard ternary relation semantics, distinguished by a special clause for the quantifier. These results were given by Kit Fine in his unpublished work. The author is greatly indebted to the editor for bringing this fact to his attention.

REFERENCES

[1] Anderson, A. R. and N. D. Belnap, Jr., Entailment, Vol. I, Princeton University Press, Princeton, 1975.
[2] Dunn, J. M., The Algebra of Intensional Logics, Ph.D. Dissertation, University of Pittsburgh, 1966.
[3] Dziobiak, W., and W. J. Blok, "On the lattice of quasivarieties of Sugihara algebras," Studia Logica, vol. 45 (1986), pp. 277-280.
[4] Hawranek, J. and M. Tokarz, "Matrices for predicate logics," Reports on Mathematical Logic, vol. 9 (1977), pp. 27-30.
[5] Maksimova, L. L., "Structures with implication," Algebra i Logika, vol. 12 (1973), pp. 445-467.
[6] Pogorzelski, W. A. and T. Prucnal, "Structural completeness of the first-order predicate calculus," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 315-320.
[7] Pogorzelski, W. A. and T. Prucnal, "The substitution rule for predicate letters in the first-order predicate calculus," Reports on Mathematical Logic, vol. 5 (1975), pp. 77-90.
[8] Routley, R., "Problems and solutions in the semantics of quantified relevant logics I," pp. 305-340 in Mathematical Logic in Latin America, ed., A. I. Arruda, R. Chuaqui and N. C. A. da Costa, North Holland, Amsterdam, 1980.
[9] Routley, R. and R. K. Meyer, "The semantics of entailment," pp. 199-243 in Truth, Syntax and Modality, ed., H. Leblanc, North Holland, Amsterdam, 1973.

Institute of Mathematics

Pedagogical College, Bydgoszcz
85-064 Bydgoszcz, Poland

