208

Notre Dame Journal of Formal Logic
Volume 29, Number 2, Spring 1988

The Lindenbaum Construction and Decidability

STEWART SHAPIRO*

Let L be a set of sentences in a formal language — propositional, predicate,
modal, epistemic, etc.! It is assumed that the syntax of the language is effective
and that it includes the standard sentential connectives. It is also assumed that
the language has a deductive system in which the axioms and rules of inference
are recursively enumerable and all truth-functional tautologies are theorems.

The set L is said to be Post-complete if L is consistent and has no consis-
tent, proper extension. That is, if L is Post-complete then for every sentence &,
either & is in L or the set L U {®} is not consistent.?

Lemma 1 If a recursively enumerable set of sentences is Post-complete, then
it is recursive.

Proof: Let L be recursively enumerable and Post-complete. To determine if a
given sentence @ is in L, simultaneously enumerate L and enumerate the con-
sequences of L U {®}. If ® is in L, then eventually ¢ will appear in the first enu-
meration. If ® is not in L, then, by the Post-completeness of L, a contradiction
will eventually appear in the second enumeration.

The Lindenbaum proof of maximal consistency occurs in several contexts
in mathematical logic (see, for example, [2], pp. 64-65). In virtually all cases,
the technique yields a proof that every consistent set of sentences has a Post-
complete extension. It is often noted that the proof is not constructive. This
amounts to an observation that the proof does not provide an effective method
for enumerating the members of the indicated Post-complete extension, even if
an enumeration procedure is available for the given set of sentences.

The Rosser extension of the Godel incompleteness theorem (see [2], pp.
145-148) indicates that in the case of full predicate logic, there cannot be a gen-
eral constructive proof of the Lindenbaum theorem. Indeed, the Rosser theorem
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indicates that no consistent, recursively enumerable extension of arithmetic is
complete.

The purpose of this note is to consider the circumstances in which the Lin-
denbaum theorem has no constructive proof. First, it is shown that in any lan-
guage and deductive system that satisfies a certain general condition, there is a
consistent, recursively enumerable set of sentences that has no consistent, recur-
sive extension and, thus, by Lemma 1, has no recursively enumerable, Post-
complete extension. Moreover, the condition is met by virtually every standard
formal language. Attention is then turned to sets of sentences which are deduc-
tively closed and recursive. For such sets, in standard systems that do not have
a rule of substitution and satisfy the deduction theorem, the Lindenbaum the-
orem is constructive. That is, in these cases, every consistent, recursive, deduc-
tively closed set of sentences has a recursive, Post-complete extension. A rule
of substitution, however, does make a difference. The final result is that in
propositional modal logic, with a rule of substitution, there is a consistent, recur-
sive, deductively closed set of sentences that has no recursively enumerable, Post-
complete extension.

Let A be a set of sentences. Define the negation of A, written =4, to be
the set { 7®|® € A}. A collection of sentences C is defined to be a set of atoms
if, for any pair A4, B of disjoint subsets of C, the set 4 U - B is consistent. Let
N be the set of natural numbers.

Examples: In a standard propositional or predicate system without a rule of sub-
stitution, the collection of propositional variables is a set of atoms. In a stan-
dard predicate system, let Px be a monadic predicate and {a;|i € N} be a set
of constants. Then {Pag;|i € N} is a set of atoms.

In what follows, it is assumed that the language and deductive system con-
tains an infinite, recursively enumerable set C of atoms. Fix an effective enu-
meration of C (without repetition) — for each natural number n, let ®n be the
nth member of C.

Theorem 1 There is a consistent, recursively enumerable set of sentences that
has no consistent, recursive extension.

Proof: The following is a well-known result in the theory of computability (for
a proof, see [3], pp. 170-171).

Lemma 2 There is a pair P1, P2 of recursively enumerable sets of natural
numbers, such that there is no recursive set which contains P1 and is disjoint
from P2.

Let A1 be {®n|n € P1} and A2 be {®m|m € P2} with P1,P2 as in Lemma 2.
Let L1 be A1 U A2, That is, let L1 be {®n|n € P1} U {~®m|m € P2}. One
may also include the deductive consequences of L1. Since P1 and P2 are dis-
joint, so are A1 and A42. Since C is a set of atoms, L1 is consistent. Since P1
and P2 are both recursively enumerable, so are A1 and —.42. Thus, L1 is recur-
sively enumerable. Suppose, finally, that L1 € L and L is recursive. It follows
that Q = {n|®n € L} is a recursive set of natural numbers. Since L extends A1,
P1 < Q. By Lemma 2, Q cannot be disjoint from P2. So let m € P2 and m €
Q. Since L extends =42, =-®m € L, but since m € Q, dm € L. Thus, L is not
consistent.
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Corollary 1 There is a consistent, recursively enumerable set of sentences that
has no recursively enumerable, Post-complete extension.

We now turn to sets of sentences that are deductively closed and recursive.
Define a language and deductive system to have the deduction property if, for
any set L of sentences and any pair of sentences ®,y, LU {®} Fy iff LI —
¥. Most systems that do not include a rule of substitution have the deduction
property.? Examples include standard propositional logic and predicate logic.

Theorem 2 ([4], pp. 15-16) In a language and deductive system with the
deduction property, any consistent, deductively closed, recursive set of sentences
has a recursive, Post-complete extension.

Proof: The Lindenbaum construction does the trick. Let L be consistent, deduc-
tively closed, and recursive. Fix an effective enumeration of all of the sentences
of the language — for each natural number 7, let Yn be the nth sentence.* Con-
sider the following sequence of sets:

M0=L.

M, .: If yn is consistent with M,,, then M, is the deductive closure of
M, U {yn}. Otherwise, M, ., = M,.

Let M = U{M,|n € N}. The standard Lindenbaum proof indicates that M is
Post-complete. Here it is shown that M is recursive. It suffices to show that the
above procedure is effective, or, in other words, that there is an effective pro-
cedure to determine, for each natural number n, whether yn is consistent with
M,,. Notice, first, that if P is any consistent, deductively closed set of sentences
and ® is any sentence, then ® is consistent with P iff = ® is not in P. Indeed,
if ® is not consistent with P, then P U {®} I =®, so by the deduction property
Pt —®, and thus ~® € P. The converse is trivial. If, in addition, P is recur-
sive, it follows that there is an effective procedure to determine whether a given
sentence is consistent with P. Now, M, is L which, by hypothesis, is recursive.
Suppose that one had a decision procedure for M,. By the sketch just com-
pleted, one could effectively determine whether yn is consistent with M,,. If it
is not, M, = M, and thus the procedure for M, will decide membership in
M, ;. On the other hand, if y# is consistent with M,,, then M,,,, is the deduc-
tive closure of M, U {yn}. But in this case, the deduction property entails that
a given sentence ® is in M, iff yn — & is in M,,. Hence, in either case, one
can effectively decide membership in M, ;, and, thus, whether a given formula
is consistent with it.

Of course, there are some rather simple systems that do not have the deduc-
tion property. The final result is that in at least some such cases, the Linden-
baum theorem is not constructive, even if one begins with a recursive,
deductively closed set.

Define a modal language to be a standard propositional language augmen-
ted with the sentential operator (1. A modal logic is a set of sentences of a modal
language that contains all propositional tautologies and is closed under modus
ponens and substitution.

The following lemmas are useful:
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Lemma 3 Let P be a set of sentences of the modal language. Then a sentence
® is in the smallest modal logic containing P iff there is a finite set Y1, ...,¥p,
of substitution instances of members of P, such that

W &...&Y) > @
is a (propositional) tautology.

Proof: Define a proof (from P) to be substitution-initial if it begins with (zero
or more) members of P and (zero or more) applications of substitution, follow-
ing which only tautologies and applications of modus ponens occur. It is
straightforward, but tedious, to verify that for any sentence ®, if ® is in the
smallest modal logic containing P, then there is a substitution-initial proof of
& from P. Let ¥4,...,V¥, be the members and substitution instances of P that
occur in such a proof. The lemma follows from the observation that the indi-
cated substitution-initial proof can be seen as a proof of ® from {y,,...,¥,}
in ordinary propositional calculus without substitution.

Notice that when the modal language is considered from the point of view
of the propositional calculus, sentences beginning with a [J are regarded as
“atomic”. For example, if ® is a sentence then neither (0% & (10— nor I (®
& —®) are contradictions.

If & is a sentence and # a natural number, then let [17® be the result of
prefixing ® with » [(3’s. The next lemma follows from the last:

Lemma 4 Let p be a propositional variable. Then {(1"*'(p - p)|n € N} is
a set of atoms.

Thus, Theorem 1 applies to the modal language —there is a consistent,
recursively enumerable modal logic that has no recursively enumerable, Post-
complete extension. Here, however, there is more to be said.

Theorem 3 There is a consistent, recursive modal logic which does not have
a recursively enumerable, Post-complete extension.

Proof: Let P1 and P2 be as in Lemma 2. Let B1~ = {O0""!(p > p)|n € P1}
and B2~ = {O"*!(p - p)|n € P2}. Let L2~ be the deductive closure of B1~ U
—B2~. From Lemma 4, L2~ is consistent.

If & is a sentence of the modal language, let #(®) be the number of sym-
bols in ®. Fix procedures for enumerating P1 and P2. For each n € P1, let
D1 (n) be the number of steps required to enumerate P1 until » appears, and for
each m € P2, let p,(m) be the number of steps required to enumerate P2 until
m appears.

Let Bl = {O"*(® —» ®)|n € P1 and p,(n) < #(P)}, and let B2 =
(O"(@ > ®)|m € P2 and p,(m) < #(®)}.

Let L2 be the deductive closure of B1 U =~ B2.

L2 is consistent: L2 is a subset of the consistent set L2™.

L2 is recursive: Notice, first, that B1 is recursive. Indeed, if ¥ is a sentence
in the modal language, to determine whether ¢ is in B1, one need only deter-
mine whether v is of the form (0"*1(® — &) and, if it is, enumerate P1 for
#(®) steps. Similarly, B2 is recursive. Now, let ¢ be an arbitrary sentence. Let
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al,...,as be all the members of B1 that occur in ¢, and let 81,...,08¢ be all
the members of B2 that occur in . It is clear that if

(al &... & as & Bl &...& ~0t) - ¢

is a tautology, then y is in L2. The converse holds as well. Indeed, if ¢ is in L2,
then by Lemma 3 (noting that B1 and — B2 are both closed under substitution),
there is a list y1,...,yu of members of b1 and a list 61, . . .,6v of members of
B2 such that

(v1 &...& yu & =81 &...& —=60) > ¢

is a tautology. Since the members of B1 and B2 all begin with a [J, they may
be regarded as “propositional atoms”. Thus, the latter formula remains a tau-
tology if the conjuncts in the antecedent that correspond to members of B1 and
B2 that do not occur in ¢ are dropped and if other “atoms” are added. Thus,

(al &... & as & =l &...& —f3t) >y

is a tautology. The recursiveness of L2 follows.

L2 has no recursively enumerable, Post-complete extension: Suppose that
L is a recursively enumerable, Post-complete extension of L2. By Lemma 1, L
is recursive. Thus the set Q = {n|[0"*!(p — p) € L} is a recursive set of natu-
ral numbers. Hence, by Lemma 2, either P1 is not a subset of Q, or else Q is
not disjoint from P2. I show that in either case, L is not consistent. (1) Suppose,
first, that P1 is not a subset of Q. Let n be in P1 but not in Q. Then O0"*!(p —
p) is not in L. Hence, by the Post-completeness of L, (0**!(p — p) cannot be
consistently added to L. Thus, L U {0""!(p — p)} entails a contradiction, say
(p & —p). Applying Lemma 3 to L U {(0""!(p — p)}, there is a finite set of
substitution instances (" (a1 = «1),...,0" ! (as — as), of O"*!(p - p) and
(noting that L is closed under substitution) a finite set ®1,...,®¢ of members
of L such that

[®1 &... &t & O N al »al) &...& O (as— as)] = (p & —p)
is a tautology. It follows that
(O al »al) &...& O as > as)] - (p & —p)

is in L. Let 81,...,8s, = be uniform substitution instances of «l,...,as,
(p & —p), respectively, such that p; (n) < #(Bi) for 1 < i < s. Notice that for
each i, ("t (Bi - Bi) is in B1 and, hence, in L2 and L. Thus, by modus
ponens, « is in L, but « is (a substitution instance of) a contradiction. (2) Sup-
pose now that Q and P2 are not disjoint. Then let m € Q and m € P2. Thus,
O™*(p - p) is in L and, for some ®, =07+ (® — &) is in L2, hence in L.
But, by substitution on the former, O0™*!(® — &) is also in L. Thus, L is not
consistent.

It might be noted in closing that there is nothing essentially “modal” in this
example. The central elements in the proof of Theorem 3 are Lemmas 3 and 4.
In particular, the theorem applies to any language and deductive system that
includes a rule of substitution, satisfies Lemma 3, and has a set S of atoms such
that every substitution instance of every member of S is “propositionally
atomic”.
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Moreover, as a modal logic, L2 is rather bizarre. It does not satisfy the
rule of necessitation, ® + (0¥, nor does it contain the K-axiom, O (p — q)
—(Op - Oq). In short, it is a modal logic in name only. However, no more
natural modal logic would suffice. It follows from the result of [1] that any
modal logic (whether recursively enumerable or not) that contains the K-axiom
and is closed under the rule of necessitation is a subset of one of three recur-
sive, Post-complete modal logics. In fact, Makinson’s result applies to any modal
logic closed under the rule ® —»  +F O® - Oy.

NOTES

1. Here, a sentence is a well-formed formula which, if it is in a predicate language, has
no free variables.

2. The phrase “maximally consistent” is perhaps more common than “Post-complete,”
but the former is sometimes defined to entail that if L is maximally consistent and
® is any sentence, then either ® is in L or =& is in L. In some of the systems con-
sidered here, there are Post-complete sets of sentences that do not have this property.

3. It might be added that modal systems that include the rule of necessitation, ® |
0O®, generally do not have the deduction property.

4. This should not be confused with the previous enumeration of the members of a
given set of atoms.
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