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1 ‘Turing’s machines are humans who calculate’ The title of this paper sug-
gests two highly contentious claims: first, that Wittgenstein was aware of the
developments in recursion theory that took place during the 1930s, and second,
that he disputed the version of Church’s Thesis (hereafter CT) which Turing
had presented in ‘On Computable Numbers’ [36]. It will be best to concede at
the outset that both themes represent something of a critical liberty; or rather,
a corollary. For the subject of this paper is really Wittgenstein’s attack on the
mechanist terms in which Turing had interpreted his computability results. But
one of the central points that Turing was to make in his 1947 ‘Lecture to the
London Mathematical Society’ was that the Mechanist Thesis is not just licensed
but is in fact entailed by his 1936 development of CT [39]. Wittgenstein’s argu-
ment thus demands careful scrutiny of both the relation of Turing’s argument
to CT and the cognitivist implications that have been read into CT as a result
of Turing’s influence.

Before we consider these matters, however, we must first satisfy ourselves
that Wittgenstein was indeed intent on repudiating Turing’s computability thesis.
For it has long been a source of frustration to Wittgenstein scholars that no overt
mention of this issue is found in Lectures on the Foundations of Mathematics:
Cambridge 1939 [48]. Indeed, until recently it might have been thought that the
title of this paper makes the still further unwarranted assumption that Wittgen-
stein was even aware of ‘On Computable Numbers’. Any such doubts were laid
to rest by the discovery of an off-print of the essay in Wittgenstein’s Nachlass,
and even more important, the following mystifying reference to Turing machines
occurs in Remarks on the Philosophy of Psychology:

Turing’s ‘Machines’. These machines are Aumans who calculate. And one
might express what he says also in the form of games. And the interesting
games would be such as brought one via certain rules to nonsensical instruc-
tions. I am thinking of games like the “racing game”. One has received the
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order “Go on in the same way” when this makes no sense, say because one
has got into a circle. For any order makes sense only in certain positions.
([52], §1096)

The latter half of this passage is clear enough: Wittgenstein is saying that Tur-
ing’s Halting Problem is no more significant than any other paradox in the phi-
losophy of mathematics.! The confusing part is the opening sentence. On first
reading this sounds hopelessly obscure: a clear demonstration of Wittgenstein’s
failure to grasp the significance of Turing’s thesis vis-a-vis recursion theory. Yet
another way of describing the goal of this paper, therefore, will be to see if any
sense can be made of this curious remark.

To see what Wittgenstein was driving at here we have to work our way
through a prolonged discussion on the nature of calculation in Remarks on the
Foundations of Mathematics [49].% But before we look at this it will be salutary
to fill in some of the background to Wittgenstein’s thought. In a widely quoted
passage from The Blue Book Wittgenstein had told his students:

the problem here arises which could be expressed by the question: “Is it pos-
sible for a machine to think?” (whether the action of this machine can be
described and predicted by the laws of physics or, possibly, only by laws of
a different kind applying to the behaviour of organisms). And the trouble
which is expressed in this question is not really that we don’t yet know a
machine which could do the job. The question is not analogous to that which
someone might have asked a hundred years ago: “Can a machine liquefy a
gas?” The trouble is rather that the sentence, “A machine thinks (perceives,
wishes)” seems somehow nonsensical. It is as though we had asked “Has the
number 3 a colour?” ([44], p. 47)

Turing would probably have read The Blue and Brown Books, and he would
almost certainly have been aware of Wittgenstein’s opposition to the Mechanist
Thesis. And even though Wittgenstein presents this as a rhetorical question Tur-
ing might have interpreted it as an open invitation, which the Turing Test was
intended to answer. Wittgenstein’s last point (a veiled allusion to Frege) is, of
course, that unlike the empirical question of whether a machine could liquefy
a gas the question whether a machine thinks is unanswerable because it is log-
ically absurd in much the same manner as whether 3 is coloured; i.e., both are
conceptually ill-formed because they transgress rules of logical grammar. But
Turing might well have regarded this as a request for the criteria whereby one
would respond to each question. If there are no means to ascertain whether or
not 3 has a colour it might well be accepted as absurd (viz., a type-violation such
as Turing was later to explore), but the point of the Turing Test is to argue that
there is no a priori reason why we should not apply the same criteria to machines
as to humans; hence the former can indeed be seen as a bona fide empirical
question.

The point that tends to get lost in the ensuing debate between Wittgenstein
and Turing supporters on the logico-grammatical status of the question ‘Can a
machine think?’ is the most surprising of all: namely the date at which the above
passage was written. This was in 1933: nearly ten years before Turing began to
think seriously about the Mechanist Thesis. Close to the same time Wittgenstein
wrote in Philosophical Grammar:
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If one thinks of thought as something specifically human and organic, one
is inclined to ask “could there be a prosthetic apparatus for thinking, an
inorganic substitute for thought?” But if thinking consists only in writing or
speaking, why shouldn’t a machine do it? “Yes, but the machine doesn’t
know anything.” Certainly it is senseless to talk of a prosthetic substitute for
seeing and hearing. We do talk of artificial feet, but not of artificial pains
in the foot.

“But could a machine think?” —Could it be in pain? — Here the impor-
tant thing is what one means by something being in pain. ([47], p. 105)

That is, by parity of reasoning, ‘the important thing is to clarify what one means
by “thought”’. Here is yet further evidence (already familiar from the writings
of Curry and Post) of the extent to which the Mechanist Thesis was in the air
at least a decade before Turing began serious work on it. From Wittgenstein’s
point of view, ‘On Computable Numbers’ thus took on the aspect of a hybrid
paper: an attempt to integrate what should be regarded as independent issues
in mathematical logic and the philosophy of mind. And it was precisely Turing’s
bridging argument which concerned Wittgenstein.

This might make it seem all that much more surprising that Wittgenstein
and Turing never touched on the Mechanist Thesis in Lectures on the Founda-
tions of Mathematics. But there are two important points to be drawn from all
this; first, that Lectures on the Foundations of Mathematics is exactly that and
second, that even when he attacked Turing’s version of CT Wittgenstein did not
tie this in to the Mechanist Thesis. What Wittgenstein addressed in Remarks on
the Foundations of Mathematics was solely that part of ‘On Computable Num-
bers’ which inspired the assumption that the latter is entailed by the former. That
is, Wittgenstein’s critique was solely concerned with Turing’s prose interpreta-
tion of his computability thesis: i.e., with the philosophical argument presented
in ‘On Computable Numbers’.

This last point is crucial to understanding Wittgenstein’s argument. Tur-
ing discusses the nature of Turing machines (‘computing machines’) at two dif-
ferent places: §§1-2 and §9 of [36]. In the first instance he defines the terms of
his argument; in the second he takes up his promise to defend these defini-
tions.> Thus in his justification Turing naturally shifts from mathematics to
philosophy as he seeks to elucidate the epistemological basis of his argument;
and in so doing he introduces an empirical theme which constitutes the focus
of Wittgenstein’s remarks. In essence, Wittgenstein’s objection was that the
mathematical and philosophical strands in ‘On Computable Numbers’ are not
just independent but, more importantly, that the latter misrepresents the math-
ematical element. The remark that ‘Turing’s machines are Aumans who calcu-
late’ is only concerned with the prose presented at §9, but its corollary is that
we must go back and reinterpret Turing’s mathematical achievement in such a
way as to avoid Turing’s philosophical confusion.

Turing introduces Turing machines in §§1 and 2 with the following argu-
ment:

We may compare a man in the process of computing a real number to a ma-
chine which is only capable of a finite number of conditions q;, q,,. . .,dr
which will be called “m-configurations”. The machine is supplied with a
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“tape” . . . running through it, and divided into sections . . . each capable
of bearing a “symbol”. At any moment there is just one square, say the r-th,
bearing the symbol G(r) which is “in the machine”. We may call this square
the “scanned symbol”. The “scanned symbol” is the only one of which the
machine is, so to speak, “directly aware”. [36], p. 117

This reiterated warning of the anomaly —‘so to speak’ and inverted commas
around ‘directly aware’—is the premise which Turing felt constraineu to jus-
tify.* When read as a strictly mathematical affair, §§1 and 2 operate as an ab-
stract outline for how to construct a machine that could be used to execute
calculations, with no reason to present the argument in terms of the various cog-
nitive terms with their attendant qualifications. The thesis reads as follows: sup-
pose it were possible to transform a recursive function into, e.g., binary terms.
It would then be possible to construct a machine that could be used to compute
analogues of those functions if it used some system that could encode those ‘0s’
and ‘1s’. This still leaves out considerable detail about how the machine works,
but that itself is part of the significance of the paper. On this picture both the
function (the table of instructions) and the argument (the tape input) must first
be encoded in binary terms and then converted into some mechanical analogue
of a binary system. Turing speaks of the machine scanning a symbol but that
is entirely irrelevant to the argument; how the binary input is actually structured
and how the program/tape interact is not at issue. For Turing was presenting
here, not the mechanical blueprints for a primitive computer but rather, a logical
design which only five years later he sought to concretize using electrical signals
to represent the binary code. And he did this with a version of CT which dem-
onstrated that:

All effective number-theoretic functions (viz. algorithms) can be encoded in
binary terms, and these binary-encoded functions are Turing machine com-
putable.

The argument which Turing defends at §9 is not this, however, but rather the
original premise that ‘We may compare a man in the process of computing a real
number to a machine which is only capable of a finite number of conditions q;,
da, - ..,qr Which will be called “m-configurations”.” He begins by describing
some of the conditions which govern human computing. The crucial part of his
argument is that:

The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his “state of mind” at that moment. . . . Let us
imagine the operations performed by the computer to be split up into “simple
operations” which are so elementary that it is not easy to imagine them fur-
ther divided. Every such operation consists of some change of the physical
system consisting of the computer and his tape. We know the state of the
system if we know the sequence of symbols on the tape, which of these are
observed by the computer . . . and the state of mind of the computer. . . .
The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) Changes of one of the squares observed to another square within L
squares of one of the previously observed squares. . . .
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The operation actually performed is determined . . . by the state of mind of
the computer and the observed symbols. In particular, they determine the
state of mind of the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an “m-configuration” of the
machine. . . . ([36], pp. 136-137)

This argument raises what is perhaps the most intriguing question a propos Witt-
genstein’s objection that “Turing’s machines are really Aumans who calculate’;
for this looks like the exact opposite: viz., that Turing has actually defined
human calculation in mechanical terms so as to license the application of quasi-
cognitive terms to the operation of his machines. Why, then, did Wittgenstein
not make the converse point that ‘Turing’s humans are really machines that cal-
culate’? The answer to this lies in an investigation into the nature of calculation
in book V of Remarks on the Foundations of Mathematics.

It is important to bear in mind when reading this material that at the time
when this was written (1942-1943) ‘computer’ signified ‘calculating machine’.’
Thus when he referred to a ‘calculating machine’ what Wittgenstein had in mind
was most likely a Turing machine, and the following passage can be seen as a
direct response to Turing’s argument at §9. Wittgenstein asks:

Does a calculating machine calculate?

Imagine that a calculating machine had come into existence by acci-
dent; now someone accidentally presses its knobs (or an animal walks over
it) and it calculates the product 25 x 20.

I want to say: it is essential to mathematics that its signs are also
employed in mufti.

It is the use outside mathematics, and so the meaning of the signs, that
makes the sign-game into mathematics.

Just as it is not logical inference either, for me to make a change from
one formation to another (say from one arrangement of chairs to another)
if these arrangements have not a linguistic function apart from this transfor-
mation. ([49] V, §2)

Perhaps the most difficult aspect of this section is simply knowing how the var-
ious points are supposed to link up with one another. Certainly one can appreci-
ate how, if read out of context, this passage would appear to be hopelessly out
of step with recursion theory, for Wittgenstein seems to be denying the one part
of Turing’s argument that no one has ever questioned: the idea that recursive
functions are mechanically calculable.

The point that Wittgenstein was driving at here is entirely concerned with
the logical grammar of calculation vis-a-vis that of Turing machines. What he
was trying to bring out is that the mathematical concept of calculation—as
opposed to the empirical concept of counting —cannot be separated from its
essential normativity. This becomes clear two passages later when he asks us to

Imagine that calculating machines occurred in nature, but that people
could not pierce their cases. And now suppose that these people use these
appliances, say as we use calculation, though of that they know nothing.
Thus e.g. they make predictions with the aid of calculating machines, but for
them manipulating these queer objects is experimenting.
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These people lack concepts which we have; but what takes their place?

Think of the mechanism whose movement we saw as a geometrical
(kinematic) proof: clearly it would not normally be said of someone turning
the wheel that he was proving something. Isn’t it the same with someone who
makes and changes arrangements of signs as [an experiment]; even when
what he produces could be seen as a proof? ([49] V, §4)

The normativity of mathematics could justly be said to be the main subject of
Lectures on the Foundations of Mathematics [48] and Remarks on the Foun-
dations of Mathematics [49]. This theme is best summed up by Wittgenstein’s
insistence that ‘A proof leads me to say: this must be like this’ ([48] III, §30).
The point of a mathematical proof is that it carves out rules of mathematical
grammar. ‘Let us remember that in mathematics we are convinced of grammat-
ical propositions; so the expression, the result, of our being convinced is that
we accept a rule’ ([49] 111, §27). That is, the role of a proof is to forge the inter-
nal relations which constitute the use of a mathematical proposition as a rule
of grammar: ‘For the proof is part of the grammar of the proposition!’ ([47],
p. 370). ‘The proof changes the grammar of our language, changes our concepts.
It makes new connexions and it creates the concept of these connexions’ ([48]
II1, §31, and see [33], Chap. III).

In Book V of Remarks on the Foundations of Mathematics Wittgenstein
turned this argument directly onto Turing machines. In what follows Wittgen-
stein draws attention to how the essential normativity of mathematics underpins
the notion of calculation. In the long discussion on rule-following in Book V1
Wittgenstein continually reverts to the example of calculation in order to ask the
question: under what circumstances can I say of myself, an isolated individual,
another culture, etc. that I/they are calculating/following a rule? Wittgenstein’s
response is to take us through a careful examination of the network of concepts
which constitute the normativity of rule-following. The arguments are too
lengthy to go into here (see [2]); for our purposes the following passages suf-
fice to give some idea of the core of his thought:

There might be a cave-man who produced regular sequences of marks
for himself. He amused himself, e.g., by drawing on the wall of the cave:
or
But he is not following the general expression of a rule. And when we say

that he acts in a regular way that is not because we can form such an expres-
sion. ([49] VI, §41)

That is, the fact that we could construct a rule to describe the regularity of his
behaviour does not entail that he was following that rule. The question is: under
what circumstances could we say that he was following a rule?

Let us consider very simple rules. Let the expression be a figure, say this one:
[--]

and one follows the rule by drawing a straight sequence of such figures (per-

haps as an ornament).

I IIE
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Under what circumstances should we say: someone gives a rule by writing
down such a figure? Under what circumstances: someone is following this
rule when he draws that sequence? It is difficult to describe this.

The crucial point in what follows is that the answer to this question has noth-
ing whatsoever to do with any putative ‘mental events’ which might accompany
such regular behaviour.

If one of a pair of chimpanzees once scratched the figure |--| in the earth
and thereupon the other the series |--||--| etc., the first would not have
given a rule nor would the other be following it, whatever else went on at the
same time in the mind of the two of them.

If however there were observed, e.g., the phenomenon of a kind of
instruction, of shewing how and of imitation, of lucky and misfiring at-
tempts, or reward and punishment and the like; if at length the one who
had been so trained put figures which he had never seen before one after
another in sequence as in the first example, then we should probably say that
the one chimpanzee was writing rules down, and the other was following
them. ({49] VI, §42)

In other words, while the concept of rule-following is internally related to that
of regularity it does not reduce to mere regularity. In order to constitute rule-
following the behaviour must be seen to be normative. To say of an agent that
he/she/it is following a rule, then he/she/it must exhibit the ability to, e.g.,
instruct, explain, correct, or justify his/her/its behaviour by reference to the
expression of the rule.

The gravamen of Wittgenstein’s remarks on Turing’s thesis remains exactly
the same: viz., that calculation is embedded in this cluster of normative concepts,
which do not obtain in the case of Turing machines. The point is that only com-
ing up with the ‘correct results’ is not a sufficient condition to say of some-
one/thing that he/she/it is calculating. But at this stage the obvious objection
to Wittgenstein’s argument is that this is precisely the point which is meant to
be covered by the Turing test. On Turing’s account all that matters is that the
monkeys satisfy the complex behavioural criteria which govern our use of the
concept of calculation vis-a-vis human computers. What it is that causes them
(or for that matter, ourselves) to accomplish this is not the issue that matters;
only that the resulting behaviour satisfies the same criteria we demand of our-
selves. Hence, by parity of reasoning, provided a machine could be made to
satisfy those criteria it would be no less irrelevant how it achieved this. We need
not know whether or not it is empirically possible to build a machine that could
satisfy such criteria; all that matters is that there is no reason why such a con-
tingency should be ruled a priori impossible.

Whatever one might feel about this argument in light of some of the more
exotic ‘machines’ proposed by philosophers to substantiate it, the crucial issue
as far as Wittgenstein’s attack on Turing’s thesis is concerned is that it over-
looks a fundamental shift from the monkey to the Turing machine example.
And it does so because it arises from a picture which distinguishes between
observed behaviour (giving correct answers) and the unobserved ‘events’ which
cause the former to occur (the ‘mental states’ of human or animal calculation
and the physical states of the Turing machine). The argument presented at §9
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assumes that the answer to the question ‘How did x arrive at the correct answer?’
consists in a specification of these ‘mental/physical states’. The problem with
this premise which Wittgenstein seized on has nothing to do with the crudity of
the actual theory of either state which Turing developed. Rather, it is the point
emphasized in Book VII, §42 of Remarks on the Foundations of Mathematics
(quoted above) that whether or not the chimpanzees are following a rule has
nothing to do with what went on in their minds. Hence the answer to the ques-
tion ‘How did x arrive at the answer?’ is a question about the rules that were
used. It is an agent’s ability to manifest or explain the rules he/she/it is following
which govern our description of him/her/it as calculating. But the answer to the
question ‘How did the Turing machine arrive at the result?’ is indeed satisfied
by Turing’s account of the mechanics of the system in §§1-2 (together with an
account of some particular program in §§3f). This is by no means the crux of
Wittgenstein’s objection, however; for Turing’s answer to this point was that it
is precisely because of the machine’s ability to follow the subrules of the pro-
gram that he was able to build up his picture of mechanical-calculation. And
if the monkeys’ ability to calculate depends on their ability to follow simple rules
why should the picture be any different for the case of Turing machines?

To this idea Wittgenstein had objected (in a passage which clearly harks
back to Lecture XX of Lectures on the Foundations of Mathematics):

“This calculus is purely mechanical; a machine could carry it out.” What sort
of machine? One constructed of the usual materials—or a super-machine?
Are you not confusing the hardness of a rule with the hardness of a mate-
rial? ([49] 111, §87)

But it is not at all clear how such a charge could be levelled at Turing. For Tur-
ing’s point was that to say ‘This calculus is purely mechanical’ means that the
rules of calculation have been broken into a series of meaningless subrules each
of which is devoid of cognitive content and for that reason are such that ‘a
machine could carry it out’. Here, finally, is the level of the argument at which
we can begin to see why Wittgenstein had insisted that ‘Turing’s machines are
really humans who calculate’: a theme which significantly is picked up —purged
of any explicit reference to Turing —at [49] IV, §20: ‘If calculating looks to us
like the action of a machine, it is the human being doing the calculation that is
the machine’.

From the foregoing we know that Wittgenstein was not sanctioning here
the picture of ‘human calculation’ Turing offered in ‘On Computable Numbers’.
But to see what he was after we have to consider the notion of algorithms — of
effective calculation — which Turing had inherited from Hilbert, and which was
indirectly responsible for the arguments contained not just in §9, but in the
post-1941 mechanist development of Turing’s thought on the basis of that The-
sis. For Turing felt, not just that the Mechanist Thesis was entailed by his anal-
ysis of computability, but that the latter was itself the inexorable consequence
of Hilbert’s approach to the Entscheidungsproblem [39,40]. The whole force of
‘On Computable Numbers’ derived from the fact that it was seen as the culmi-
nation of those very themes which had originally sparked off the development
of recursion theory. Whether or not Turing had succeeded in clarifying the
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nature of effective procedures, this much at least was agreed: that Turing had
succeeded in explicating the notion of computability in terms of mechanical pro-
cedures. It is to the framework of Turing’s thought that we must look, there-
fore, if we are to grasp the thrust of Wittgenstein’s remarks.

2 Church’s convention It was stressed in the preceding section that Wittgen-
stein viewed the epistemological element suffusing ‘On Computable Numbers’
as not just independent from but, more importantly, as a distortion of its math-
ematical content. Indeed, it was imperative that Wittgenstein see Turing’s argu-
ment in these terms; otherwise he could not —in light of his insistence that the
philosopher has no business meddling in the internal affairs of the mathema-
tician — have justified his own involvement with Turing’s Thesis. The most basic
principles of his approach to the philosophy of mathematics demanded that the
epistemological thread in Turing’s argument be severed from the mathemati-
cal (see [33], Chap. I and V). To sustain this position demands, however, a far
deeper involvement in the conceptual foundations of Turing’s thought than has
so far been explored, for the key to the almost immediate success of Turing’s
thesis lay in the themes which preceded it. Hilbert’s original attempt to reduce
transfinitary mathematical truths to finitary was but a reflection of his basic
epistemological premise that the human mind is bound by its finite limitations:
an idea which naturally governed his approach to the Entscheidungsproblem.
This is manifested in his twin demands that the processes employed in any com-
putation must be fixed in advance and that every computation terminate in a
finite number of steps (see [43], pp. 75-76, 176). How, then, can one ignore the
epistemological basis of subsequent efforts to provide a rigorous analysis of
effective procedures?

In a sense, however, this would appear to be precisely what Church
attempted. Insofar as one can judge from the terms in which he formally pre-
sented his thesis,® Church’s interests were exclusively function-theoretic. From
Kleene and Rosser’s histories of the development of Church’s thought (see [21]
and [29]) we know that in his early work on the lambda-calculus (around 1930)
Church’s goal was to construct analogues of the integers and the algorithms that
can be performed on them using lambda-functions. By 1932 he had clarified that
lambda-definable functions must be effectively (i.e., algorithmically) calcula-
ble.”! In 1933 he began to speculate that the opposite might also hold: viz., that
the lambda-definable functions are a// the effectively calculable functions. In his
first announcement of the thesis (in 1935) he suggested that every effectively cal-
culable function is lambda-definable. Following Kleene’s demonstration of the
equivalence of lambda-definability and recursiveness Church shifted the empha-
sis onto the latter. Most significantly of all, he presented his 1936 version of the
argument as a definition, not a conjecture:

We now define the notion . . . of an effectively calculable function of posi-
tive integers by identifying it with the notion of a recursive function of posi-
tive integers (or of a lambda-definable function of positive integers). This
definition is thought to be justified by the considerations which follow, so
far as positive justification can ever be obtained for the selection of a for-
mal definition to correspond to an intuitive notion. ([6], p. 100)
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What follows is somewhat confusing, however, for his justification is that
there is no known recursive function on the positive integers for which there is
not an algorithm to calculate its values, and conversely, that there is no known
example of a function for which we possess an algorithm that is not recursive.
The problem with this argument is that, strictly speaking, these are reasons for
regarding CT as a valid conjecture: not a constructive definition. The kind of
justification appropriate for the latter would be one which drew attention to the
consequences of adopting such a definition; not reasons for accepting its ‘truth’.
Indeed, Church’s format forces us to conclude, not that it is unlikely, but rather,
that it is logically impossible to discover a function on the primitive integers for
which there is an algorithm but which is not recursive; any suggestion to the con-
trary must on these terms be regarded, not as (contingently) false but rather, as
meaningless. But if this was indeed his intention then it was misleading to speak
of the thesis as a definition: for this suggests an element of synonymity which
is foreign to Church’s design.® Rather than pursuing an axiomatic definition of
effective calculability Church had, in fact, presented CT as a basic axiom of
recursion theory. For as has frequently been observed, Church’s argument can
best be seen in conventionalist terms, where the inference from ‘¢ is effectively
calculable’ to ‘¢ is recursive’ is stipulated, and Church’s justification can best
be understood as a partial attempt to defend this piece of conceptual legislation
on the (negative) grounds that the possibility of encountering anomalies seems
remote.’

The important point to bear in mind in all this is that Church’s proposed
‘definition’ was of ‘effectively calculable function on the positive integers’. Far
from representing an attempt to analyse a problematic epistemological concept
Church’s sole intention was to delimit the range of number-theoretic functions
for which there are algorithms (cf. [21], p. 48). That is, Church sought to employ
the notion of recursiveness as the criterion for what should henceforward be
deemed ‘effectively calculable functions’; should a novel method lead outside the
class of general recursive functions ‘the new function obtained cannot be con-
sidered as effectively defined ([19], p. 320). And the crux of Wittgenstein’s
remarks on Turing’s thesis turns on a clear understanding of the logical status
of this cannot. To paraphrase what Wittgenstein says in a related context: ‘Here
the word “cannot” means logical impossibility whose expression is not a propo-
sition but a rule of syntax. (A rule delimits the form of description)’ ([50], p.
241). For

So much is clear: when someone says: “If you follow the rule, it must
be like this”, he has not any clear concept of what experience would corre-
spond to the opposite.

Or again: he has not any clear concept of what it would be like for it
to be otherwise. And this is very important. . . . For the word “must” surely
expresses our inability to depart from this concept. (Or ought I to say
“refusal”?) ([49] IV, §30)

For this reason, the certainty that there could not on Church’s version of CT
be a nonrecursive effectively calculable function is logico-grammatical, not
inductive. It is use which renders this version of CT ‘unshakably certain’: not
‘the manner in which its truth is known’. Even to speak of the ‘truth’ of CT
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(without drawing attention to the normative basis in which the term should here
be understood) is potentially misleading, insofar as it invites the confusion that
CT is a hypothesis. But whatever arguments Church might have employed to
defend the adoption of his convention would have had no bearing on the logi-
cal status of CT itself; for, unlike a hypothesis, it is impossible to doubt the
‘truth’ of Church’s rule of inference: not because it is irrefutable, but rather,
because the possibility of doubt has been logically excluded.'® Hence Wittgen-
stein would have agreed with the letter if not the spirit of Kleene’s claim that CT
‘excludes doubt that one could describe an effective process for determining the
values of a function which could not be transformed by these methods into a
general recursive definition of the function’ ([19], p. 319).

In which case it is misleading even to refer to CT as a thesis: for all this
represents the fruits of logico-grammatical clarification, not epistemological
justification. When Kleene first baptized CT as such it was on the grounds that
‘such functions as have been recognized as being effectively calculable (effectively
decidable), and for which the question has been investigated, have turned out
always to be general recursive’ ([18], p. 274). But, as Kleene recognized, Church’s
conventionalist outlook renders such an argument strictly heuristic. Hence
Kleene immediately shifted from mathematical to pragmatic considerations in
his subsequent appeal that ‘If we consider the thesis and its converse as defini-
tion, then the hypothesis is an hypothesis about the application of the mathe-
matical theory developed from the definition’ ([18], p. 274). Kleene’s overriding
concern was, of course, that CT ‘cannot conflict with the intuitive notion which
it is supposed to complete’. But it is not at all clear, given the above arguments,
how it could. If ex hypothesi there was no pre-existing mathematical notion of
an effectively calculable function then there was nothing with which Church’s
new rule, and the totality of functions thereby defined, could conflict. But even
had this not been the case, Church’s argument would simply have constituted
an attempt to persuade mathematicians to redefine their terms. On neither
account would CT assume a (quasi-) empirical aspect, for it was its designated
role qua rule of inference which determined its logical status, not the arguments
summoned in support of that mandate. The problem with Church’s approach,
however, was that he offered no explanation for the fact that effectively calcu-
lable functions are effective procedures in the sense envisaged by Hilbert; on the
contrary Church had merely recapitulated Hilbert’s original premise that the lat-
ter are algorithms. What was missing was some sort of elucidation of this prior
assumption; and it was precisely this lacuna which Turing filled in ‘On Comput-
able Numbers’.

The key to the success of Turing’s version of CT was that: (i) he offered
an ‘analysis’ of algorithmically calculable functions which (ii) emerged rather
than departed from Hilbert’s framework in such a way that (iii) the notion of
effective procedures assumed a wider epistemological import.!! It was on the
basis of this last point that Turing was to insist in his ‘Lecture to the London
Mathematical Society’ that just as his computability thesis had evolved from
Hilbert’s formal systems so too the Mechanist Thesis is entailed by the prem-
ise that mechanically calculable functions are Turing machine computable. That
does not mean that Turing intended his version of CT to be read in mechanist
terms, however; only that one is forced nolens volens into such a thesis by the
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demonstration that algorithms are mechanically calculable. For as has been em-
phasized by those who wish to treat CT as a foundation for Cognitive Science,
there is no suggestion in ‘On Computable Numbers’ that Turing machines dem-
onstrate or possess cognitive abilities; on the contrary, Turing was to stress that
‘machine intelligence’ only emerges in the shift from ‘brute force’ to ‘learning’
programs. The crucial point here is that each of the ‘instructions’ of the latter
demands the same noncognitive execution as the former; in Dennett’s words,
the ‘atomic tasks’ of the program are putatively such that they ‘presuppose no
intelligence’ ({101, p. 83). It is rather the overall complexity of the program built
up out of these ‘mechanical subrules’ which, as Turing saw it, forces one ‘to
admit that [since] the progress of the machine had not been foreseen when its
original instructions were put [i]t would be like a pupil who had learnt much
from his master, but had added much more by his own work. When this hap-
pens I feel that one is obliged to regard the machine as showing intelligence’ ([3],
pp. 122-123) (infra).

The transition in Turing’s thought was closely tied to the gradual shift in
his interests from recursion theory to (what McCarthy was shortly to call) Artifi-
cial Intelligence. Given the guiding spirit behind the development of the
former —to show that all number-theoretic functions are recursively calculable —
Turing felt obligated to show that all (effective) number-theoretic functions are
mechanically calculable. Hence he set out to prove that his mechanical computer
was every bit as powerful as a mathematical (i.e., human) ‘computer’. This
reflects the significance of his emphasis on the term computer: of the fact that
his attention in ‘On Computable Numbers’ was very much confined to compu-
tation. Even in his major post-war work (the 1946 ‘Proposal for Development
in the Mathematics Division of an Automatic Computing Engine’ and the 1947
London lecture) he was still primarily concerned with the mechanization of
mathematical procedures: the problem of determining the ‘scope of the machine’,
which he naturally approached within function-theoretic parameters ([38], pp.
38f). Indeed not just Turing’s but virtually all early interest in computers was
focussed on the development of machines to facilitate brute force approaches
to complex computational problems. In 1937 Turing set out to construct a
machine to help him solve Riemann’s Hypothesis by calculating values of the
zeta-function until an exception had been found.!? In America Wiener and von
Neumann were similarly interested in using a machine to calculate the value of
the Reynolds number. And, of course, the war accelerated interest in such
machines in those areas which demanded enormous computations; not just the
obvious example of cryptanalysis, but also artillery (the development of
ENIAC), radar, meteorology, and towards the end of the war the problems of
implosion and development of the hydrogen bomb.

From numerous memoirs on the origins of digital computers we know that
the general awareness that computers could be employed for more than just
number-crunching —i.e., that they could be used for general symbol-manipula-
tion —occurred some time during 1952-1954.!3 But at least ten years before this
Turing had begun to speculate on a problem from which Artificial Intelligence
was rapidly to emerge. From various sources that he has pieced together Andrew
Hodges has demonstrated that by 1944 Turing was primarily interested in ‘the
construction of a universal computer and [in] the service such a machine might
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render to psychology in the study of the human brain’ ([41], p. 294). Apart from
such instrumental factors as his meetings with Shannon'4 the problem itself
which led Turing into these domains was a paradigm of formalist thought. Ac-
cording to Hodges, Jack Good and Turing began discussing (in 1941) the

question of whether there was a ‘definite method’ for playing chess—a
machine method, in fact, although this would not necessarily mean the con-
struction of a physical machine, but only a book of rules that could be fol-
lowed by a mindless player —like the ‘instruction note’ formulation of the
concept of computability. ([16], p. 211)*

By 1943 Turing was seriously involved in the construction of a ‘paper machine’
(Turing’s ‘slave player’) which was unlike the earlier Turing machines insofar as
chess, according to Turing, ‘requires some intelligence’ to be played at all ade-
quately. In 1936 Turing had insisted that the essence of Turing machines is that
they require no intelligence to follow their rules. By 1946 Turing was exploring
‘a very large class of non-numerical problems that can be treated by the calcu-
lator. Some of these have great military importance, and others are of immense
interest to mathematicians’ ([3], p. 41). Chief amongst the latter was chess:

Given a position in chess the machine could be made to list all the ‘winning
combinations’ to a depth of about three moves on either side. This . . .
raises the question ‘Can the machine play chess?’ It could fairly easily be
made to play a rather bad game. It would be bad because chess requires
intelligence. We stated at the beginning of this section that the machine
should be treated as entirely without intelligence. There are indications how-
ever that it is possible to make the machine display intelligence at the risk of
its making occasional serious mistakes. By following up this aspect the
machine could probably be made to play very good chess. ([3], p. 41)

Turing found in chess both the essence of the formalist infrastructure underlying
‘On Computable Numbers’ and the materials for the mechanist superstructure
which he sought to erect on this foundation. It represented the categorial leap
from brute force to self-modifying algorithms, paving the way for a shift from
the crude picture of ‘On Computable Numbers’ where no intelligence was re-
quired of the Turing machines to one in which the machine would have to be
able to learn from previous positions in order to improve its quality of play. It
was the latter argument which led him to introduce the notion of machine intel-
ligence the following year in his London lecture and then promote a full-blown
Mechanist Thesis in 1950 in ‘Computing Machinety and Intelligence’. ‘On Com-
putable Numbers’ thus stands out as a turning-point, not just in Turing’s thought,
but through his influence, on the mathematical passage from recursion theory
into computer science and the philosophical transition into Artificial Intelligence.

There are numerous examples in the history of mathematics of impossibility
proofs which in the process of closing off one branch of inquiry have served to
open another. Rarely, however, has the transition effected led outside of math-
ematics proper into the realm of epistemology. But Turing could draw on no
less a precedent than Goddel’s second incompleteness theorem to support such
a reading of his computability thesis.!® The immediate problem his interpreta-
tion raises, therefore, is whether ‘On Computable Numbers’ does indeed oper-
ate as a transitional impossibility proof which as such provides a cognitive
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foundation for the Mechanist Thesis. Nowhere could the underlying tension in
Turing’s extended thesis be more clear than in G6del’s response to ‘On Computa-
ble Numbers’. As Davis has documented, Godel ‘insisted (as Church later
reported to Kleene) that it was “thoroughly unsatisfactory” to define the effec-
tively calculable functions to be some particular class without first showing that
“the generally accepted properties” of the notion of effective calculability nec-
essarily lead to this class. . . . [I]t was not until Turing’s work became known
that Godel was willing to concede that this difficulty had been overcome’ ([9],
pp. 12-13). But why should Gddel have resisted an argument which, as Turing
himself was to remark, bore strong resemblance to Godel’s own earlier approach?
(see [37], p. 160 and cf. [12]). Even more to the point, why should Godel have
endorsed Turing’s as opposed to Church’s version of CT in the first place, and
why should he have continued to support a thesis whose consequences he so
strongly deprecated?!’

Godel’s argument holds a special fascination for Wittgensteinians interested
in Artificial Intelligence (cf. [26]), not only for the obvious reason that his atti-
tude to mechanism seems to run parallel to Wittgenstein’s —albeit for reasons
which Wittgenstein was loathe to accept (see [34]) —but even more intriguingly,
because these sentiments were to lead Godel remarkably close to endorsing Hil-
bert’s faith that ‘in mathematics there is ignorabimus’: a theme which finds a
striking echo in Wittgenstein’s approach to the Decision Problem (see [33],
Chap. III). But how important is the above caveat? In his ‘Remarks Before the
Princeton Bicentennial Conference’ Godel credited Turing with having succeeded
‘in giving an absolute definition of an interesting epistemological notion’ ([13],
p. 84). As should now be clear this suggests a line of thought which departs sig-
nificantly from Wittgenstein’s. For this shifts the focus from Church’s interest
in the mathematical characterization of a class of functions to an epistemological
problem about —in Turing’s terms —the properties displayed by the computists
engaged in the calculation of those functions. Hilbert’s influence on Godel is
obviously evident here. In simplest terms an effective procedure would appear
to be one that does not transcend our computational abilities. The fact that this
carries with it a host of familiar sceptical problems (e.g., the questions of rel-
ativity, reliability, variability, etc.) would no doubt have struck Godel as the
inevitable concomitant of a profound epistemological issue ([33], Chap. IV). The
real problem which all this raises, however, is whether, having taken this initial
step, Godel could have avoided the quandary in which he subsequently found
himself vis-a-vis Turing’s Mechanist Thesis (cf. [28], p. 408).

Interestingly, unlike the ‘Note added 28 August 1963’ to ‘On Formally
Undecidable Propositions’ ([11], p. 195), in the 1967 postscript to ‘On Undecid-
able Propositions of Formal Mathematical Systems’, Godel was careful to ex-
clude the mechanist consequences that Turing had drawn from his version of
CT. In the latter he began by crediting Turing with having realized an illuminat-
ing account of the notion of formal systems in terms of mechanical calculation:

In consequence of later advances, in particular of . . . A.M. Turing’s
work, a precise and unquestionably adequate definition of the general con-
cept of formal system can now be given. . . . Turing’s work gives an analysis
of the concept of “mechanical procedure” (alias “algorithm” or “computa-
tion procedure” or “finite combinatorial procedure”). This concept is shown
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to be equivalent with that of a “Turing machine”. A formal system can sim-
ply be defined to be any mechanical procedure for producing formulas.
([12], pp. 369-370)

But he concluded with the warning: (‘Note that the question of whether there
exist finite non-mechanical procedures, not equivalent with any algorithm, has
nothing whatsoever to do with the adequacy of the definition of “formal sys-
tem” and of “mechanical procedure”’ (p. 370)). Wang’s record of Godel’s obiter
dicta has enabled us to piece together the reasoning which underlay this paren-
thetical remark. Wang first tells us that

The concept of a mechanical procedure is involved in the characteriza-
tion of formal systems. It seems natural to ask what mechanically solvable
problems or computable functions are. This is related to the rather popular
question: can machines think? can machines imitate the human mind? ([42],
p. 83)

This, of course, is precisely what Turing had asked in ‘Computing Machinery
and Intelligence’; overlooking the possibility that it is the assumption on which
the question rests that should most concern the antimechanist, Wang continues:

One often hears that in mathematical logic a sharp concept has been devel-
oped which corresponds exactly to our vague intuitive notion of comput-
ability. But how could a sharp concept correspond exactly to a vague notion?
A closer look reveals that the sharp notion, often referred to as recursive-
ness or Turing computability, is actually not as sharp as it appears at first
sight.

All this is offered by way of circumscribing the bounds of Turing’s ‘analysis’ in
order to thwart his mechanist ambitions. And this argument, Wang explains,
grew out of Godel’s reaction to Turing’s post-1941 interests:

Godel points out that the precise notion of mechanical procedures is brought
out clearly by Turing machines producing partial rather than general recur-
sive functions. In other words, the intuitive notion does not require that a
mechanical procedure should always terminate or succeed. A sometimes
unsuccessful procedure, if sharply defined, still is a procedure, i.e. a well
determined manner of proceeding. Hence we have an excellent example here
of a concept which did not appear sharp to us but has become so as a result
of a careful reflection. The resulting definition of the concept of mechani-
cal by the sharp concept of ‘performable by a Turing machine’ is both cor-
rect and unique.

At this point we are clearly still operating within the parameters of recursion the-
ory. The crux of this issue is that ‘A formal system is nothing but a mechani-
cal procedure for producing theorems. The concept of formal system requires
that reasoning be completely replaced by “mechanical operations” on formulas
in just the sense made clear by Turing machines’ ([42], p. 84). So much makes
clear both why Godel was persuaded to accept CT on the basis of Turing’s thesis
and also why he repudiated the consequences which Turing was to draw. The
former question is explained by Godel’s recognition of the epistemological aetiol-
ogy of Turing’s argument; the latter by his objection to Turing’s philosophical
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embellishments. But the question is whether, having agreed with (i) and (ii),
Godel was entitled to reject Turing’s reading of (iii).

As far as Godel was concerned Turing had only succeeded in analysing the
concept of formal systems as mechanical procedures. After all, in his 1947 lec-
ture Turing vaguely claimed that he had succeeded in giving a precise definition
of a ‘rule of thumb’ procedure in terms of mechanical calculability. The issue
has thus devolved onto the debate whether Godel’s objection that a distinction
must be drawn between formal systems or algorithms and effective procedures
is warranted. Wang insists:

What is adequately explicated [by Turing] is the intuitive concept of mechan-
ical procedures or algorithms or computation procedures of finite com-
binatorial procedures. The related concept of effective procedures or
constructive procedures, meaning procedures which can in the most general
sense be carried out, suggest somewhat different elements which are related
to the difference between mental and mechanical procedures. ([42], p. 89)

In other words, Gddel identified mechanically with humanly effective procedures
so far as finite combinatorial procedures are concerned. The former are those
cases where the computation terminates (i.e., partial recursive functions). And,
of course, the Halting Problem had established the existence of a class of func-
tions where we do not know whether or not the program will terminate (Godel’s
general recursive functions). But humanly effective procedures, according to
Godel, must always be capable of termination. It is not enough, however, to say
that his reason for this relied on the assumption that humanly effective proce-
dures must be finitely bound. Rather, Godel seemed to share Hilbert’s belief that
to grasp a problem is to know in advance that there must be an answer; some-
thing which, according to the Halting Problem, cannot be guaranteed to Tur-
ing machines (infra).

Wang depicts Godel’s position in terms of a categorial difference between
mechanically and humanly effective procedures. Yet he offers no grounds for
such a demarcation, other than the puzzling remark that

The related concept of effective procedures or constructive procedures,
meaning procedures which can in the most general sense be carried out, sug-
gests somewhat different elements which are related to the difference be-
tween mental and mechanical procedures and the question as to the method
by which a Turing machine or a set of equations is seen to be one which
defines a Turing computable or general recursive function. ([42], p. 89)

As it stands the argument is hardly convincing. For one thing it is presented as
a dogmatic thesis, with no reason offered why effective procedures should be
characterized by the criterion that we must know in advance whether or not they
terminate. But in the Gibbs lecture (as quoted by Wang) Godel appears to be
interested in the slightly different objection that what is involved here is not so
much a categorial as a qualitative difference: viz. humanly effective procedures
transcend the capabilities of mechanical. Turing’s argument, according to Godel,
presents the ‘following disjunction: Either the human mind surpasses all
machines (to be more precise: it can decide more number theoretical questions
than any machine) or else there exist number theoretical questions undecidable
for the human mind.” G6del’s response was to regard ‘Hilbert [as] right in reject-
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ing the second alternative. If it were true it would mean that human reason is
utterly irrational by asking questions it cannot answer, while asserting emphat-
ically that only reason can answer them’ ([42], pp. 324-325).

To this argument Judson Webb responds that it is simply irrelevant, insofar
as the parallels between effective and mechanical procedures are concerned,
whether or not we know in advance that they will terminate. For

whether a procedure literally ‘can in the most general sense be carried out’
does not depend on whether or not its termination can be constructively
guaranteed in advance, but only on the execution of its atomic tasks. If I can
actually follow some procedure, however general, step by step, this would
surely not be changed by forgetting that termination had been constructively
proved. . . . Why should mental procedures require any more assurance of
their termination than mechanical ones? ([43], pp. 224-225)

Indeed, Webb argues that, far from being a liability, the Halting Problem is the
saving feature of the Mechanist Thesis. Turing’s undecidable sentences he
describes as the ‘guardian angels of computability theory’ ([43], pp. 202, 208).
Without them the mechanist would be confronted with a strongly determinist
account of thought; but the upshot of the Halting Problem is that to describe
a Turing machine as rule-governed is not at all to say that we can predict for
all Turing machines how they will terminate. In fact, as Turing was to empha-
size in his account of mechanical chess, the whole point of learning programs
is that it is often impossible to foresee how they will evolve (see [3], pp. 122ff).
One may thus sympathize with the spirit of Godel’s stand, which harks back to
the inspiring theme of Hilbert’s Paris lecture that there is no problem in math-
ematics, however intractable it might at first appear, which cannot be resolved
if only the right point of view from which to attack it is discovered. The ques-
tion is whether Godel provided any reason to deny a priori the possibility of a
self-modifying system’s realizing a similar ability.

Whatever one might feel about the strongly mechanist conclusions which
Webb draws from this objection, it must be conceded that he has successfully
clarified what is perhaps the crucial feature of Godel’s argument. According to
Godel thought and mechanical calculation are partially co-extensive (viz. for the
case of partial recursive functions); they diverge because of the epistemological
constraints imposed on the latter (i.e., the premise that algorithmic calculabil-
ity must be finitely bound) and the unbounded possibilities open to the former.
But even before we can address the subtleties of the conflict created by a con-
structivist picture of mechanical computation versus a platonist conception of
mathematical thought, we are left with the problem contained in Godel’s initial
premise: does it even make sense to say that thought and mechanical calcula-
tion could be partially co-extensive? In conceding this had Godel already admit-
ted the very premise which landed him in the dilemma from which he could find
no other alternative but to look for an escape route via epistemological obscu-
rity? Did the very reason Godel embraced Turing’s version of CT induce him
to distort the real —mathematical —significance of the latter? These are very
much the questions which form the starting-point for Wittgenstein’s approach
to Turing’s thesis. For the real challenge which Turing posed lay in the frame-
work which he augmented; and it was precisely this element which, unlike Godel,
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Wittgenstein tackled head-on. His immediate objectives were, as we shall now
see, to clarify whether epistemology has anything to do with the difference be-
tween mechanical and effective procedures, and whether Turing’s post-1941 de-
velopment ‘of the Mechanist Thesis represents a misinterpretation of his 1936
results, the seeds of which were indeed sown in this 1936 presentation of his
mechanical version of CT.

3 The foundations of Turing’s thesis In the cosmology of Artificial Intel-
ligence the higher cognitive forms only appeared when heuristic systems emerged
from their primitive algorithmic origins. In the words of one of the field’s found-
ing fathers:

Heuristic problem-solving, when successful, must, obviously, be rated as a
higher mental activity than the solving of problems by some more or less
automatic procedure. We are, therefore, probably justified in attaching the
label of artificial intelligence to machine methods and machine programs that
make use of heuristic procedures. ([30], p. 14)

To do justice to such an argument it must obviously be read against the back-
ground of formal learning theory. For if ‘learning is any change in a system that
produces a more or less permanent change in its capacity for adapting to its envi-
ronment’ ([35], p. 118) it would follow that there is no categorial difference
between ‘biological learning systems’ and ‘ideal learning machines’. But insofar
as the mastery of a rule must constitute the foundation of any theory of learning,
and given the striking fact that formal learning theory is itself predicated on Tur-
ing’s thesis (see [27]), the claim that our chief concern here should be with the
nature of algorithms is not without considerable force (see [32], pp. 103ff).

Certainly there can be no denying the paramount importance of algorithms
for the evolution of computer science and thence Al. Donald Knuth confides
that his

favorite way to describe computer science is to say that it is the study of
algorithms. An algorithm is a precisely defined sequence of rules telling how
to produce specified output information from given input information in a
finite number of steps. A particular representation of an algorithm is called
a program. . . . Perhaps the most significant discovery generated by the
advent of computers will turn out to be that algorithms, as objects of study,
are extraordinarily rich in interesting properties and, furthermore, that an
algorithmic point of view is a useful way to organize knowledge in general.
([23], p- 38)

Elsewhere he explains that

an algorithm is a set of rules or directions for getting a specific output from
a specific input. The distinguishing feature of an algorithm is that all vague-
ness must be eliminated; the rules must describe operations that are so simple
and well defined they can be executed by a machine. ([22], p. 63)

This orthodox account will no doubt strike many as unproblematic but it does,
in fact, present four worrying points. First, it is not at all clear what it means
to say that ‘rules describe operations’. The hallmark of a rule is that it describes
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nothing; rather, it fixes the uses of concepts. Nor is it clear what ‘simple’ means
here, or why it matters. Also, Wittgenstein showed that while it may be impos-
sible to remove all possibility of vagueness or ambiguity from a rule (no mat-
ter how precisely it is formulated) that does not undermine the institution of
rule-following per se (cf. [46], §§143ff). Finally, Knuth does not explain why
the simplicity and exactitude of a rule are crucial to its machine execution: is this
an allusion to Turing’s premise that it is this criterion which enables a machine
to follow these rules, or is Knuth merely drawing attention to the property of
‘binary encodability’ that was considered in the first section?

Inconsequential as these questions might appear, there is a danger that they
are the symptoms of a lingering confusion inherited from Turing. For as we shall
see, the steps in Turing’s programs do indeed behave like descriptions; but far
from paving the way for Turing’s mechanist interpretation, that is a reason for
reconsidering what it means to describe them as ‘subrules’. What matters for the
moment, however, are simply the ideas that: (i) an algorithm consists of a set
of rules which (ii) are all of roughly the same (trivial) complexity and (iii)
together yield a specific output from a specific input. On this reading algorithms
emerge as a special subset of the class of functions (where functions are seen as
rules for mapping arguments onto values); what distinguishes them in function-
theoretic terms are (i) and (ii). Whether or not this captures the essence of Hil-
bert’s intentions, it is unlike Turing’s approach insofar as there is no explicit
claim here that the machine follows the rules (although this might be tacitly
implied by the emphasis on the simplicity of the operations). To appreciate the
full epistemological implications of Turing’s conception of algorithms we must
address this most basic assumption which lies at the heart of the argument pre-
sented at §9 of ‘On Computable Numbers’.

As we saw in the preceding section, the essence of Turing’s theory of
machine intelligence is that this is a function of the complexity of the program
which the computer follows rather than the individual steps of the algorithm.
That is, the difference between Turing’s ‘slave’ and ‘learning’ programs lies in
the shift from fixed to self-modifying algorithms. In the former the Turing
machine repeatedly performs the same elementary steps ad infinitum (or fini-
tum as the case may be); in the latter it alters its program (e.g., by employing
heuristic techniques which enable it to augment its knowledge-base and/or store
of rules) and thence the range and sophistication of the tasks it can execute. It
was this argument which, according to the mechanist interpretation, enabled
Turing ‘to face the fact that a “human computer” does need intelligence —to fol-
low rules formulated in a language he must understand’ ({43}, p. 220). In order
to provide a ‘non-question begging’ analysis of computation ‘the smallest, or
most fundamental, or least sophisticated parts must not be supposed to perform
tasks or follow procedures requiring intelligence’ ([10], p. 83). On Turing’s argu-
ment the

Instructions given the computer must be complete and explicit, and they
must enable it to proceed step by step without requiring that it comprehend
the result of any part of the operations it performs. Such a program of
instructions is an algorithm. It can demand any finite number of mechani-
cal manipulations of numbers, but it cannot ask for judgments about their
meaning. ([4], p. 47)



634 S. G. SHANKER

In which case “Turing’s analysis succeeded just because it circumvented the prob-
lem of how a computer can understand ordinary language’ ([43], p. 225). For
without ‘meanings’ to deal with ‘these atomic tasks presuppose no intelligence
[and] it follows that a non-circular psychology of computation is possible’ ([43],
p. 220). Hence, the epistemological significance of Turing’s version of CT lay
in his demonstration that algorithms can be described as complex systems of
meaningless subrules each of which can as such be applied purely mechanically.

The issue arising from this ‘analysis of computation’ which has captivated
philosophers is whether understanding can be built up out of a mastery of the
‘syntactical instructions’ that man and machine both follow (cf. [31]). But the
problem which concerned Wittgenstein lay in the prior assumption that by scan-
ning, printing, and erasing symbols on its tape, a Turing machine displays its
ability to follow these ‘meaningless subrules’. There are two interlocking premises
operating in this conception of algorithms which Wittgenstein scrutinized: first,
that it is intelligible to speak of a species of meaningless rule and, second, that
the concept of mechanically following a rule is unproblematic. A more subtle
task that needs to be addressed first, however, is to clarify the relationship
between mastering the subrules of an algorithm and grasping the algorithm itself.
To illustrate the distinction between mechanically and humanly effective calcu-
lation Wang cites the example of a pupil learning how to apply a Euclidean algo-
rithm correctly without comprehending its overall structure (i.e., without
knowing why it gives the correct results):

Giving an algorithm for solving a class K of problems and a problem belong-
ing to K, anybody can solve the problem provided he is able to perform the
operations required by the algorithm and to follow exactly the rules as given.
For example a schoolboy can learn the Euclidean algorithm correctly with-
out knowing why it gives the desired answers. ([42], p. 90)

This example does indeed draw attention to an important aspect of the prob-
lem: before we can consider the issues raised by the assumption that an algo-
rithm can be calculated mechanically when the agent/machine does not
understand why it gives the correct results (or what it means to understand ‘why’
in this context) we must first clarify what it means to say that a pupil has learned
how to apply the Euclidean algorithm. Or in general, the conditions under which
one would say that ‘the pupil has grasped the rule’, ‘the pupil has applied the
rule correctly’. Even Searle is prepared to concede that a machine can be pro-
grammed to apply ‘formal’ rules correctly; what he balks at is the idea that a
machine can be programmed to learn or follow semantic rules. But this seem-
ingly innocuous example highlights an important problem.

This is not the putatively ‘sceptical thesis’ which Kripke has culled from
§§185-242 of Philosophical Investigations. Rather, it concerns the last line of
the above passage: the supposition that ‘a schoolboy can learn the Euclidean
algorithm correctly without knowing why it gives the desired answers’. Here
Wang credits the schoolboy with the very ability immediately denied him. For
to learn how to apply an algorithm correctly involves more than consistently pro-
ducing the right answers (i.e., as a result of grasping how to execute each of the
substeps). In order to say of the schoolboy that he has grasped the rules of cal-
culation we demand more than the set of his answers to license such a judgment.
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If this were all that was involved in the ascription of normative behaviour then
we would indeed be exposed to a sceptical problem. But the point of the remarks
on rule-following examined in the first section is that the criteria for crediting
someone with the mastery of a rule are far more complex; we place such a judg-
ment against the background of an agent’s ability to explain, justify, correct,
etc., their actions by reference to that rule. And the crucial problem with Wang’s
argument is that learning an algorithm likewise means something more than
mastering each of the subrules without grasping the overall pattern or function
of these ‘atomic tasks’. Someone who learned all the individual rules for the
chess pieces without ever grasping that the point of the game is to mate their
opponent’s king would not yet have learnt how to play chess. Likewise we would
not say that a pupil who, when no remainder was left, responded ‘I do not know
what to do next’, had mastered the rules of division. So too, all one can say in
Wang’s example is that the schoolboy has learned how to apply what for him
is a set of independent rules; but to learn how to apply each of these ‘atomic
rules’ does not in itself amount to learning the algorithm.!®

This still leaves untouched the problem of what is involved in speaking of
the schoolboy as learning how to apply each of the subrules of the algorithm.
The first thing to notice here is that exactly the same criteria apply to the pupil’s
mastery of each of the subrules qua rules as apply to the algorithm itself. That
is, to speak of mastering a subrule entails the possession of the abilities outlined
above. Hence the simplicity versus complexity of a rule has no bearing on the
normative cluster of concepts which underpins rule-following. Clearly Turing’s
argument must somehow be seen to overcome this obstacle, and this brings us
up against one of the two major premises in the argument: the idea that there
is such a thing as a ‘meaningless subrule’. The obvious question one wants to
ask here is, what sort of rule would a meaningless rule be: a rule which by def-
inition stipulates nothing? Prima facie this looks like a blatant contradiction in
terms, in which case one wants to know how such a radical thesis could have
been so readily and uncritically accepted.!® Of the many factors involved in the
reception of Turing’s thesis, there are two which particularly stand out. The first
and undoubtedly most important derived from Hilbert’s conceptual framework.
As we saw in the preceding section, Godel maintained that

The concept of formal system requires that reasoning be completely replaced
by ‘mechanical operations’ on formulas in just the sense made clear by Tur-
ing machines. More exactly, a formal system is nothing but a many valued
Turing machine which permits a predetermined range of choices at certain
steps. The one who works the Turing machine can, by his choice, set a lever
at certain stages. This is precisely what one does in proving theorems within
a formal system. ([42], p. 84)

Ironically, Wittgenstein would have agreed with the opening premise of this
argument, but significantly, not at all in the manner intended.

Godel’s point was that the concept of a ‘formal system’ entails that of Tur-
ing’s ‘mechanical operations’; that Turing machines manifest the mechanical
essence of the symbolic transformations which characterize a formal system.
Wittgenstein’s response, however, would be that, if anything, Turing machines
manifest the nonmathematical character of ‘formal systems’. This is quite a large
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and important issue; among other things it demands careful consideration of the
relationship between mathematical propositions, the well-formed-formulas of
a formal system, and the manner in which Hilbert tried to bridge the gap
between syntax and semantics thus created with so-called ‘interpretations’.?’ For
our purposes it suffices to note that the reason Wittgenstein would agree that
‘The concept of formal system requires that reasoning be completely replaced
by “mechanical operations” on formulas in just the sense made clear by Turing
machines’ is that the concept of reasoning is fundamentally incompatible with
that of formal system.2! The basic problem is that it is completely misleading
to speak of a ‘mechanical deduction’; for the two notions operating here, infer-
ence and sign manipulation, cannot be used together. One can speak of com-
paring the orthography, size, etc., of meaningless marks, but not of deducing
one string of meaningless marks from another. To grasp that g follows from p
just is to understand the nature of the conceptual relationship between the mean-
ing of g and p: to know that p entails q. Hence, to return to the passage on cal-
culation examined in the first section, if someone were accidentally to press the
knobs 25°, ‘x’, and ‘20’ of a calculating machine and obtain the result 500 they
would not thereby have calculated the product of 25 x 20. For

You aren’t calculating if, when you get now this, now that result, and can-
not find a mistake, you accept this and say: this simply shows that certain
circumstances which are still unknown have an influence on the result.

This might be expressed: if calculation reveals a causal connection to
you, then you are not calculating. . . . What I am saying comes to this, that
mathematics is normative. ([49] VII, §61)

Secondly, there was the whole point behind Turing’s depiction of algo-
rithms as sets of ‘meaningless subrules’: viz., reducing recursive functions to sets
of mechanically calculable components rendered it plausible to conclude that by
executing the totality of these tasks the machine would be computing the func-
tions. This comes out quite clearly in the many tributes that have been made to
Turing’s ‘analysis’ of the concept of computation. Even Wang concedes:

The intuitive notion of an algorithm is rather vague. For example, what is
a rule? We would like the rules to be mechanically interpretable, i.e. such
that a machine can understand the rule (instruction) and carry it out. In
other words, we need to specify a language for describing algorithms which
is general enough to describe all mechanical procedures and yet simple
enough to be interpreted by a machine. . . . What Turing did was to analyze
the human calculating act and arrive at a number of simple operations which
are obviously mechanical in nature and yet can be shown to be capable of
being combined to perform arbitrarily complex mechanical operations. ([42],
p. 91)

The most important thing to notice about this argument —and indeed, all of the
tributes that have been paid to Turing’s ‘analysis’—is that it assumes the very
point which it sets out to establish; and it does this by misrepresenting the nature
of calculation ab initio by reducing it to a level where the difference between
mechanically following a rule and following a ‘mechanical rule’ is blurred,
thereby collapsing ‘simple rules’ into ‘simple mechanical operations’.

There are three different points to be considered in the premise that an
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algorithm breaks down the act of following a rule into a set of noncognitive
instructions such that they could be followed by a machine. The first question
to ask is: why speak of ‘subrules’ at all here? The answer is that, in order to
make his reductionist argument effective, Turing was forced to make it type-
homologous. As we shall see, the manner in which the program is presented cer-
tainly preserves this appearance. The initial step was thus to maintain that algo-
rithms decompose rules into their normative components. In order to assess this
argument we need to consider what these ‘subrules’ are: i.e., the relation between
the subrules and the overall task executed by an algorithm. There is a tendency
to suppose that algorithms decompose complex rule-governed operations into
a series of utterly simple tasks. But an algorithm is not a precise formulation
of a pre-existing rule; rather, it is a different set of rules from the original which
it is intended to supplant. Davis’ Doubling Program (see Note 18), for exam-
ple, is completely different from squaring inasmuch as it employs addition and
subtraction to bypass the need for multiplication. To be sure, the outcome of
the program corresponds to the results yielded by the rules for squaring; but
what matters here is how we learn and apply the two systems of rules. The fact
that we can use the rules of addition and subtraction rather than multiplication
for the purposes of doubling —as opposed to squaring—does not entail that
when squaring we actually do (i.e., tacitly) employ these rules. The correct
answer to ‘How did you calculate that the square of 125 is 15,6257’ is ‘I multi-
plied 125 x 125’; not, ‘I (or my brain, or my unconscious mind) added 125 to
itself one hundred and twenty-five times’.?> What is really involved here is sim-
ply the fact that one set of rules can prove to be far more efficient than another
for different contexts/purposes.

Even more important is the fact that Turing’s interpretation harbours a
fatal tension. The decomposition cannot, ex Aypothesi, be entirely homologous:
the whole point of reducing rules to subrules is to minimize the normative ele-
ment which characterizes the rule proper. But here the argument runs into two
different obstacles. First of all, the simplicity of a rule must not be confused with
the question of its semantic content. A typical rule in Davis’ Doubling Program
is:

Go to step i if 0 is scanned.

But given that this is a genuine rule it is anything but meaningless. Granted, it
is so simple that one can envisage an agent doing it mechanically after a short
while, and that is the problem that will be looked at last. For the moment we
need only see that, however simple this rule might be, it does indeed tell one
what to do. The only way to remove its normative content is to treat it as a
description of the causal events that occur in the mind/program of the computer
which trigger off certain reactions. Thus Turing introduced the premise that ‘the
behaviour of the computer at any moment is determined by the symbols which
he is observing, and his “state of mind” at that moment’ ([36], p. 136). On this
picture the computer’s ‘state of mind’ is the causal intermediary between ‘ob-
served symbols’ and subsequent action. But

There are no causal connections in a calculation, only the connections of the
pattern. And it makes no difference to this that we work over the proof in
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order to accept it. That we are therefore tempted to say that it arose as the
result of a psychological experiment. For the psychical course of events is not
psychologically investigated when we calculate. ([49] VII, §18)

Thus the normativity of calculation disappears altogether on Turing’s account,
and there is no basis whatsoever for referring to the steps in the program as a
species of ‘meaningless subrule’; rather they function as descriptions of the com-
puter’s putative hidden calculating machinery.

Among other things this ‘analysis’ would entail that, e.g., a thermostat was
a rule-following device even though none of the normative concepts which trans-
form mere causal regularity into rule-following behaviour apply.?® The danger
here is to suppose that because normative actions can be mapped on to causal
sequences this signifies that the latter are somehow a ‘representation’ of the
former. Were this the case then the way would indeed be open to speaking of
physically ‘embodied’ rules. But the shift from encoding to embodying marks
a categorial departure to causal domains from which there can be no return to
normativity. In the former case we may still speak of an agent following the
encoded rules (assuming a further mastery of the rules of the code); the point
of the latter, however, is to suggest that an agent’s actions are causally deter-
mined by, e.g., mental events that lie beyond his immediate awareness. But as
we saw in the first section, Wittgenstein stressed that whatever might be going
on in their minds is irrelevant to the issue of whether or not the monkeys are
following a rule; that is solely a question of whether or not they use the rule as
a paradigm for the regulation of their conduct.?* Thus the reason Wittgenstein
laid such emphasis on the normativity of calculation a propos Turing’s thesis was
to clarify that the relation between a computation and the results which conform
with it is internal, whereas in Turing’s mechanical example the relation between
input and output is strictly external, not conceptual; an account of the program
can only explicate why the machine produced its results: not whether or not these
were correct. For only the rules of calculation can establish this, and it is for
that reason that they are antecedent to the machine’s operations. That is, they
establish the criteria which determine when we shall say that the machine is per-
forming properly or malfunctioning.

Turing was guilty, therefore, either of the illicit assumption that the con-
cept of following a rule can be regarded as a cybernetic mechanism, or else of
presenting the steps of a Turing machine program in completely misleading
form. For the above ‘instruction’ certainly looks like a rule (i.e., like an instruc-
tion) but what it actually describes on this causal picture is how:

A ‘0’ activates the transit mechanism.

But then this has nothing whatsoever to do with rule-following; it simply shows
how to break down a complex mechanical action —viz., registering twice as many
‘1s’ as were originally configured —into its subcomponents. Moreover, the terms
chosen here are entirely apposite, for the latter are indeed subject to ‘break-
down’, but not to negligence, mental lapses, or plain misunderstanding. Hence
they are immune from error, but not because they are infallible, for to be capa-
ble of making mistakes once again presupposes rule-following abilities. It is not
surprising, therefore, that Turing should have glossed over the conceptual
demarcation involved here when he argued that
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the machine has certain advantages over the mathematician. Whatever it
does can be relied upon, assuming no mechanical ‘breakdown’, whereas the
mathematician makes a certain proportion of mistakes. . . . My contention
is that machines can be constructed which will simulate the behaviour of the
human mind very closely. They will make mistakes at times. . . .%

One cannot emphasize enough the importance of Turing’s demonstration that,
given their (binary) encodability, recursive functions are ideally suited to mechan-
ical implementation. But to mechanize rule-governed actions is to substitute, not
subsume. Even to speak of the latter operations as calculations only serves to
distort the categorial shift which occurs when mechanical devices displace nor-
mative activities.?

To be sure, this objection proceeds from the concept of calculation as this
existed prior to Turing. And in Davis’ words:

What Turing did around 1936 was to give a cogent and complete logical
analysis of the notion of “computation”. Thus it was that although people
have been computing for centuries, it has only been since 1936 that we have
possessed a satisfactory answer to the question: “What is a computation?”
(8], p. 241)

The picture of ‘logical analysis’ which inspires this interpretation —the idea that
depth analysis reveals what speakers in some sense real/ly understand when they
grasp a concept—was, of course, one of the major themes that Wittgenstein
attacked in the 1930s. By the time he encountered ‘On Computable Numbers’
he had thoroughly repudiated, not only the notion of tacit knowledge which
underpins this theory, but even more important, the widespread misconstrual
of conceptual legislation for ‘philosophical analysis’ which sustains it. (For the
definitive exegesis on Wittgenstein’s development, see [1].) These too are topics
which bear heavily on Turing’s interpretation of his version of CT, but for pres-
ent purposes we need only consider the basis of Davis’ claim. Davis continues:

Turing based his precise definition of computation on an analysis of what
a human being actually does when he computes. Such a person is following
a set of rules which must be carried out in a completely mechanical manner.
Ingenuity may well be involved in setting up these rules so that a computa-
tion may be carried out efficiently, but once the rules are laid down, they
must be carried out in a mercilessly exact way. ([8], p. 243)

In other words, that an agent’s ability to calculate hinges on the mechanical
application of subrules, regardless of whether or not the latter are ‘meaningless’.
Indeed, some have even speculated that the subrules of the algorithm might be
treated as meaningful in some unique categorial sense which would allow one
to speak of symbolic systems as possessing their own intrinsic ‘meanings’ and
hence, of ‘brain symbols as having original meaning’ ([15], p. 119). On this line
of reasoning what matters is solely how the rules are followed, not the mysteri-
ous nature of their quasi-semantic profile.

Wittgenstein’s response to this argument (the distortion it inflicts on the
notion of meaning is another matter) was to return to the distinction between
calculation and performing an experiment first broached in the investigation into
the nature of proof ([49], I and cf. [33], Chap. IV). Since the basic theme of this
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discussion — which is intended to contrast the normative character of calculation
with the causal framework of conducting an experiment —has already been
touched on (see Section 1) we shall only consider here Wittgenstein’s further
reaction to the picture of mental machinery which buttresses Turing’s argument.
After introducing the reader to Turing’s computability thesis at the beginning
of Gédel, Escher, Bach, Hofstadter remarks:

Here one runs up against a seeming paradox. Computers by their very nature
are the most inflexible, desireless, rule-following beasts. Fast though they
may be, they are nonetheless the epitome of unconsciousness. How, then,
can intelligent behaviour be programmed? Isn’t this the most blatant of con-
tradictions in terms? One of the major theses of this book is that it is not a
contradiction at all. ([17], p. 26)

The route which Hofstadter follows is literally in the footsteps of Turing. For
that reason alone the terms of the above passage should be scrutinized long
before one considers his subsequent efforts to surmount the paradox; that at any
rate is what Wittgenstein demanded from its forerunner. The first thing to notice
is that it is not at all clear what the opening part states. What does it mean to
describe a computer as ‘desireless’: something which, as it happens, has no
desires, or rather something of which it is logically absurd to speak of desires?
Secondly, Hofstadter assumes the very point which, according to Wittgenstein,
is the crux of the issue: that computers are ‘rule-following beasts’. We shall only
look now, however, at the third element in this triad of assumptions: that the
issue somehow hinges on a computer’s lack of ‘consciousness’. It is the same
point that Davis is making, and almost certainly what Turing had in mind at §9,
which was essentially that there can be mechanical analogues of a (human) com-
puter’s unconscious behaviour whilst mechanically calculating.

Wittgenstein did not deny the possibility of an agent’s performing certain
calculating steps mechanically; rather, he insisted that this has nothing to do with
the issue of consciousness versus unconsciousness:

One follows the rule mechanically. Hence one compares it with a mech-
anism.

“Mechanical” —that means: without thinking. But entirely without
thinking? Without reflecting. ([49] VII, §60)

This is a theme which recurs throughout Wittgenstein’s remarks on rule-follow-
ing (cf. e.g., the ‘reading machine’ argument at [46], §157). Clearly it must be
possible to speak of following a rule mechanically; we do so all the time (e.g.,
in driving a car). The question is, why call such behaviour rule-following: what
distinguishes it from genuine autonomic conduct? Suppose we were dealing with
the latter; if an agent were asked why he ¢ed, his answer (should he be capa-
ble of proffering one) would be in strictly causal terms.?” An agent’s ¢ing only
counts as rule-following, however, if he offers a rule as the grounds for his ¢ing.
For as the above passage makes clear the esse of rule-following lies in the log-
ical possibility of reflection. Certainly when we calculate, many of the familiar
rules are performed unreflectingly; but it is our ability to articulate these rules
if called upon to do so which warrants our calling such behaviour calculation.
The point here is not that to follow a rule demands that one be conscious of the
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fact, therefore; rather, it is to be capable of justifying (correcting, explaining,
etc.) one’s past actions by reference to the rule.

For all of these reasons Wittgenstein indicated that the basic fallacy com-
mitted by Turing in §9 was to move from the indisputable simplicity of the
subrules of an algorithm to the conclusion that such procedures are intrinsically
mechanical. For the fact that we might follow such rules unreflectingly in no
way licenses the inference that they are noncognitive and a fortiori such that a
machine could follow them. To be sure, Turing presented a picture of algorithms
in which ‘ingenuity may well be involved in setting up these rules so that a com-
putation may be carried out efficiently, but once the rules are laid down, they
must be carried out in a mercilessly exact way.” But then exactly the same thing
may be said of the law! Whether it should be treated as an empirical fact that
all such rules (i.e., algorithms) can be so encoded as to be mechanically executed
or as a convention (where a set of rules that was not binary encodable would
not be called an ‘algorithm’), all that matters here is that a mechanical sign-
manipulator is no more a ‘rule-following beast’ than an abacus. Which returns
us to Wittgenstein’s insistence that ‘Turing’s machines are really Aumans who
calculate’. As if to corroborate Wittgenstein’s insight, Turing was later to write:

It is possible to produce the effect of a computing machine by writing down
a set of rules of procedure and asking a man to carry them out. Such a com-
bination of a man with written instructions will be called a ‘Paper Machine’.
A man provided with paper, pencil, and rubber, and subject to strict disci-
pline, is in effect a universal machine. ({40], p. 9)

If this later argument seems to suffer from acute circularity it is entirely because
of the pressures built into ‘On Computable Numbers’. It was noted at the out-
set that, from Wittgenstein’s point of view, ‘On Computable Numbers’ must be
seen as a hybrid paper: it begins with a mathematical analysis of functions but
then strays into a philosophical inquiry into the cognitive abilities of those who
compute them. In the first part Turing provided a unique insight into the cri-
terion implicit in earlier attempts to delimit the range of number-theoretic func-
tions for which there are algorithms; in the second he shifted to a discussion of
calculation which is pursued in quasi-epistemological, not mathematical terms.
And as such it is open to Wittgenstein’s objection, the crux of which is that the
only way Turing could synthesize these disparate elements was by investing his
machines with cognitive abilities ab initio: that is, by assuming the very prem-
ise which he subsequently undertook to defend.

The logical next step in this investigation would be to consider Turing’s
influence on those who were to tread in his footsteps: particularly in the areas
of learning programs and automata studies. To conclude this prolegomenon,
however, we have still to resolve why Turing should have presented these me-
chanical operations in quasi-cognitive terms in the first place? That is, why
he prefaced his mathematico-logical achievement with the analogy that we may
compare a Turing machine to a man in the process of computing? To dismiss
§9 as nothing more than an example of the philosophical confusions that can
arise when mathematicians venture into prose in order to interpret the signifi-
cance of their results would be to abandon what is perhaps the most important
feature of this entire issue: viz. the manner in which the inner dynamics of the
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exercise upon which Turing embarked were responsible for his subsequent
involvement in the Mechanist Thesis. For as has been stressed, Turing did not
approach CT in order to inculcate the Mechanist Thesis; on the contrary the
latter evolved from his version of CT, and it is for that reason that the foun-
dations underlying Turing’s thought are as significant as the content of his com-
putability results. Indeed, the very controversy which continues to surround CT
is proof of the enduring strength of that framework, and the problems obdur-
ately tied to it. It was ultimately because formal systems were seen to demand
an epistemological counterpart to the role which understanding plays vis-a-vis
mathematical propositions that Church’s convention was found wanting. And
so it was that, because of the framework he inherited, Turing was led into the
justification presented at §9, and his ‘analysis’ hailed as an absolute definition
of an interesting epistemological notion’. Those who would build a computa-
tionalist empire on the basis of such troubling precedents would do well to pause
first on the significance of Wittgenstein’s ever-timely warning that ‘one keeps for-
getting to go right down to the foundations. One doesn’t put the question marks
deep enough down’ ([51], p. 62¢).

NOTES

1. Cf. the discussion of Russell’s paradox in Remarks on the Foundations of Mathe-
matics [49], 1, App 3 and VII, and [33], Chap. VI.

2. An intriguing question for Wittgenstein scholars is: how far back can the RFM
argument be traced? In particular: can any signs of it be seen in Lectures on the
Foundations of Mathematics [48]? The problem is that this quotation comes from
a 1947 typescript and given Wittgenstein’s method of compiling his manuscripts it
is impossible to say when it was first written. It seems likely that it would have been
at the time of first reading Turing’s paper, and given the later date of this typescript
this might well indicate after the 1939 lectures. This seems to be substantiated
by the fact that no such sentiment is expressed in [48] even though Wittgenstein
touched on a number of areas which impinge on it; and since the argument under-
pinning the above passage is developed at length in RFM [49] this would confirm
that Wittgenstein only read ‘On Computable Numbers’ after his 1939 lectures
(which were concerned with the foundations crisis). This is not a terribly important
issue, and there is probably no way of deciding it one way or another, but there are
grounds to suggest that if not wrong this reading is at least seriously misleading. For
the fact is that throughout Lectures on the Foundations of Mathematics Wittgen-
stein addressed a series of interrelated questions —the nature of proof, mathemat-
ical propositions, calculation, a calculus —which led him to attack near the end of
his lectures the idea that there is such a thing as ‘logical machinery’ (Lecture XX).
He was attacking here what he had earlier called the Bedeutungskorper conception
of meaning: the Fregean idea that the meaning of a mathematical conceyit deter-
mines how it can be extended. Hence it is a crucial part of his larger attack on the
notion that a proof or a rule compels us to proceed in a certain way. But what is
particularly interesting is that, when he did address Turing’s thesis in RFM, he pre-
sented his objections in the context of this earlier argument. And since the purpose
of this earlier argument was to clarify the normative character of mathematical
propositions and proofs it is clear that the same idea underpins his remarks on Tur-
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ing’s thesis. So it is highly likely that the arguments developed in the 1939 lectures
were to some extent discreetly directed at Turing’s thesis.

. After he had introduced Turing machines in Section 1 he added: ‘No real attempt

will be made to justify the definitions given until we reach §9° ({361, p. 117).

. It is interesting to note that this caution slips slightly in what follows:

However, by altering its m-configuration the machine can effectively remember
some of the symbols which it has “seen” (scanned) previously. The possible
behaviour of the machine at any moment is determined by the m-configuration
q, and the scanned symbol G(r). This pair q,, G(r) will be called the “configu-
ration”: thus the configuration determines the possible behaviour of the machine.
([36], p. 117)

Here ‘remember’ and ‘behaviour’ are without inverted commas but ‘seen’ (i.e., per-
ception) retains them.

Turing’s presentation of Turing machines in ‘On Computable Numbers’ shows
exactly where his interests lay. He may have started off with the purpose of prov-
ing the impossibility of Hilbert’s approach to the Entscheidungsproblem, but Tur-
ing’s real interest was to clarify the nature of effective procedures in terms of the
notion of computability. This will be discussed at greater length in Section 2.

And informally; see his 1935 letter to Kleene, quoted in Davis [9], p. 9.
The equivalence is Church’s; cf. Church [6], p. 224 and Kleene [20], p. 56.

. Certainly it is a suggestion which would meet with stiff resistance today, if for no

other reason than the familiar examples of primitive recursive functions which are
not effectively calculable. But the reasons it should not be attributed to Church are
slightly different and, if anything, even more significant. Church did not claim that
effective procedures really are lambda-functions; what he said was that they are
lambda-definable. In other words, we can design a lambda-function which will do
the same thing as any effectively calculable function. Church seems to have seen
this as a species of ‘translation’: i.e. that we can map a lambda-function onto any
kind of number-function. (The danger here is that of supposing that a recursive
function = somehow analyses what we really understand by the number-theoretic
function.)

. This was the argument Church pursued in ‘The Constructive Second Number Class’;

he there defends his proposed definition of effective ordinals on the grounds that
‘those who do not find this convincing the definition [sic] may perhaps be allowed
to stand as a challenge, to find either a less inclusive definition which cannot be
shown to exclude some ordinal which ought reasonably to be allowed as construc-
tive, or a more inclusive definition which cannot be shown to include some ordi-
nal of the second class which cannot be seen to be constructive’ ([5], p. 224).

Suppose ‘a mistake is not possible. But what kind of possibility is that? Mustn’t mis-
take be logically excluded?’ (Wittgenstein [45] §194; cf. Shanker [33], Chaps. I, II,
IIT and VII passim).

So much is clear from Church’s review of ‘On Computable Numbers’ and the
account he gave of Turing’s thesis in “The Constructive Second Number Class’ [6],
(see p. 227; and cf. Davis [8]).

Turing was convinced the conjecture was false; in 1936 E. C. Titchmarsh had used
a mechanical calculator to demonstrate that the first 104 zeros all lie on the real line;
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Turing’s plan was to examine the next few thousand zeros in the hope of coming
across a counterexample to Riemann’s Hypothesis.

13. See Hamming [14], pp. 8f; cf. also Knuth’s explanation— which reads as a direct
comment on the early founders of recursion theory —that

computing machines (and algorithms) do not only compute with numbers: they
can deal with information of any kind, once it is presented in a precise way. We
used to say that sequences of symbols, such as names, are represented in a com-
puter as if they were numbers; but it is really more correct to say that numbers
are represented inside a computer as sequences of symbols. [23]

14. Hodges reports that:

Shannon had always been fascinated with the idea that a machine should be able
to imitate the brain; he had studied neurology as well as mathematics and logic,
and had seen his work on the differential analyser as a first step towards a think-
ing machine. They found their outlook to be the same: there was nothing sacred
about the brain, and that if a machine could do as well as a brain, then it would
be thinking — although neither proposed any particular way in which this might
be achieved. . . . Once Alan said at lunch, “Shannon wants to feed not just data
to a Brain, but cultural things! He wants to play music to it!” And there was
another occasion in [t]he executive mess, when Alan was holding forth on the
possibilities of a “thinking machine”. His high-pitched voice already stood out
above the general murmur of well-behaved junior executives grooming them-
selves for promotion with the Bell corporation. Then he was suddenly heard to
say: “No, I'm not interested in developing a powerful brain. All I'm after is just
a mediocre brain, something like the President of the American Telephone and
Telegraph Company”. ([16], p. 251)

15. This is corroborated in Michie’s memoir on ‘Turing and the Origins of the Com-
puter’:

The game of chess offered a case of some piquancy for challenging with
irreverent shows of force the mastery which rests on traditional knowledge. At
Bletchley park, Turing was surrounded by chess-masters who did not scruple to
inflict their skill upon him. The former British champion Harry Golombek
recalls an occasion when instead of accepting Turing’s resignation he suggested
that they turn the board round and let him see what he could do with Turing’s
shattered position. He had no difficulty in winning. Programming a machine for
chess played a central part in the structure of Turing’s thinking about broader
problems of artificial intelligence. In this he showed uncanny insight. As a lab-
oratory system for experimental work chess remains unsurpassed. But there was
present also, I can personally vouch, a Turing streak of iconoclasm: what would
people say if a machine beat a master? How excited he would be today when
computer programs based on his essential design are regularly beating masters
at lightning chess, and producing occasional upsets at tournament tempo!

Naturally Turing also had to build a chess program (a ‘paper machine’ as
he called it). At one stage he and I were responsible for hand-simulating and re-
cording the respective operations of a Turing-Champernowne and a Michie-
Wylie paper machine pitted against each other. Fiasco again! We both proved
too inefficient and forgetful. Once more Alan decided to go it alone, this time
by programming the Ferranti Mark 1 computer to simulate both. ([25], p. 35)

16. For a discussion of Wittgenstein’s remarks on ‘transitional impossibility proofs’,
particularly as this relates to Godel’s theorem, see [34], §1.

17. Davis concludes that Godel found in Turing’s thesis a satisfactory rendering of the
‘generally accepted properties’ of effective calculability of which he had complained
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to Church in 1934 ([9], p. 14). This, while obviously true, is simply the problem
which concerns us, not the answer.

18. For example, in the case of the Doubling Program which Martin Davis outlines in
[8], pp. 246ff, we would want to say that someone has only mastered the program
when they understand why it is called a ‘doubling program’ and how this relates to
the shift from steps 9 to 10 when the program terminates.

19. Such an argument might be traced back to the Vienna Circle’s treatment of tautol-
ogies as rules fixing the use of symbols (as in, e.g., the case of mathematical propo-
sitions). For here would be a standard and familiar example of one kind of
‘meaningless rule’; at least, a (pseudo-)proposition devoid of all sense but which
functions as a rule for the use of symbols. But this too Wittgenstein rejected. Tau-
tologies themselves cannot be rules; if they were then all tautologies would stipu-
late the same thing: viz., nothing. Rather, it is how we use tautologies which is the
rule, or to be more precise, that in calling certain constructions tautologies we for-
mulate what are commonly referred to as the rules of thought. The tautology ‘p —
p’ is manifestly different than the tautology ‘—~—p = p’; by calling both construc-
tions tautologies we register rules for the use of ‘-’ and ‘—’ respectively. In Lectures
on the Foundations of Mathematics there are long discussions on the nature of
mathematical propositions as opposed to tautologies, and on the relation of the tau-
tology ‘p. & p — q. — q’ to the rule of inference modus ponens. In a difficult sec-
tion Wittgenstein warned that Russell mistakenly treated the former as the latter.
But it is a tautology —i.e., devoid of all cognitive content; hence it could not itself
serve as a rule of inference or a ‘law of thought’. Rather it is that ‘p. & p— q. —
q’ is a tautology which is the law of thought. Russell, he explained, mistakenly
wrote the Law of Excluded Middle as ‘p v —p’, but the Law of Excluded Middle
should be written as ‘“p v -p” = Taut.’ For whereas ‘p v —p’ says nothing, we use
the rule of logical grammar ‘“p v =p” = Taut.’ as one of the fundamental defin-
ing criteria for the meaning of ‘proposition’.

20. In brief, Wittgenstein attacked Hilbert’s idea that the concepts defined by the
axioms of a system are without content until assigned an interpretation; i.e., that
pure geometries ‘define’ and applied geometries determine the meaning of primitive
concepts. To this Wittgenstein objected that ‘the axioms of geometry have the char-
acter of stipulations concerning the language in which we want to describe spatial
objects. They are rules of syntax. The rules of syntax are not about anything; they
are laid down by us’ ([50]). That is, the meaning of primitive mathematical concepts
is constituted by the rules governing their use. In maintaining that pure geometry
lays down the logical form of primitive concepts without understanding their mean-
ing Hilbert had confused the application with an ‘interpretation’ of these concepts.
Thus, where Hilbert regarded pure and applied geometry as independent of one
another Wittgenstein responded that the essence of geometrical as well as arithmet-
ical concepts is that they appear in mufti: just as 2 + 2 = 4 whether we are adding
pebbles or people, so too all the points on the circumference of a Euclidean circle
must be equidistant from the centre whether we are measuring the spatial config-
urations of tables, chairs, or mugs (cf. [34], §4).

21. Cf. Haugeland’s account of the ‘paradox of mechanical reasoning’:

Reasoning (on the co[m]putational model) is the manipulation of meaningful
symbols according to rational rules (in an integrated system). Hence there must
be some sort of manipulator to carry out those manipulations. There seem to
be two basic possibilities: either the manipulator pays attention to what the sym-
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bols and rules mean or it doesn’t. If it does pay attention to the meanings, then
it can’t be entirely mechanical —because meanings (whatever exactly they are)
don’t exert physical forces. On the other hand, if the manipulator does not pay
attention to the meanings, then the manipulations can’t be instances of reason-
ing — because what’s reasonable or not depends crucially on what the symbols
mean. ([15], p. 39)

One suspects that herein lie the seeds of a perplexing problem: if multiplication
really consisted in this kind of Turingesque algorithm we would be confronted with
the mystery of how the brain was able to compute this sum so quickly. The answer,
no doubt, would be that it must use parallel processing and optimal heuristics!

Needless to say, it did not take long for this argument to surface. Here too a seri-
ous study of the evolution of cybernetics and automata study is a prerequisite for
clarifying the foundations of Al.

That is not to say that there is no such thing as ‘calculating in your head’; only that
such uses of the term are themselves derivative on the normative practices which
constitute calculation (i.e., the abilities to explain, correct, etc., the answers arrived
at. See Wittgenstein [52], I, §655; cf. §§96f, 649ff).

Alan Turing, ‘Intelligent machinery, a heretical theory’, quoted in Sarah Turing
[41], p. 129.

One of the factors which most complicates this issue is the ambiguous nature of
computer programs: itself a product of their evolution. In one respect a program
can indeed be seen as a set of instructions (e.g., upwards to the user, and originally
downward to machine operators when they were in service). With the development
of compilers, however, the ‘downward’ function of the program has been restricted
to that of a set of ciphers (cf. [32], pp. 88ff).

In other words, this argument brings us down to Wittgenstein’s discussion of the
logico-grammatical difference between reasons and causes. See [2], Chap. 4.
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