198

Notre Dame Journal of Formal Logic
Volume 29, Number 2, Spring 1988

A Note on Arbitrarily Complex
Recursive Functions

CARL H. SMITH*

1 Introduction The first result that one studies in abstract complexity the-
ory is that there are arbitrarily difficult to compute recursive functions. In this
note we prove a best possible generalization of that result. We show that there
are arbitrarily sparse {0,1} valued recursive funcions such that any finite vari-
ant of the constructed function is arbitrarily complex. Other potential strength-
enings are shown to fail. The intricate nature of the main proof is necessitated
only by the existence of pathological complexity measures. For the purpose of
the main result, pathological complexity measures are shown to be ones where
padding cannot be accomplished without significantly altering the complexity
of the program being padded.

Rabin ([20]) first proved, in a machine dependent fashion, that there exist
almost everywhere arbitrarily complex recursive functions with range {0,1}. His
result was generalized to the machine independent case in [2]. Both proofs
employ a nonconstructive element. A completely constructive proof of the exis-
tence of infinitely often arbitrarily complex recursive functions appears in [10].
The relative difficulty of proving functions almost everywhere arbitrarily com-
plex, as opposed to infinitely often arbitrarily complex, is discussed in [8]. The
nonconstructivity of the original Rabin-Blum proof (and other results from
abstract complexity theory) motivated Lipton ([15]) to consider restricted models
of arithmetic where only constructive proof techniques were allowed. This model
was claimed adequate for research in theoretical computer science. However, it
was shown in [11] that it was consistent with the model studied by Lipton to
believe in some obviously false assertions about the complexity of computations,

*Supported, in part, by NSA OCREAE Grant MDA904-85-H-0002 and NSF Grant
MCS 8301536. A preliminary version of this paper was presented at the Workshop on
Logic and Theoretical Computer Science held in Lexington, Kentucky during June of
1985.

Received May 16, 1986, revised November 13, 1986



COMPLEX RECURSIVE FUNCTIONS 199

including the falsity of the result proved below. An excellent survey of results
concerning models of arithmetic for computer science can be found in [12].

The proof below has a nonconstructive step. Indeed, Fulk, verifying a con-
jecture of Case (private communication), proved that any proof of the existence
of {0,1} valued almost everywhere arbitrarily complex recursive functions will
have a nonconstructive component ([7]). In the main proof below, a program
is written, effectively computing some function. The nonconstructive step enters
the argument during the verification that the constructed function has the desired
properties. To derive a contradiction to the existence of a fast finite variant of
the function constructed, it is necessary to noneffectively pick certain points in
the construction when crucial events must have occurred. Other proofs, such as
the speed-up theorem ([2]) and some of the proofs in inductive inference ([4]),
employ the construction of a sequence of programs where the program comput-
ing the desired function is selected necessarily noneffectively from the sequence.
Perhaps it is the latter type of nonconstructive proof objected to in [15].

The in.portance of the range restriction is to emphasize that the constructed
function is not complex because it takes a long time to print the results. The
removal of the restriction to {0,1} valued functions allows for a much simpler
argument than the one given below ([3]). In [17] and [1] it is shown that arbi-
trarily complex functions can be made arbitrarily sparse as well. A program for
the constant zero function will quickly compute such a complex function with
a density of errors that decreases as the complex function becomes more sparse.
Below it is shown that there are arbitrarily sparse {0,1} valued functions such
that any program computing a finite variant of the constructed function is arbi-
trarily complex. Consequently, there are sparse functions which are so complex
that any program computing a close approximation to it must also be arbitrarily
complex. It is shown that other generalizations of the arbitrarily difficult to com-
pute functions result do not hold, making the result below best possible.

In most “reasonable” programming systems with “natural” complexity mea-
sures finite variants of an almost everywhere arbitrarily complex function are
easily seen to be almost everywhere complex. Consider time on a Random Access
Machine ([5]). If a finite variant of an arbitrarily complex function has a fast
program, then that fast program can be patched with a finite table so as to com-
pute the complex function. The patched program (in the RAM model) will have
the same almost everywhere run time characteristics as the original program for
the finite variant, modulo a constant factor required to search the finite table.
Hence, the patched program computes the arbitrarily complex function quickly,
a contradiction.

The only twist in the above argument is that considering a// finite variants
entails arbitrarily large finite patches. As the size of the patch grows, so does
the search time, although not as fast as the size of the patch. The unbounded
constant problem plagues similar proofs for complexity measures based on reus-
able resources, like Turing machine space. Extrapolating the result to other mea-
sures via recursive relatedness adds another factor to reckon with, one that
typically increases complexity.

The “natural” aspect of RAM time exploited in the argument above was
that patching in a finite table of exceptional values does not alter almost every-
where run time behavior very much. Some complexity measures are very sen-



200 CARL H. SMITH

sitive to finite table patching. Since the canonical representations of all the finite
functions can be recursively enumerated ([22]), it is possible to effectively enu-
merate all the finite variants of some (arbitrary) recursive function. With the lat-
ter enumeration in hand, an abstract complexity measure can be defined where
all the programs enumerated have zero complexity. Hence, even if the original
recursive function is very complex all its other finite variants are easy in the con-
cocted measure. The result proved below holds for all acceptable programming
systems and complexity measures. Furthermore, the argument entails none of
the tweaking and twiddling necessary with a measure dependent proof.

One application of the finite table patching technique is to create “padded”
versions of programs. If the table patched into a program does not alter the
function computed by the original program then the patched program is a
slightly larger version of the original. Furthermore, if the patching doesn’t add
any complexity, then the padded version will have approximately the same com-
plexity as the original. In fact, padding can be accomplished without altering
the complexity in several models of computation according to “natural” com-
plexity measures. Examples of such models are given below, where it is shown
that the additional complexity of proving the extended version of the Rabin-
Blum result presented herein is due entirely to the existence of complexity mea-
sures where padding may also increase the complexity of the program.

Perhaps the main contribution of this paper is the isolation of one of the
many pathologies admitted by an axiomatic approach to program complexity.
The only reason the fully general version of the main result below is any harder
than Blum’s original argument is because of the existence of complexity mea-
sures where padding alters the complexity of the program being padded. Since
program padding without altering the complexity is possible in all commonly
agreed upon as natural complexity measures, the difficulty of the argument be-
low is due entirely to the existence of pathological complexity measures. Con-
sequently, this paper is of a technical nature relevant to the historical discussion
of general axioms for program complexity. In this light, we have found an attri-
bute of programming systems and their related complexity measures (the rela-
tionship between padding and program complexity) that makes the proof a
fundamental result more difficult precisely when the particular incarnation of
the attribute is deemed “unnatural”.

2 Notation Let ¢p,9;,... be an arbitrary acceptable programming system
([16]). Throughout, ®,,%,,... denotes an arbitrary abstract complexity mea-
sure on ¢g, ¢ ... ([2]). The quantifiers “¥” and “3” mean “for all but finitely
many” and “for infinitely many”, respectively. f, g, and 4 will denote recursive
functions. f is a finite variant of g (written: f =" g) iff {x|f(x) # g(x)} is
finite. The cardinality of the set of support points of a function f will be denoted
by S(f,n) and is defined to be the cardinality of {x < n|f(x) # 0}. When the
particular fis clear from context, S(f,#n) will be written simply as S(#). A func-
tion f is sparse iff (Ve > 0)(3ng)(Vn = ny) [S(n)/n < €]. Another notion of
sparseness that is easier to use in recursion theoretic diagonalization arguments
is to say that fis g-sparse iff (vx)[f(x) # 0= f(») = 0 for all y’s such that
x<y=<x+ gx)].



COMPLEX RECURSIVE FUNCTIONS 201

3 Results The first result relates the two notions of sparseness defined above.
The following lemma is a slight modification of a result claimed without proof
in [1] and [17].

Lemma 1 If g is such that for all x, g(x) = x and f is g-sparse, then f is
sparse.

Proof: Suppose f and g satisfy the hypothesis. If fis of finite support, then
clearly f'is sparse, so suppose that f has infinitely many support points. Suppose
that f(x) # 0 and S(x) > 1 for some value x. Choose y > x least such that
f(y) # 0. It suffices to show | x/S(x)] < |y/S(»)], as that would imply that for
any n there is a z such that 1/(z/(S(z)) = S(z)/z < 1/n. Since fis g-sparse we
know that y = x + g(x) and S(x) + 1 = S(»¥) = S(x + g(x)). Suppose by way

l J = l J .

then,
5t = 5w =
Sx)| " LS(x)+1]°
Since
xS(x) + x
x S
S(x) " S(x)+1
either
xSf;:))J— X >y )
or
- %ﬁ <S()+ 1. @

Equation (1) implies that x + x/S(x) >y = x + g(x). Hence, x/S(x) > g(x)
so x/S(x) > x, a contradiction. Equation (2) and the choice of y imply x +
g(x) — x + x/S(x) < S(x) + 1. Reducing, we find that x < g(x) < S(x) —
x/S8(x) + 1, so x < S(x) — x/S(x), contradicting the bounding of S(x) by x
from the definition of S.

Now we come to the main result.

Theorem 2 For any recursive functions g and h, with g(x) = x for all x, there
is a {0,1} valued g-sparse recursive function f such that, for any program i, if
o, is a finite variant of f then ®;(x) > h(x), for all but finitely many x.

Proof: Suppose g and h are recursive functions with g(x) = x for all x. By the
Lemma, it suffices to construct a {0,1} valued g-sparse recursive f such that any
finite variant of fis A complex. The construction proceeds by finite extension.
The essential idea is to count the cancellations performed against each program
and use the count to give priority to some potential cancellation ensuring that
all fast programs are diagonalized against infinitely often. The cancellations will



202 CARL H. SMITH

be kept track of via counters. Counter C; is initialized to i/ upon entry into stage
i, thereby giving diagonalization “priority” to programs less than i. At stage s
below, only counters C; with i < s will be in use. For i < s, C{ denotes the value
of counter C; on entry into stage s. At a given stage, the construction may have
to choose one program for cancellation amongst several choices. Program i is
more wanting (of diagonalization) than j at stage s if either Cf < Cf or Cf = C}
and i/ < j. Clearly, at any stage, amongst any finite set of programs, there is a
single most wanting program. f° denotes the finite initial segment of f con-
structed prior to stage s, f° = &, x° denotes the least integer not in the domain
of f%.
Stage s. Initialize C; by setting Cs = s. If ®;(x*) > h(x*) for all i < s then
set f5*! = 5 U {(x%,0)} and go to stage s + 1. Otherwise, choose i the
most wanting of {i|/ < s and ®;(x°) < h(x*)}. Let y = x°. While there
isa z such that y < z=<y + g(y) + 1 and a j more wanting than ; such
that ®;(z) < h(z) set y =z and i =j. Set /5! = fSU {(y,1 = ¢; ()} U
{(z,0)]z#yand x*<z=<y+g(y) +1}. Set C;*' = Cf + 1 and C;*! =
C; for all j < s with j # i and go to stage s + 1.
End stage s.

Once an initial value of i is chosen in stage s, it can only be replaced by a
more wanting program. Since, for any value n, there are only finitely many
counters that ever have value less than n, the initial choice of i can be replaced
only finitely often. Hence, the construction is effective and f'is recursive. Clearly,
f has range {0,1}. By the construction, every time f(z) is set equal to 1 for some
z, f(y) is set equal to O for all y’s such that z <y < g(z) + z + 1. Hence, fis
g-sparse. To complete the proof, suppose by way of contradiction that ¢, =*
fand (?x) [®4(x) = h(x)]. Since every diagonalization against program K is
accompanied by an increment of Cy, the counter Cy is incremented only finitely
often, as otherwise ¢, would not be a finite variant of f. Choose stage s = &
such that (V¢ > s) [Ci = C}]. Choose stage ¢ > s such that (vj < C§) [either
Ci < C/or (Vu>t)[Cf = C}']]. Stage t is the least point in the construction
where all the counters that ever have value = C§ have been incremented to be
greater than Cj} or are never incremented at or past stage . Choose the least x
such that x ¢ domain f* and ®,(x) < h(x). x is guaranteed to exist since there
are, by supposition, infinitely many such x’s. Choose stage u = ¢ such that x is
placed in domain f at stage u. By the choice of ¢, k is the most wanting of any
program ever convergent on any value z not in the domain of f* in less than or
equal to 4 (z) steps. The while loop of stage u will find £ most wanting and set
i = k and increment Cy, contradicting the choice of s.

The above theorem can be seen to be best possible by examining the con-
sequences of relaxing some of the conditions on the desired arbitrarily complex
function f. There can be no recursive {0,1} valued function f, sparse or other-
wise, such that if ¢; = f on infinitely many arguments then ®;(x) > #(x) for
even infinitely many x. To see this, note that for any such f, either Ax[0] or
Ax[1] will equal f infinitely often and both those functions are computable in
constant time in natural measures. However, for any time bound given by a
recursive function 4 one can find a recursive function f such that any program
computing f correctly on infinitely many arguments cannot have complexity



COMPLEX RECURSIVE FUNCTIONS 203

bounded by % almost everywhere. The range of the function f can be restricted,
but not to {0,1}.

Proposition 3 For any recursive function h there is a recursive function f
such that f(x) < x, for all x and for any program i if ¢; = f on infinitely many
arguments then ®; > h on infinitely many arguments.

Proof: Let h be given. Define f(x) to be the least number not in {¢;(x)|i < x
and ®(x) < h(x)}. For any x, f(x) < x by the pigeon hole principle. Suppose
by way of contradiction that program i computes f on infinitely many arguments
and (Vx) [®,(x) < h(x)]. Choose x > i largest such that &;(x) > A(x). Then,
(Vy > x) [f(») # ¢:(x)], a contradiction.

The function f of the previous proposition cannot be made sparse since any
program for Ax[0] computes any sparse function on infinitely many arguments
and there are constant time programs for all constant functions. Similarly, the
range of the f of the previous proposition cannot be restricted to any finite set
since there would then be at least one value appearing infinitely often in the
range of f.

4 Necessity One question that comes to mind is whether or not the construc-
tion of the previous section was actually necessary. Sometimes a more baroque
construction is used to strengthen a result and then, later, the original construc-
tion is shown to be adequate to prove the strengthened result. For example, after
Yates found a maximal T-complete set ([24]), Lachlan (see [19]) showed that
Friedberg’s ([6]) original maximal set was also T-complete. For many complexity
measures, like Turing machine time, the diagonalization against fast programs
also, implicitly, diagonalizes against the finite variants of the fast programs as
well. That is because every program has infinitely many syntactically different,
semantically identical padded versions that have same complexity properties.
These variants are formed by adding useless quintuples to the original Turing
machine. Suppose by way of contradiction that e is a fast program (with respect
to Turing machine time) computing a finite variant of the function defined by
the Blum construction. Let p; be the same as program e with i useless quintu-
ples added. The procedure to diagonalize against fast programs will define a
function differing from ¢,, on argument, say, x;, where all the x;’s are distinct.
Then the function produced will differ from ¢, on infinitely many arguments,
a contradiction. The same argument will hold for any complexity measure that
is not sensitive to superfluous padding.

As it turns out, the abstract version of Rabin’s result given by Blum ([2])
does not always yield a function all of whose finite variants are arbitrarily com-
plex with respect to an arbitrary complexity measure. Since the argument needed
to see this depends on details of the proof, Blum’s proof is reproduced below.

Theorem 4 (Rabin-Blum) For all recursive functions h there is a {0,1} val-
ued recursive function f such that for all programs i, if ¢; = f then ®;(x) =
h(x), for almost all x.

Proof: The desired fis constructed via a cancellation argument in effective stages
of finite extension below. Let 4 be as in the hypothesis.



204 CARL H. SMITH

Stage s. Let i be the least uncanceled program such that i < s and ®;(s) <

h(s). If there is no such i, set f(s) = 0. Otherwise, set f(s) =1 = ¢;(s)

and cancel program i. Go to stage s + 1.

End stage s.

Suppose by way of contradiction that ¢; = f and ®;(x) < h(x) for infi-
nitely many x’s. Choose the least stage s such that s = i, ®;(s) < A(s) and all
the programs j < i that are ever canceled are canceled before stage s. Then, f(s)
will be made # ¢;(s) at stage s, a contradiction.

To complete the argument that the construction of the previous section was
actually necessary, it suffices to exhibit a complexity measure and a fast finite
variant of the function that results from applying the above construction to the
concocted measure. The function f, constructed above, depends on the complex-
ity measure ¢ and the bounding function A. 4 is an arbitrary recursive function
which is fixed for the remainder of this argument. In what follows we will con-
fuse with ® (the complexity measure) an index for a recursive function comput-
ing the predicate guaranteed to exist by the axioms for complexity measures.
With this slight abuse of notation we have that ¢4 (i,x,y) = 1 iff ,(x) = y. Let
o (®) be the program sketched above which computes the function f constructed
above when & is used as the complexity measure. a(®) can be effectively
obtained from indices for ¢ and A.

Next, a transformation on complexity measures is defined. Let Z(®,e)
denote the measure that is identical with the measure ® except that program e
has complexity zero everywhere:

1, ife=iandy =0;
bz (a,0) (5, X,Y) = 10, ife=iandy > 0;
¢<1>(i,X,y), lfe * i.

If ¢, is a recursive function, then Z(®,e) is also a complexity measure. In
any event the index Z(®, e) can be effectively calculated from indices for ¢ and
e. ¢z (s, is always a recursive {0,1} valued function. If Z(®,e) is not a com-
plexity measure, then program «(Z(®,e)) may not compute a recursive func-
tion since, for some i and s, it may happen that Z(®, e);(s) < h(s) when ¢;(s)
is undefined. Next, the appropriate finite variant is defined. By the recursion
theorem ([13]) there is a program e such that:

6.(x) 0, ife<x=<2e;
X) =
¢ Do (z(3,e) (X), otherwise.

Referring to the proof of Theorem 4, consider the program o (Z(®,e)).
Program e is not tested before stage e, s0 ¢4 (z(a,e)) (X) = by (e) (x) for all x <
e. Program e will be considered for cancellation starting with stage e. Clearly,
Z(®,e).(x) =0 < h(x) for all x. Since there are only e programs with higher
cancellation priority than e, program e will be canceled no later than stage 2e.
After stage 2e, program e will never be considered for cancellation and the pro-
gram Z(®,e) will behave precisely like the program ® on all argument values
used by program o (Z (%, e)). Consequently, ¢, (z(a,e) is a recursive function.
Hence, ¢, is also recursive and Z(®,e) is a complexity measure.



COMPLEX RECURSIVE FUNCTIONS 205

a(z(,¢) 1S an almost everywhere h-complex recursive function with
respect to the complexity measure Z(®,e). ¢, is a recursive finite variant of
ba(z(s,e) by construction. Furthermore, ¢, has complexity 0 everywhere ac-
cording to the measure Z(®,e). It is interesting to note that if padding can
be accomplished without altering complexity according to the measure ®, then
according to the measure Z(®,e), every program, except e, can be padded with-
out changing its complexity.

5 Conclusions It was shown above that there are arbitrarily sparse {0,1} val-
ued recursive functions f such that any program computing a finite variant of
fis arbitrarily complex. A most general notion of sparseness was used. There
is no {0,1} valued recursive function f such that any function g with {x|f(x) =
g(x)} infinite is arbitrarily complex. Consequently, the generalization of Rabin’s
result proved above is the strongest possible. Our result was shown, in a sense,
not to be a consequence of the original Rabin-Blum construction. By way of
contrast, Case (private communication) has shown how to obtain, from a recur-
sive function A, for an arbitrary complexity measure, another recursive function
H such that if fis a recursive function that is almost everywhere H complex, then
f and all its finite variants will be almost everywhere 4 complex.

The main construction above was noted to be unnecessary for complexity
measures like Turing machine time. In fact, a new construction to diagonalize
against fast finite variants is unnecessary for any complexity measure where pad-
ding can be achieved without altering the complexity of the program. This seems
to be the case for many “natural” measures like time or space for Turing
machines or Random Access machines. Padding without increased complexity
is also possible in the copy measure for data flow which seems to be different
from both time and space ([18]). Riccardi evidenced the fundamental nature of
padding with respect to computation when he showed that padding in conjunc-
tion with a suitable form of recursion (as used above) could be used instead of
composition (or s{) in the axiomatization of acceptable programming systems
([21]). Riccardi’s result was strengthened by Royer ([23]). Perhaps padding with-
out increased complexity is one of the properties needed to formalize the notion
of “nf\tural” complexity measures sought after by several authors ([9], [14],
[25]).

NOTE

1. The existence of functions so complex that all of their finite variants are also com-
plex was first conjectured by J. Case. This document was enhanced as a consequence
of continued conversations with J. Case. A. Nerode was the first to ask if Blum’s
construction was sufficient to obtain the main result above. J. Owings pointed out
some errors in earlier versions of this paper and made other valuable comments.
W. L. Gasarch pointed out the T-complete maximal set example. The referee made
several comments that resulted in an improved exposition. Financial support came
from NSF (MCS 8301536) and NSA (MDA904-85-H-002). Computer time was pro-
vided by the Department of Computer Science at the University of Maryland.



206 CARL H. SMITH
REFERENCES

[1] Adleman, L. and M. Blum, Inductive Inference and Unsolvability, Department of
Electrical Engineering and Computer Science and the Electronics Research Lab-
oratory, University of California, Berkeley, 1975.

[2] Blum, M., “A machine-independent theory of the complexity of recursive func-
tions,” Journal of the Association for Computing Machinery, vol. 14 (1967), pp.
322-336.

[3] van Emde Boas, P., Abstract Resource-Bound Classes, Ph.D. Dissertation, Uni-
versity of Amsterdam, 1974.

[4] Case, J. and C. Smith, “Comparison of identification criteria for machine induc-
tive inference,” Theoretical Computer Science, vol. 25 (1983), pp. 193-220.

[5] Elgot, C. C. and A. Robinson, “Random-access stored-program machines, an
approach to programming languages,” Journal of the Association for Computing
Machinery, vol. 11 (1964), pp. 365-399.

[6] Friedberg, R., “Three theorems on recursive enumeration,” The Journal of Sym-
bolic Logic, vol. 23 (1958), pp. 309-316.

[7]1 Fulk, M., “A note on a.e. h-complex functions,” Journal of Computer and Sys-
tems Science, to appear..

[8] Gill, J. and M. Blum, “On almost everywhere complex recursive functions,” Jour-
nal of the Association for Computing Machinery, vol. 21 (1974), pp. 425-436.

[9]1 Hartmanis, J., “On the problem of finding natural complexity measures,” pp.
95-103 in Proceedings of the Symposium on Mathematical Foundations of Com-
puter Science, Bratislava, Czechoslovakia, 1973.

[10] Hartmanis, J. and R. E. Stearns, “On the computational complexity of algo-
rithms,” Transactions of the American Mathematical Society, vol. 117 (1965), pp.
285-306.

[11] Joseph, D. and P. Young, “Independence results in computer science?” Journal
of Computer and Systems Science, vol. 23 (1981), pp. 205-222.

[12] Joseph, D. and P. Young, “A survey of some recent results on computational com-
plexity in weak theories of arithmetic,” Annales Societatis Mathematicai Polonae,
vol. 8 (1985), pp. 103-121.

[13] Kleene, S., “On notation for ordinal numbers,” The Journal of Symbolic Logic,
vol. 3 (1938), pp. 150-155.

[14] Landweber, L. and E. Robertson, “Recursive properties of abstract complexity
classes,” Journal of the Association for Computing Machinery, vol. 19 (1972), pp.
293-308.

[15] Lipton, R., “Model theoretic aspects of computational complexity,” pp. 193-200
in Proceedings of the 19th Symposium on Foundations of Computer Science, Ann
Arbor, Michigan, 1978.

[16] Machtey, M. and P. Young, An Introduction to the General Theory of Algo-
rithms, North-Holland, New York, 1978.



COMPLEX RECURSIVE FUNCTIONS 207

[17] Meyer, A. and E. McCreight, “Computational complex and pseudo-random zero-
one valued functions,” pp. 19-42 in Theory of Machines and Computations, ed.,
Z. Kohavi and A. Paz, Academic Press, New York, 1971.

[18] Motteler, H. and C. Smith, “Complexity measures for data flow models,” Inter-
national Journal of Computer and Information Sciences, vol. 14 (1985), pp.
107-122.

[19] Odifreddi, P., “Strong reducibilities,” Bulletin of the American Mathematical Soci-
ety, vol. 4 (1981), pp. 37-86.

[20] Rabin, M., “Degree of difficulty of computing a function,” Hebrew University
Technical Report 2, 1960.

[21] Riccardi, G., “The independence of control structures in abstract programming sys-
tems,” Journal of Computer and Systems Sciences, vol. 22 (1981), pp. 107-143.

[22] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability,
McGraw Hill, New York, 1967.

[23] Royer, J., A Connotational Theory of Program Structure, Lecture Notes in Com-
puter Science 273, Springer-Verlag, New York, 1987.

[24] Yates, C. E. M., “Three theorems on the degree of recursively enumerable sets,”
Duke Mathematics Journal, vol. 32 (1965), pp. 461-468.

[25] Young, P., “A note on ‘axioms’ for computational complexity and computation
of finite,” Information and Control, vol. 19 (1971), pp. 377-386.

Department of Computer Science
and

Institute for Advanced Computer Studies
The University of Maryland
College Park, Maryland 20742





