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A Simplified Natural Deduction Approach
to Certain Modal Systems

BANGS L. TAPSCOTT*

The natural deduction approach to standard logic has a number of virtues,
among them being ease of application. However, attempts in the literature to
combine natural deduction with modality have generally resulted in cumbersome
systems little more flexible than straightforward axiomatics.! This paper
presents a natural deduction approach to the 7-B-S4-S5 ring which, if I am not
mistaken, renders them as simple as the ordinary first-order logic taught in in-
troductory courses. One of its most important advantages is semantic trans-
parency: it virtually wears its interpretation on its sleeve. It will perhaps become
obvious that this approach has it roots in the metaphor of modal logic as quan-
tification over possible worlds, though this relationship will not be spelled out
in any detail.

1 Intuitive groundwork Think of possible worlds as flagged or represented
by distinct numerals, with 1 representing the actual world and other numerals
representing others. In modal logic, truth-predicates are not applied absolutely,
but only relative to particular possible worlds. We may observe this graphically
by indexing each sentence to a world at which it is (asserted to be) true, by
attaching that world’s numeral to the propositional expression as a subscript.
P, will mean that P (is true) at world 1; (Q & R), will mean that (Q & R) at
world 2, and so on.

Modal systems differ in their construal of the access relation between
worlds. Let possible-world indices be arranged in strings or chains. Then the
access relationships between worlds represented by those indices may be mapped
or represented by spatial relationships between numerals in the chain.
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The basic chain-convention is that each numeral has access to its immediate
follower in the chain. Additionally, in the system 7 where (only) reflexivity of
access is guaranteed, each numeral will have access to itself. In S4, where tran-
sitivity is also guaranteed, each numeral will have access to the immediate fol-
lower of an accessible numeral, hence to all of its followers as well as to itself.
In Brouwersche, where access is symmetric as well as reflexive, each numeral will
have access to its immediate predecessor as well as its immediate follower and
itself.

In S5, where access is ubiquitous, there is no need to use numeral-chains
to represent the relationship: we can get by with single numerals, together with
the convention that each of them has access to all others.

When a sentence or formula is subscripted by a chain of numerals, it is
indexed by the final number in the chain. For example, P, 3 5 says that P (is
true) at world 5, and also conveys information about access between 1, 3, and
S, depending on the particular system.

So much for the representation of possible worlds. Consider next four
intuitively plausible principles of modal inference.

(@) Truth-Functional Principle: Truth-functional inferences are valid only
within a given possible world.

Given that (P & Q) is true at world n, we may infer that P is true at » but not
that it is true at any other world. Similarly, given that (P O Q) and P are both
true at » we may infer that Q at n, but not at any other world. And given only
that (P D Q) at n and P at a distinct world m, nothing may be inferred about
the truth of Q at any world.

(b) Modal Negation Principle: Whatever is not necessary (at a given
world) is possibly false (at that world), and whatever is not possible
(at a given world) is necessarily false (at that world).

(c) Necessity/Truth Principle: Whatever is necessary at a given world is
true at every world accessible from that one.

(d) Impossibility Principle: Whatever is demonstrably false at an arbitrar-
ily chosen world accessible from 7 is false at every world accessible
from n, hence is impossible at n.

These four principles of inference, together with the way of representing
possible worlds, provide the intuitive basis for the formal business coming next.

2 The formal business A subscript chain is a string of zero or more
numerals separated by commas. Henceforth, mid-alphabet letters n» and m serve
as variables for chains of any length, including the null chain. Front-alphabet
letters a, b and c serve as variables for individual subscript numerals.

Let S be some natural-deduction system of propositional logic, with mech-
anisms for taking on and discharging assumptions and having RAA as a primi-
tive or derived rule (hence having Conditional Proof as a primitive or derived
rule). To form a natural-deduction version of the modal system 7, augment the
formation rules of S to include unary operators for necessity [J and possibil-
ity ¢, and add the following inference rules. '
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(o) Subscript Insertion: Attach a chain of one or more numerals as a sub-
script to each premise, and to each assumption as it is introduced.

(1) S-Restriction: A (truth-functional) rule of S may employ two or more
lines in the derivation only if they bear the same subscript; and under
all inferences via such rules, the subscript carries over unchanged to
the derivate.

(1) is a formal counterpart of principle (a) in the preceding section.

(2) Modal Negation Elimination (MN):
From ~OP, infer O~P,
From ~OP, infer O~P,.

(2) is the formal counterpart of principle (b).

(3) Box Elimination (T-descent):
From OJP, infer P, and P, , for any chain #,b in the derivation.

(3) is the formal counterpart of principle (c).

(4) Impossibility Introduction (Impossibilitation):
From (Q & ~Q)y,, if the latest undischarged assumption P, , con-
tains the first occurrence of numeral b in the derivation, discharge
that assumption and infer ~OP,. Schematically,

— P p (no earlier occurrence of b in the derivation)

(Q& ~Q)m
~OP,.
(4) is the formal counterpart of principle (d).

(B) Subscript Deletion: From P, not within the scope of any undis-
charged assumption, infer P.

(a) and (B3) are the housekeeping rules. Subscript chains form no part of
a wff. Rather, they are part of the proof-structural notation, cousins of assump-
tion and discharge indicators and the like. Rule (3) allows the final line of a
closed derivation (e.g., a theorem) to be a pure wff, without residual parts of
the proof clinging to it.

The only rule of the system allowing the introduction of new subscript
numerals is rule («): new numerals enter the derivation only via assumptions.
An essential ingredient in using this system is the maneuver of “Advancing” a
possibility-wff:

Advancement: From a line OP,, assume P, , where b is a numeral new to
the derivation.

Intuitively, ©P, says that P is possible at (the final numeral of) n, meaning that
P is true at some world accessible from n. Assuming P, , with fresh b is equiv-
alent to stipulating “let b be that world”.
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Here, to illustrate the system in action, is a proof of one of the standard
theorems of 7 the inheritance of necessity across strict implication.

1. O(A D B),
r—>2. DA]
—3. ""’EIBl
4. O~B,
S. ~B1,2
6. (ADB),
7. Ay,
8. Bl,2
9. (B& ~B),»

10. ~0~B,

12. OB,

11. (0~B & ~O~B),

13. (0A4 D OB),

14. (O(4 D B) D (04 D> OB))

/.. (OA D OB)
/.. 0B

(RAA)

3, MN

(Advance, 4)

1, T-descent

2, T-descent

6, 7 modus ponens
8, 5, conjunction

5-9, impossibilitation
4, 10, conjunction

3-11, RAA, double negation
2-12, conditional proof

1-13, conditional proof,
subscr. del.

To form a natural-deduction version of S4, replace T-descent with

S4-Descent: From 0P, infer P, and P, ,, for any chain n,m, in the deri-

vation.

Since m represents a chain rather than a single numeral, this says that (JP, may
S4-descend to any chain with # as initial segment. In 7T, descent proceeds only
one step from home base; in S4 it is permitted all the way down the chain. As
an illustration, here is a proof of the characteristic S4 theorem (00A D CA4).

. 00A,

NonsEwLDD=
<&
b
N

8. ~OA,,
9. (OA & ~0A),,

10. ~00A,
11. (004 & ~00A),

12. 0A,

13. (00A D CA)

/.. OA

(RAA)

1, MN
(Advance, 1)
(Advance, 4)

3, S4-descent

5, 6, conjunction

5-7, impossibilitation
4, 8, conjunction

4-9, impossibilitation
1, 10, conjunction

2-11, RAA, double negation

1-13, conditional proof, subscript deletion.
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To form a natural-deduction version of B, replace T-descent with

B-Descent: From OOP, , infer P,, P, , and P, , . for any chain n,b,c in
the derivation *Provided # is not null.

In B, descent also proceeds only one step from home base, but it may be either
direction along the chain. The above proof of the characteristic S4 theorem can-
not be conducted in T or B since neither 7-descent nor B-descent allows the
move at step (6).

Proof of the characteristic B theorem (P D [JOP) is an elementary mat-
ter, involving descent from J~P;, to ~Py.

A natural-deduction version of S5 can be formed by replacing 7-descent
with

From P, infer P,, for any m in the derivation which has a numeral in
common with n.

However, it is simpler in practice to drop chains altogether and go with single-
numeral subscripts. (Underlying assumption: each numeral has access to every
other. Formal requirement: if there are premises, they all get the same subscript.)
The natural-deduction version of S5 may then be formed by replacing 7-descent
and impossibilitation with:

S5-Descent: From [P, infer P, for any numeral c in the derivation.

S5-Imposs: [ P, (no earlier occurrence of b in the derivation)

(Q & ~Q),

~OP, (cis any numeral in the derivation).

In S5, Advancement is carried out by replacing the old subscript numeral with
one fresh to the derivation.

These systems can be made to resemble the familiar IntElim natural deduc-
tion structure a little more closely by adding the following two derived rules (the
derivations are straightforward).

Box Introduction (Necessitation): Where b does not appear in any prem-
ise or undischarged assumption:
For T, B, S4: From P, , infer (1P,
For S5: From P, infer [JP. for any c in the derivation.

Diamond Introduction (Possibilitation):
For T, B, S4: From P, or P, j infer OP,
For S5: From P, infer OP, for any c in the derivation.

3 Decision procedures Modal systems developed in this way admit of a deci-
sion procedure (I call it Precipitation) which is simpler and more direct than any
I am aware of. It involves no diagrams or tableaux, and is carried out within
the natural deduction format, by conducting a derivation in accordance with a
specified routine guaranteed to lead either to closure or to termination. If the
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derivation closes, it constitutes a proof of validity. If it terminates, a counter-
model may be read off from the lines of the derivation. I describe it first for the
truth-functional system S, and then extend it to the modal systems.

Precipitation for .§ Given the standard definitions of D and =, together with
DeMorgan’s Laws, every wff of S which is not basic (an atomic wff or the nega-
tion of one) will be a double negation or else equivalent to either a conjunction
or a disjunction. Thus only three types of nonbasic formulas need be consid-
ered in the precipitation rules.

Precipitation Rules for S:

(1) Infer: From a disjunction, together with the negation of its left dis-
junct, add its right disjunct to the derivation.

(2) Positivize: From a double negation, add the double negate to the deri-
vation.

(3) Split: From a conjunction, add both conjuncts to the derivation.

(4) Branch: From a disjunction, add its left disjunct to the derivation as
an assumption.

These rules are given in their order of priority. The precipitation routine begins
by assuming the negation of the formula to be evaluated. All discharges are by
RAA. Treatable lines are treated by the appropriate precipitation rule, and the
results are added to the derivation, omitting those which would duplicate lines
already present. If contradicting lines appear, conjoin them and discharge the
latest assumption. At each step, apply the highest-priority precipitation rule that
can be applied. In the event of multiple opportunities, apply it to the earliest line
(or the pair with the earliest member).

A derivation conducted according to this routine must either close or ter-
minate. If it terminates, assign the value 7 to each letter (atomic wff) standing
alone as a line in the derivation, assign F to all other letters, and assign values
to nonatomic wffs in standard fashion. Under this assignment, every wiff con-
stituting a line in the derivation will receive the value T; thus the assignment
satisfies the initial assumption, and countersatisfies its negate (see [2], [3], [11]).

Precipitation for 7T, B, and S5 Precipitation for the three modal systems 7,
B, and S5 is as for S, with the addition of three further precipitation rules to
the bottom of the priority list.

(5) Shift: From ~OP,(~OP,), add O~P,(O0~P,) to the derivation.

(6) Execute: From OP,, add P,, to the derivation for each m accessible
from n in the derivation.

(7) Advance: From OP,, if the derivation does not contain P,, for some
m accessible from n, assume P, , for fresh b.

Giving Advance bottom priority helps keep lines of like subscript clustered in
blocks within the derivation. Advances are discharged by Impossibilitation, all
other assumptions by RAA. A line inferred by SS5-Impossibilitation receives the
subscript of the O-wff advanced to produce the now-discharged assumption. [I-
wffs are re-Executed to new accessible chains (numerals) as they show up in the
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derivation. If lines earlier than a discharged assumption have precipitates within
the scope of that assumption, they must be reprecipitated following the dis-
charge.

A precipitation derivation for any of these three modal systems must either
close or terminate. In case of termination, a Kripke model may be read off by
the following recipe. Let W = the set of subscript numerals c in the derivation.
Determine R from the subscript chains in the derivation, according to their
interpretation for the system in question. For single letters p, let V(p;c) = T iff
Dn,c is a line in the derivation, otherwise let V' (p;c) = F; and assign values to
larger wffs in standard fashion. Or, if one prefers, a Hintikka model-set may
be read off by letting all lines of like subscript constitute one of the sets in the
model. R between the sets is again determined by the subscript chains generat-
ing the sets.

As an illustration, here is a T counterproof of the characteristic S5 theorem
(OP D OOP), followed by a “mechanical” proof of it in S5.

Derivation in T:

—1. ~(OP D OOP), initial assumption

2. OP, 1, split
3. ~0O0P 1, split
4. O~OP, 3, shift
—5. Py, 2, advance
—6. ~OP3 4, advance
7. O~Py; 6, shift
8. ~Ps 7, execute.

At this point the derivation terminates, yielding the following model:

wW=1{1,2,3}
R = Reflexive + {{1,2), (1,3)}
V(P,1)=FV(P2)=TV(P3)=F

Inspection will show that this countersatisfies the negate of the initial
assumption.

Derivation in S5:

—1. ~(OP D O0P), initial assumption
2. OP, 1, split

3. ~O0P, 1, split

4. O~OP; 3, shift
— 5. P, 2, advance
6. ~OP; 4, advance
7. O~P; 6, shift

8. ~P; 7, execute

9. ~P, 7, execute

10. ~P; 7, execute

11. (P & ~P), 5, 9, conjunction

12, ~0~OP; 6-11, impossibilitation

13. (O~OP & ~O~OP),; 4, 12, conjunction
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14. ~OP, 5-13, impossibilitation
15. (OP & ~OP), 2, 14, conjunction
16. (OP) D OIOP) 1-15, RAA, double negation.
Precipitation for S4 The precipitation routine is essentially a treewalk car-

ried out in the natural deduction format. Since, as Kripke proved long ago, S4
is not decidable in a finite tree, unadorned precipitation is not a decision pro-
cedure for S4. Relatively simple formulas, such as (OOP & JOQ), yield pre-
cipitation derivations in S4 which neither close nor terminate but proceed
eternally by generating, through Execution, new ¢-wffs to be Advanced to fur-
ther subscripts, calling for still further Executions, and so on. A device is needed
to shut off these endless repetitive paths.

Each subscript chain in a derivation represents an access path through the
tree. The set of lines bearing the same subscript constitute a “block”, and in S4
precipitation the lines of a block are always contiguously grouped together. The
mark of a potentially endless path is the presence of two identical blocks on that
common path: blocks containing all and only the same formulas, where the ear-
lier of the two subscript chains #n,c is an initial segment of the later one n, m.
When this occurs, the solution is to treat all ¢-wffsOP, ,, not by Advancement,
but by “Foster”-advancement: the final numeral ¢ in the chain of the anticipating
block n, ¢ is carried down and attached to the chain of ¢P, ,, preceded by a
slash, yielding OP, ...

A line with a slash in its chain is indexed by the numeral before the slash,
but the entire chain is interpreted according to the S4 convention, in which each
numeral has access to all of its followers.

The effect of Foster-Advancement is to give m access to ¢, which already
had access to m, thereby looping the access path back onto itself. When an S4
precipitation derivation terminates, a model is read off in the usual fashion,
except that the chains will determine a subordinate quasi-access relation r, and
R will be defined as the ancestral of ». If the derivation contains no slash-
numerals, r will be its own ancestral.

To illustrate these matters, here is a proof of the S4-satisfiability of ((0<¢p
& 00q) —a formula which, left to its own devices, would generate an infinite
tree.

— 1. (O%p & OOg) initial assumption
2. OOp,; 1, split
3. O¢q, 1, split
4. Op, 2, execute
5. 0q, 3, execute
—6.p1» 4, advance
7. Opy.2 2, execute
8. 0q,, 3, execute
—9.q13 5, advance
10. Opy 3 2, execute
11. 0qy 3 3, execute

—12. q124 8, advance
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13. Op12,4 2, execute
14. 0q12,4 3, execute
—15. p135 10, advance
16. Opy35 2, execute
17. ¢q1,3,5 3, execute
—18. pi12,46 13, advance
19. Opy2.46 2, execute
20. ©qy,2,4,6/2 3, execute
—21. q1,3,5,7 16, advance
22. Opy,3,5,7/3 2, execute
23. 0qy,3,5,7 3, execute.

At this point the derivation terminates. W = {1,2,3,4,5,6,7}; R = Reflexive +
{1,2),<1,3),(1,4>,(1,5),(1,6),<1,7),€2,4>,4¢2,6),(3,5), (3,7, {4,2),
(4,6), (5,3> (5,7) €6,2),46,4), (7,3, (7,5)}; V(p,1) =F V(q,1) = F,
Vip,2)=T,V(q,2)=EV(p,3)=FE V(q,3) =T, V(p,4) =F V(q,4) =
,V(p,5)=T,V(q,5)=FE V(p,6)=T,V(q,6)=F, V(p,7)=F, V(gq,7) =
T. Observe that lines 20 and 22 were treated by Foster-Advancement, rather than
by regular Advancement.

4 Some gory details It is obvious that the systems here called T, S4, S5, and
Brouwersche contain their axiomatic counterparts. Proof of containment in the
other direction is available, but too cumbersome to give here in full detail. A
sketch will perhaps suffice. We shall concentrate just on 7.

Let the axiom system 7“ be formed on some axiom system of proposi-
tional logic containing modus ponens, by adding [J as primitive, ¢ defined
as ~J~, and the following axioms and rule:

T°1 (OPDP).
T2 (OP>Q)D((OPDOQ).
T°R From }P, infer FOP.

T“ is a standard axiomatization of the modal system 7.
Next, let a natural deduction system 7* be formed on the propositional
system S by adding [J as primitive, ¢ defined as ~[J~, and the following rules:

T*-1 From OP, infer P.

T*-2 From O(P D Q), infer (P D Q)

T*-3 From P which is neither a premise nor assumption, and which depends
on no premises and no undischarged assumptions, infer CIP.

It is obvious, I hope, that the axiom system 7¢ and the natural deduction sys-
tem T™ are equivalent, in the sense of yielding the same theorems. What needs
to be shown is that T* contains our system 7.

The notion of certification for T* is defined as follows:

1. A line P is certified in a derivation D if [JP is also a line of D.

2. If P and Q are both certified in D, so are their (individual or joint) deri-
vates in D, if any.

3. Nothing else is certified in D.
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If a line P depends on a certified line R, say that its (transitive) dependency on

the certifying line OIR is incidental. The following derived rule of 7 may then

be stated:

T*-4 From (Q & ~Q) which depends on no uncertified lines earlier than the
latest undischarged assumption P (incidental dependence doesn’t count),
discharge P and infer ~OP, citing all certifying lines earlier than P upon
which (Q & ~Q) depends.

The derivation of 7*-4 is shown schematically as follows: Suppose the follow-
ing derivation sequence in 7™:

OR
as

R

—’P
(Q&'*Q); from R, S, P

that is, the contradiction depends only on P and certified lines. Then the fol-
lowing alternative derivation sequence can be constructed:

OR
as
R

_—_.S
(Q & ~Q) as before, from R, S, P
~P RAA
(SO ~P) CP
(RD(SD~P) CP

O(RD(SD ~P) T*-3
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(ORDO(SD ~P)) T*-2
O > ~P) modus ponens
(OS> O~P) T*-2
O~p modus ponens
~QP. definition of ¢.

T*-4 is T*’s version of the “Impossibilitation” rule of Section 2 above. T* can
now be shown to contain our 7 as follows. Bearing in mind that subscripts form
no part of a wff, any inference justified by T-descent will be justified by T*-1,
and any justified by MN will be justified by the definition of <.

As for Impossibilitation, let D be a T derivation whose latest open assump-
tion is P, . with a later line (Q & ~Q),,. If m = n,c then (Q & ~Q) comes just
from P, or from P together with 7-descent derivates of earlier lines in D. It can-
not depend on earlier lines in any other way, since only 7-descent can crank out
lines of subscript n,c from lines without that subscript. Those 7-descendants are
thus certified, hence the dependence on the certifying lines is incidental, and the
inference to ~COP is justified under T*-4. On the other hand, if m # n,c then
since no new subscript has been introduced since P, . it follows that (Q & ~Q)
is independent of P, . and hence comes entirely from earlier lines. Earlier lines
which yield (Q & ~Q) yield any wff whatsoever, including ~OP. Hence, the
inference is again justified in T*. It follows that T* contains T, hence T“ con-
tains 7" our system 7 is equivalent to its axiomatic counterpart. Similar proofs
may be given for the other three modal systems.

Because modal wffs are finitely complex, and precipitation yields shorter
wffs from longer ones, precipitation can generate only a finite number of dis-
tinct wffs from a finite number of initial assumptions. Since precipitation omits
duplicates of lines already in the derivation, a nonclosing derivation could fail
to terminate only by generating eternally ascending subscripts attached to dupli-
cates of earlier wffs, after the manner of unadorned S4-precipitation of (JOP
& JOQ). This cannot happen in S5, since OP, is not Advanced if the deriva-
tion already contains P, for any c. It cannot happen in T or B since Execution
proceeds only one step from home base. If those Executions yield new ¢-wffs
and consequent Advances, the resulting new chains will not be accessible for fur-
ther Execution. It cannot happen in S4 when Foster-Advancement is employed.
A O-wff is executed only down its own access path. Repeated generation of <-
wffs on a given access path, and their subsequent Advancement, may yield fur-
ther OJ-wffs to be executed, but these will eventually all be duplicates of [1-wffs
earlier on, hence already executed down, the path. Thus there must eventually
arise a subscript-block identical, save for subscript chain, with an earlier block
on the path. At that point, the ¢-wffs in that block will be Foster-Advanced and
that access path will proceed no further.

Arguments paralleling those of Bennett ([2], [3]) show that the model read
off from a terminated derivation satisfies every line of the derivation. A com-
pleteness theorem follows immediately: a wff unprovable by precipitation is
invalid, hence every valid wff can be proven.

5 Doing it with quantifiers The modal rules of Section 2 combine easily with
first-order logic to produce familiar systems of quantified modal logic. In what
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follows below, the notation ®«/8 represents the formula resulting when every
occurrence of « in ®« is changed to an occurrence of 3; ®a !B represents the for-
mula resulting when every occurrence of « in ®a is changed to one of 8, and
every occurrence of 8 comes from such a change; ®a//3 represents any formula
resulting when one or more occurrences of « in ®« is changed to an occurrence
of 3—it represents a range of formulas rather than a single formula.

Let S be extended to a natural-deduction system F of first-order logic hav-
ing Universal Instantiation and Universal Generalization as its primitive quan-
tificational rules. Quantificational inferences, like propositional inferences, are
valid only within a given possible world. Thus when the apparatus of Section 2
is added to F, subscripts will carry over unchanged under all quantificational
inferences. This may be assured by phrasing the quantifier rules as:

Universal Instantiation From (Vo)®a,, infer ®a/B,.

Universal Generalization From &3, infer (Va)®B!c,, provided 8 does
not occur free in any premise or undischarged assumption.

Augmenting F with the modal rules from Section 2 yields the quantified
modal systems QB, Q5, QT + BF, and Q4 + BF. To obtain QT and Q4 with-
out the Barcan Formula, the quantifier rules for those systems must be replaced
by

UI (restricted) From (Va)®ay, infer ®a/(,, provided that 8 has its first
occurrence in the derivation in a line whose subscript is a (proper or improper)
initial segment of n.

UG (restricted) From ®8,, infer (Va)®B!«a,, provided 8 does not occur
free in any premise or undischarged assumption, and has its first free occur-
rence in the derivation in a line whose subscript has » as a (proper or
improper) initial segment.

The semantics for standard quantified modal systems requires that the
domain of each world be included in the domain of every accessible world. Addi-
tionally, the validity of the Barcan Formula ((vx)JFx D O (vx)Fx) requires
that the domain of each world include that of every accessible world, effectively
requiring a common domain for all worlds.

Intuitively, we may think of the primary domain to which a free letter
belongs as being fixed by the subscript of the line in which that letter first occurs
free: it belongs to the domain of the final numeral in that subscript chain. Since
containment is transitive, and each numeral in a chain has access to its immedi-
ate successor, it follows that the domain of each numeral is contained in that
of every successor, and contains that of every predecessor. The effect of UI (re-
stricted) is to confine instantiation at n to letters certified to belong to the do-
main of #, or to fresh letters which are thereby stipulated to be in #’s domain.
Conversely, UG (restricted) allows generalization at » only when it would be
valid at a world whose domain contains that of #. For systems containing the
Barcan Formula as a theorem, hence requiring a common domain for all worlds,
no such restrictions are necessary.
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Here, as an illustration, is a proof in OB of the Barcan Formula:

— 1. (Vx)OFXx,
— 2. ~O(VX)Fx,

3. O~ (Vx)Fx; 2, MN
— 4. ~(Vx)FXx, (3, advance)
5. OFa, I, Ul
6. Fa, , S, B-descent
7. (Vx)Fx; 6, UG
8. ((vx)Fx & ~(Vx)Fx);, 4, 7, conjunction
9. ~O~ (vx)Fx, 4-8, impossibilitation

conjoin 3 and 9; close by RAA then CP.

Observe that this derivation cannot be carried out in QT or Q4, since the step
at line (7) is not permitted by UG (restricted).

For the systems employing unrestricted UI and UG, the traditional rules
of Existential Generalization and Existential Instantiation may be derived and
employed in the usual fashion. For the systems employing the restricted versions,
these derived rules will have the following formulation.

EG (restricted): From ®8,,, infer (3a)$B//v,,, provided S has its first free
occurrence in the derivation in a line whose subscript is a (proper or im-
proper) initial segment of n.

EI (restricted): (Ax)da,
— da!(,

¥,

v,

provided that 8 does not occur free in ¥, nor in any premise or undis-
charged assumption, and has its first free occurrence in a line whose sub-
script has n as a (proper or improper) initial segment.

NOTES

1. Anderson and Johnstone [1] give a natural-deduction version of S4 only, taking
strict implication as primitive. Canty [4] gives versions of T, S4, and SS, also tak-
ing strict implication as primitive (he mistakenly claims that it is not a modal oper-
ator). Ohnishi and Matsumoto [8, 9] give versions of 7, S4, S5, and a couple of
other Lewis systems, taking necessity and possibility as primitive and using tech-
niques that closely follow the Gentzen canons. Fitch [5] gives versions of 7, S4,
and S5, taking necessity as primitive. In my opinion, his comes closest to being a
“usable” approach.

2. An implementation of the precipitation routine for S, T, B, S4, and S5 has been pro-
grammed in FORTRAN 77 on the University of Utah Computer Center Sperry-
UNIVAC 1100, by the author.
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