Notre Dame Journal of Formal Logic Volume 28, Number 2, April 1987

Decision Procedure for a Class of $(L_{\omega_1 \omega})_t$ -Types of T_3 Spaces

JUAN CARLOS MARTINEZ

The $(L_{\omega\omega})_t$ -types of T_3 spaces are introduced in [1]. An effective procedure is then obtained to decide whether a type is satisfiable in some T_3 space. The expressibility of $(L_{\omega_1\omega})_t$ for T_3 spaces is studied in [2]. For this purpose a class of $(L_{\omega_1\omega})_t$ -types is introduced and in this way we obtain a characterization of the $(L_{\omega_1\omega})_t$ -equivalence for a wide class of T_3 spaces. In the present paper, we prove that there is a decision procedure for this class of types.

1 Preliminaries Suppose that A is a T_3 space and A^* is a subset of A. The *n*-move game $G_n(A^*, A)$ between two players, I and II, is defined as follows. In his *i*-th move (i = 1...n) player I chooses an arbitrary finite sequence a_1, \ldots, a_r of points in A and then in his *i*-th move player II chooses a sequence of r neighborhoods U_1 of a_1, \ldots, U_r of a_r in A. Let U'_1, \ldots, U'_m be all the neighborhoods chosen by II during the game. Player I wins if $A^* \subset U'_1 \cup \ldots \cup U'_m$; otherwise, player II wins. Then, A^* is accessible (in the space A) if for some $n \in \omega$ player I has a winning strategy in the game $G_n(A^*, A)$. With this notion we can study the behavior of convergence. If $a \in A$ we say that A^* converges to $a, A^* \to a$, if a is an accumulation point of A^* . If $A^* \to a$ the following two types of convergence are considered:

- (i) $A^* \stackrel{0}{\to} a$, if for every neighborhood U of a we have that $A^* \cap U$ is not accessible.
- (ii) $A^* \xrightarrow{1} a$, if there is a neighborhood U of a with $A^* \cap U$ accessible.

The set S_n of *n*-types is then defined by induction on *n*:

$$S_0 = \{*\}, S_{n+1} = P\left(\bigcup_{\lambda=0,1} \{(\alpha, \lambda) \colon \alpha \in S_n\}\right),\$$

where P(X) denotes the power set of X.

Received July 8, 1985; revised November 20, 1985

284

The *n*-type of $a \in A$ is defined inductively by:

$$s_0(a, A) = *,$$
 $s_{n+1}(a, A) = \bigcup_{\lambda=0,1} \{(\alpha, \lambda) : \alpha \in S_n \text{ and } A_\alpha \xrightarrow{\lambda} a\},$

where $A_{\alpha} = \{a \in A : s_n(a, A) = \alpha\}.$

For $m, n \in \omega$ with $m \le n$ and $\alpha \in S_n$ the *m*-type $(\alpha)_m$ is defined in a way such that if A is a T_3 space and $a \in A$, $s_m(a, A) = (s_n(a, A))_m$ (cf. [2]). So, for $m \le n$, the *n*-type of *a* determines the *m*-type of *a*.

By means of these types we obtain a characterization of the $(L_{\omega,\omega})_t$ equivalence for the class of T_3 spaces of *a*-finite type. A space A is of *a*-finite type if for some $n_0 \in \omega$: $s_{n_0}(a, A) = s_{n_0}(a', A)$ implies $s_n(a, A) = s_n(a', A)$ for all $n > n_0$, $a, a' \in A$. Two T_3 spaces A and B are *a-type equivalent* if for every *n*-type α we have:

- (i) A and B have the same number of points of n-type α
- (ii) A_{α} is accessible iff B_{α} is accessible.

Then, if A and B are T_3 spaces of a-finite type we have: A and B are $(L_{\omega_1 \omega})_t$ equivalent iff A and B are a-type equivalent (cf. [2]).

An *n*-type α is satisfiable in A if there is an $a \in A$ with $s_n(a, A) = \alpha$. The set of satisfiable *n*-types in A is denoted by $S_n(A)$. In this paper, we find an effective procedure to decide whether for a nonempty set S of n-types and f: $S \rightarrow \{0, 1\}$ there exists a T_3 space A such that $S = S_n(A)$ and, for any $\alpha \in S$, $f(\alpha) = 1$ iff A_{α} is accessible.

Ziegler's notion of an ω -tree employed in [1] to find a decision procedure for the $(L_{\omega\omega})_t$ -types of T_3 spaces will also be useful in our case. This notion can be found in [1] and [2]. If (T, \leq) is an ω -tree and σ_{\leq} is the topology induced by \leq , we say that (T, σ_{\leq}) is an ω -topological tree.

In the present paper, we presuppose acquaintance with [2] on the basic properties of the accessible sets. We refer to that paper for examples and basic ideas.

Suppose that A is a T_3 space and A_1^* , A_2^* are sub-2 The decision procedure sets of A. If $A_1^* \to a$ for every $a \in A_2^*$, we write $A_1^* \to A_2^*$. If $A_1^* \stackrel{\lambda}{\to} a$ for every $a \in A_2^*$, we write $A_1^* \stackrel{\lambda}{\to} A_2^*$ ($\lambda = 0, 1$). The easy proof of the next lemma is left to the reader.

Lemma 1 Suppose that A is a T_3 space, A_1^* , A_2^* , A^* are subsets of A and $a \in A$. We have:

(a) If $A_1^* \xrightarrow{0} A_2^*$ and $A_2^* \rightarrow a$, $A_1^* \xrightarrow{0} a$.

- (b) If $A_1^* \to A_2^*$ and $A_2^* \xrightarrow{0} a$, $A_1^* \xrightarrow{0} a$. (c) If $A^* \to A^*$, $A^* \xrightarrow{0} A^*$.

We say that $(P, <, \rho, \mu)$ is an accessibility relation (in the sequel we shall say *a*-relation) if P is a nonempty finite set, < is a transitive binary relation on P, ρ : {(p, q): $p, q \in P$ with p < q} \rightarrow {0, 1} and μ : $P \rightarrow$ {0, 1} are functions such that the following three conditions hold (we write $p \leq q$ if p < q or p =q):

- (i) For every $p \in P$: p < p implies $\rho(p, p) = 0$.
- (ii) For every $p, q, p', q' \in P$ with $p \leq p' < q' \leq q$: $\rho(p, q) = 1$ implies $\rho(p', q') = 1$.
- (iii) For every $p, q \in P$ with p < q: $\mu(q) = 1$ implies $\mu(p) = 1$ and $\rho(p, q) = 1$.

We say that $q \in P$ is minimal if there is no $p \in P$ with p < q. If $(P, <, \rho, \mu)$ is an *a*-relation, it is very easy to check:

- (i) For all $p, q, r \in P$ with $p \leq r \leq q$ and $p \neq q$: $\rho(p, q) = 1$ implies $r \ll r$.
- (ii) For all $p, q \in P$ with $p \leq q$: $\mu(q) = 1$ implies $p \prec p$.

Now suppose that A is an ω -topological tree. Note that the following hold:

- (i) Any infinite path of A is a nonaccessible set.
- For $a \in A$ and $n \in \omega$, the set of all the points of the paths of origin (ii) a and length $\leq n$ is accessible.

If $a \in A$ the set of immediate successors of a is denoted by N(a).

Suppose that $(P, <, \rho, \mu)$ is an a-relation. Then, there is an ω -Lemma 2 topological tree A and a partition $(A_p)_{p \in P}$ of A such that for every $p, q \in P$ the following hold:

- (a) $A_q \rightarrow a$ for some $a \in A_p$ implies $A_q \rightarrow A_p$
- (b) $A_q \to A_p \text{ iff } p < q$ (c) $A_q \to A_p \text{ implies } A_q \xrightarrow{\rho(p,q)} A_p$
- (d) A_p accessible iff $\mu(p) = 1$.

Proof: We are going to construct pairwise disjoint sets A_p^n for $p \in P$ and $n \in P$ ω by induction on *n*.

If $\mu(p) = 1$ and p is minimal, A_p^0 is a nonempty finite set. If $\mu(p) = 1$ and p is not minimal, $A_p^0 = \emptyset$. If $\mu(p) = 0$, A_p^0 is a denumerable infinite set.

Suppose that A_p^n is defined for all $p \in P$. Assume that $p, q \in P, p < q$, and $a \in A_p^n$. If $\rho(p, q) = 1$, we consider a denumerable infinite set $A_{q,a}^n$. We suppose that $A_{q,a}^n \subset N(a)$. If $\rho(p, q) = 0$ we consider a denumerable infinite set $A_{a,a}^{n,k}$ for each $k \in \omega$; then, the following are assumed:

- (i) $A_{q,a}^{n,0} \subset N(a)$
- (ii) For every $b' \in A_{q,a}^{n,k+1}$ there is a $b \in A_{q,a}^{n,k}$ such that $b' \in N(b)$ (iii) For every $b \in A_{q,a}^{n,k+1}$ there is only a $b' \in A_{q,a}^{n,k+1}$ with $b' \in N(b)$.

We put

$$A_{q,a}^n = \bigcup_{k \in \omega} A_{q,a}^{n,k}.$$

For each $q \in P$ we set

$$A_q^{n+1} = \bigcup \{A_{q,a}^n : a \in A_p^n \text{ and } p < q \text{ for some } p\}.$$

Suppose that $a \in A_p^n$. If $n \ge 1$ and there are b and k such that $a \in A_{p,b}^{n-1,k}$, we consider the immediate successor a' of a in $A_{p,b}^{n-1,k+1}$ and set

$$N(a) = \{a'\} \cup \bigcup_{\substack{p < q \\ \rho(p,q) = 1}} A_{q,a}^n \cup \bigcup_{\substack{p < q \\ \rho(p,q) = 0}} A_{q,a}^{n,0}$$

Otherwise,

$$N(a) = \bigcup_{\substack{p < q \\ \rho(p,q)=1}} A_{q,a}^n \cup \bigcup_{\substack{p < q \\ \rho(p,q)=0}} A_{q,a}^{n,0}.$$

Now we put $A_p = \bigcup_{n \in \omega} A_p^n$ and $A = \bigcup_{p \in P} A_p$.

If $(P, <, \rho, \mu)$ is an *a*-relation and $p \in P$ we define the *n*-type of *p* in *P*, $s_n(p, P)$, by induction on *n* as follows:

$$s_0(p, P) = *,$$

 $s_{n+1}(p, P) = \{(\beta, \lambda_\beta): (a) \text{ the set } J \text{ of all } q \in P \text{ with } p < q \text{ and } s_n(q, P) = \beta \text{ is nonempty, and (b) } \lambda_\beta = 0 \text{ if there is a } q \in J \text{ with } \rho(p, q) = 0, \lambda_\beta = 1 \text{ otherwise} \}.$

Proceeding by induction on *n* it is easy to prove the following lemma.

Lemma 3 Let $(P, <, \rho, \mu)$ be an a-relation. Suppose A is an ω -topological tree with a partition $(A_p)_{p \in P}$ satisfying (a)-(d) of Lemma 2. Then, for every $p \in P$, $a \in A_p$ and $n \in \omega$ we have that $s_n(a, A) = s_n(p, P)$.

Theorem Suppose that S is a nonempty set of n-types and $f: S \rightarrow \{0, 1\}$. The following two conditions are equivalent:

(a) There is a T_3 space A with $S = S_n(A)$ and such that, for every $\gamma \in S$, $f(\gamma) = 1$ iff A_{γ} is accessible.

(b) There is an a-relation $(S', <, \rho, \mu)$ such that:

- (i) $S' \subset S_{n+1}$ and $S = \{(\alpha)_n : \alpha \in S'\}$
- (ii) $\alpha = s_{n+1}(\alpha, S')$ for all $\alpha \in S'$
- (iii) For each $\gamma \in S$: $f(\gamma) = 1$ iff $\mu(\alpha) = 1$ for every $\alpha \in S'$ with $(\alpha)_n = \gamma$.

Proof: By using Lemma 3, it is easy to prove that (b) implies (a).

Conversely, let A be a T_3 space with $S = S_n(A)$ and such that, for every $\gamma \in S$, $f(\gamma) = 1$ iff A_{γ} is accessible. Put

$$S' = S_{n+1}(A).$$

We define the binary relation \vdash on S' by

$$\alpha \vdash \beta$$
 iff $A_{\beta} \rightarrow a$ for some $a \in A_{\alpha}$.

Let $(\alpha_1, \ldots, \alpha_k)$ be a finite sequence of n + 1-types of S' with $k \ge 2$. We say that $(\alpha_1, \ldots, \alpha_k)$ is a *chain* if $\alpha_i \vdash \alpha_{i+1}$ for $1 \le i \le k - 1$.

If $\alpha \vdash \beta$, we define $\rho'(\alpha, \beta)$ by

$$\rho'(\alpha, \beta) = \begin{cases} 0, \text{ if } A_{\beta} \stackrel{0}{\to} a \text{ for some } a \in A_{\alpha}. \\ 1, \text{ otherwise.} \end{cases}$$

If $w = (\alpha_1, \ldots, \alpha_k)$ is a chain, we define $\rho'(w)$ by

 $\rho'(w) = \begin{cases} 0, \text{ if there is an } i \text{ with } 1 \le i \le k-1 \text{ and } \rho'(\alpha_i, \alpha_{i+1}) = 0. \\ 1, \text{ otherwise.} \end{cases}$

Now we introduce the transitive binary relation \lt on S' as follows:

 $\alpha < \beta$ iff one of the following two conditions holds:

- There is a chain w of the form (α, \ldots, β) with $\rho'(w) = 0$. (i)
- There is a chain of the form (α, \ldots, β) and there is no chain (ii) of the form (β, \ldots, β) .

If $\alpha < \beta$ we define $\rho(\alpha, \beta)$ by

$$\rho(\alpha, \beta) = \begin{cases} 0, \text{ if there is a chain } w \text{ of the form } (\alpha, \dots, \beta) \\ \text{ with } \rho'(w) = 0. \\ 1, \text{ otherwise.} \end{cases}$$

Suppose that $\alpha \in S'$ and $\gamma \in S$. We need the following four statements:

- (1) If $\alpha < \beta$, then $A_{(\beta)_n} \to A_{\alpha}$.
- (2) If A_γ → A_α, then there is a β ∈ S' with (β)_n = γ and α < β.
 (3) If A_γ → A_α, then there is a β ∈ S' with (β)_n = γ, α < β and ρ(α, β) = 0.
- If $A_{\gamma} \xrightarrow{1} A_{\alpha}$, then for any $\beta \in S'$ with $(\beta)_n = \gamma$ and $\alpha < \beta$ we have (4) that $\rho(\alpha, \beta) = 1$.

Clearly, if β , $\beta' \in S'$ and $A_{(\beta)_n} \to a$ for some $a \in A_{\beta'}$ then $A_{(\beta)_n} \to A_{\beta'}$. So, we obtain (1).

To verify (3), note that if $A_{\gamma} \stackrel{0}{\to} A_{\alpha}$ then for every $a \in A_{\alpha}$ there is a $\beta \in S'$ with $(\beta)_n = \gamma$ and $A_\beta \xrightarrow{0} a$.

By Lemma 1 (a) and (b) we see that if $\alpha < \beta$ and $\rho(\alpha, \beta) = 0$ then $A_{(\beta)_n} \xrightarrow{0} 0$ A_{α} . Therefore, (4) holds.

To prove (2), we may assume that $A_{\gamma} \xrightarrow{1} A_{\alpha}$ (otherwise, it would be enough to apply (3)). Consider

 $C = \{\beta \in S': (\beta)_n = \gamma \text{ and there is a chain of the form } (\alpha, \dots, \beta)\}.$

It is easy to see that $C \neq \emptyset$. Now we put

$$D = \{\beta \in S' \colon (\beta)_n = \gamma \text{ and } \alpha < \beta\}.$$

Suppose that $D = \emptyset$. Then we would have that for every $\beta \in C$ there is a chain of the form (β, \ldots, β) . Thus, if $\beta \in C$,

$$A_{\gamma} \rightarrow A_{\beta}.$$

Since $A_{\alpha} \xrightarrow{1} A_{\alpha}$ and there is a chain of the form (α, \ldots, β) ,

 $A_{\gamma} \xrightarrow{1} A_{\beta}.$

Therefore,

$$\bigcup_{\substack{\beta \vdash \beta' \\ (\beta')_n = \gamma}} A_{\beta'} \xrightarrow{1} A_{\beta}.$$

Consequently,

$$\bigcup_{\beta \in C} A_{\beta} \xrightarrow{1} \bigcup_{\beta \in C} A_{\beta},$$

which contradicts Lemma 1 (c).

We define $\mu: S' \to \{0, 1\}$ as follows:

$$\mu(\alpha) = \begin{cases} 1, \text{ if } A_{\alpha} \text{ is accessible and for any } \alpha' < \alpha A_{\alpha'} \text{ is accessible and} \\ \rho(\alpha', \alpha) = 1. \\ 0, \text{ otherwise.} \end{cases}$$

So, if α is minimal we have that $\mu(\alpha) = 1$ iff A_{α} is accessible.

Note that $(S', <, \rho, \mu)$ is an *a*-relation and $S = \{(\alpha)_n : \alpha \in S'\}$. By (1)... (4) we can prove by induction on *m* that if $m \le n + 1$ and $\alpha \in S'$:

$$(\alpha)_m = s_m(\alpha, S').$$

Hence,

$$\alpha = s_{n+1}(\alpha, S')$$
 for every $\alpha \in S'$.

One can check that if $\gamma \in S$:

 A_{γ} accessible iff $\mu(\alpha) = 1$ for all $\alpha \in S'$ with $(\alpha)_n = \gamma$.

We immediately obtain from the theorem that there is an effective procedure to decide whether a given *n*-type is satisfiable in some T_3 space. This result was announced in [2]. Note that, for any *n*-type α , if α is satisfiable in some T_3 space then α is satisfiable in some T_3 space of *a*-finite type.

Corollary There is an effective procedure to decide whether for $S \subset S_0$ $\cup \ldots \cup S_n$ with $S \cap S_k \neq \emptyset$ ($k \le n$) and $f: S \to \{0, 1\}$ there is a T_3 space A such that:

$$S \cap S_k = S_k(A) \quad (k \le n),$$

$$f(\gamma) = 1 \text{ iff } A_\gamma \text{ accessible} \quad (\gamma \in S).$$

Proof: If such a space A exists, for k < n we have:

(i) S ∩ S_k = {(α)_k: α ∈ S ∩ S_n}
(ii) If γ ∈ S ∩ S_k, f(γ) = 1 iff f(α) = 1 for every α ∈ S ∩ S_n with (α)_k = γ.

Remark: If A is a T_3 space, $E_n^A: S_n \to \omega \cup \{\infty\}$ is defined in [2] by $E_n^A(\alpha) =$ number of $a \in A$ with $s_n(a, A) = \alpha$. By a method similar to the one we have been using, we can find an effective procedure to decide whether for $h: S_n \to \omega \cup \{\infty\}$ and $f: \{\gamma \in S_n: h(\gamma) \neq 0\} \to \{0, 1\}$ there is a T_3 space A such that $h = E_n^A$ and, for any $\gamma \in S_n$ with $h(\gamma) \neq 0, f(\gamma) = 1$ iff A_γ is accessible. Then, in the definition of the accessibility relation, we have to include a function H: $P \to \{n: n \ge 1\} \cup \{\infty\}$ such that for every $p \in P$:

p nonminimal implies $H(p) = \infty$ p minimal implies $(H(p) = \infty \text{ iff } \mu(p) = 0).$

JUAN CARLOS MARTINEZ

REFERENCES

- [1] Flum J. and M. Ziegler, *Topological Model Theory*, Lecture Notes in Mathematics 769, Springer-Verlag, Berlin, 1980.
- [2] Martinez, J. C., "Accessible sets and $(L_{\omega_1\omega})_t$ -equivalence for T_3 spaces," The Journal of Symbolic Logic, vol. 49 (1984), pp. 961–967.

Departamento de Ecuaciones Funcionales Facultad de Matemáticas Universidad Complutense 28040 Madrid, Spain