On *n*-Equivalence of Binary Trees

KEES DOETS*

Summary and introduction This note presents a simple characterization of the class of all trees which are *n*-elementary equivalent with B_m : the binary tree with one root all of whose branches have length m (for each pair of positive integers n and m). Section 1 contains some preliminaries. Section 2 introduces the class Q(n) of binary trees and proves that every tree in it is n-equivalent with B_m whenever $m \ge 2^n - 1$. Section 3 shows that, conversely, each nequivalent of a B_m with $m \ge 2^n - 1$ belongs to Q(n). Finally, all *n*-equivalents of B_m for $m < 2^n - 1$ are isomorphic to B_m .

Define the relation \equiv^n between models of the same finite 1 Preliminaries vocabulary (not containing function-symbols) using induction on n by

- (1) $A \equiv^0 B$ iff A and B have the same true atomic sentences
- (2) $A \equiv^{n+1} B$ iff both
 - (i) $\forall a \in A \exists b \in B(A, a) \equiv^n (B, b)$
 - (ii) $\forall b \in B \exists a \in A(A, a) \equiv^n (B, b)$.

Also, when $\underline{a} \in A^k$, define the first-order (!) formula $\sigma_a^n(x_0, \dots, x_{k-1})$ of quantifier rank n by

- (1') $\sigma_{\underline{a}}^{0}$ is the conjunction of all formulas with at most x_{0}, \ldots, x_{k-1} free satisfied by \underline{a} in A which are either atomic or negated atomic (2') $\sigma_{\underline{a}}^{n+1}$ is $\forall x_{k} \bigvee_{b \in A} \sigma_{\underline{a}}^{n} \land (b)} \land \bigwedge_{b \in A} \exists x_{k} \sigma_{\underline{a}}^{n} \land (b)}$.

For a definition of the Ehrenfeucht-game and a proof of the next lemma (be it in the context of linear orderings) I refer to [1], pp. 93-96, 247-252 and 359-361.

^{*}I thank Piet Rodenburg for communicating his question (answered by 2.5 below) on which this note is a digression, and Prof. Specker for a lecture featuring Ehrenfeuchtgames.

- 1.1 Lemma The following are mutually equivalent:
- $(1) \quad A \equiv^n B$
- (2) A and B have the same true sentences of quantifier rank $\leq n$
- (3) Player II has a winning strategy in the Ehrenfeucht-n-game between A and B
- (4) $B \models \sigma_{\varnothing}^n$
- **1.2 Lemma** Suppose that A and B are finite linear orderings. Then $A \equiv^n B$ iff |A| = |B| or |A|, $|B| \ge 2^n 1$.

Proof: cf. [1], Corollary 6.9, p. 99 and exercise 6.10, p. 100.

2 Binary trees

- **2.1 Definitions, notations** Assume that \leq partially orders the nonempty set T.
 - (1) T is a tree if, for all $x \in T$, $x \downarrow = \{y \in T | y < x\}$ is a finite set linearly ordered by \leq . The height of x, h(x), is the order type of $x \downarrow$.
 - (2) The tree T is binary if it has a least element (its root) and every non-maximal element has exactly two immediate successors.
 - (3) A branch through T is a maximal linearly ordered set. A branch above $x \in T$ is a branch in the subtree $x \uparrow = \{y \in T | x < y\}$. The order type of a branch is called its length.

The characterization promised is contained in the following

- **2.2 Definition** Let $n \ge 1$. The binary tree *T satisfies Q(n)* iff the following conditions are met:
 - Q.1(n) If n = 2 then $\exists x \forall y \ge x (y = x)$; if $n \ge 3$ then $\forall x \exists y \ge x \forall z \ge y (z = y)$.
 - O.2(n) Every branch through T has length $\geq 2^n 2$.
 - Q.3(n) Some branch through T has length $\geq 2^n 1$.
 - Q.4(n) For all $x \in T$ and $m < 2^{n-1} 1$: if some branch above x has length m then every branch above x has length m.

Notice that every binary tree satisfies Q(1): Q.1(n)-Q.3(n) only demand something if $n \ge 2$; and Q.4(n) is nontrivial for $n \ge 3$ only.

2.3 Theorem If the binary trees T^1 and T^2 satisfy Q(n) then $T^1 \equiv^n T^2$.

Proof: Induction on n. The case n = 1 is trivial. Assuming 2.3 to hold for n we check it for n + 1 using Ehrenfeucht-games. Thus, suppose $t \in T^1$ is the first move of player I in the (n + 1)-game between T^1 and T^2 . There are three cases to consider:

- (1) $h(t) < 2^n 1$. Decompose T^1 in:
 - (i) two top-trees t^1 and t^2 , final sections of T^1 the roots of which are the two minimal elements of t^{\uparrow}

- (ii) the linear ordering $t \downarrow$ of type h(t)
- (iii) the trees t_a (where a < t; there are none if h(t) = 0): the root of t_a being the immediate successor of $a \in t \downarrow$ not below t.

Since T^1 satisfies Q(n+1), it is clear that all trees in this decomposition satisfy Q(n). For instance, Q.1(n) is inherited from Q.1(n+1) by final sections (this is true even if n=1 or n=2!). Q.4(n+1) implies Q.4(n); and if T^1 satisfies Q.4(n+1) then so do its final sections.

By Q.2(n+1), each branch in, say, t^1 has length $\geq 2^{n+1} - 2 - h(t) - 1 > 2^{n+1} - 2 - (2^n - 1) - 1 = 2^n - 2$, i.e., has length $\geq 2^n - 1$. Thus, t^1 has Q.2(n) and Q.3(n). The same goes for the other subtrees.

Now player II answers t with some $s \in T^2$ for which h(s) = h(t). Let j be the isomorphism between $t \downarrow$ and $s \downarrow$. s induces a decomposition of T^2 similar to the one described for t in which all trees satisfy Q(n). By induction-hypothesis, corresponding trees in the decompositions are n-equivalent. Therefore, II can win the remaining n-game using the following strategy: above t or s he uses winning strategies between t^i and s^i (i = 1, 2). Below t or s he answers using the isomorphism s. Finally, a move in some s is answered using a winning strategy between s and s and s vice versa.

This strategy is clearly winning for II since the union of partial isomorphisms between corresponding substructures in the decompositions is a partial isomorphism between T^1 and T^2 .

(2) There is no branch of length $\geq 2^n - 1$ above t.

By Q.4(n+1) there exists $u \le t$ such that all branches above u have length $2^n - 2$. Hence, u is the root of a final section B_u of T^1 in which all branches have length $2^n - 1$.

Since T^2 satisfies Q.1(n+1) (for, $n+1 \ge 2$) and Q.4(n+1), there exists $v \in T^2$ which is the root of a final section B_v of T^2 isomorphic to B_u . (1)

By Q.2(n+1), $u\downarrow$ and $v\downarrow$ have order types $\geq 2^{n+1}-2-(2^n-1)=2^n-1$; hence $u\downarrow\equiv^n v\downarrow$ by Lemma 1.2. (2)

If a < u, branches above a through u have length $\ge 2^n - 1$; by Q.4(n + 1) therefore, all branches above a have length $\ge 2^n - 1$; in particular, all branches through u_a have length $\ge 2^n - 1$. Thus, u_a satisfies Q(n). The same goes for the $v_b(b < v)$.

By induction-hypothesis, $u_a \equiv^n v_b$ whenever a < u and b < v. (3) Now II uses the following strategy. First, he answers t using the isomorphism (1). The remaining n-game is dealt with as follows. Between B_u and B_v , II goes on using the isomorphism (1). Below u or v he uses the winning strategy (2). If I makes a move x in some $u_a(a < u)$ for the first time while a has not been played yet, I is granted the extra move a as well. Then II answers a by some b < v using (2) and next answers a by some a by some a by some a is granted the extra move a as well. Then II answers a by some a by some a is granted the extra move a as well.

Of course, if a has been played before, b has been fixed already and no extra move is granted (this occurs in particular when x isn't the first move in u_a by either player).

(3) $h(t) \ge 2^n - 1$ and some branch above t has length $\ge 2^n - 1$.

By Q.4(n+1) then, all branches above t have length $\ge 2^n - 1$. Hence, in the decomposition described under (1) above, t^1 and t^2 satisfy Q(n). If $a < \infty$

t, branches above a through t and, hence, all branches above a, have length $\geq 2^n - 1$; thus t_a satisfies Q(n).

Since T^2 satisfies Q.3(n+1) and $2^{n+1}-1=2(2^n-1)+1$, II can find $s \in T^2$ such that $h(s)=2^n-1$ while some branch above s has length $\geq 2^n-1$. It follows that s^1 , s^2 and all $s_b(b < s)$ satisfy Q(n). For the remaining n-game, II uses a strategy similar to the one used under (2) above; except that above s or t he uses that $s^i \equiv^n t^i$ (i=1,2).

- **2.4 Examples** The following trees satisfy Q(n).
 - 1. The binary tree B_m all of whose branches have length $m \ge 2^n 1$.
 - 2. Infinite binary trees provided that, along every infinite branch, all finite side-trees are of type 1. Moreover, such finite side-trees have to occur infinitely often on each infinite branch.
- **2.5 Corollary** Finiteness of trees is not a first-order property on the class of all binary trees.
- **2.6 Corollary** "Every branch has length $\geq 2^n 1$ " and its negation "Some branch has length $\leq 2^n 2$ " (n > 1) cannot be expressed by first-order sentences of quantifier rank n on the class of (finite) binary trees.
- 3 Q(n) in first-order terms By 2.4, B_m satisfies Q(n) whenever $m \ge 2^n 1$; hence 2.3 gives one half of the following
- **3.1 Theorem** Let $m \ge 2^n 1$. A binary tree T satisfies Q(n) iff $T \equiv^n B_m$.

The other half is established by Propositions 3.2-3.4 below. These results (together with 1.1) show that Q(n) can be expressed by a first-order sentence of quantifier rank n which therefore, together with some first-order quantifier rank-4 axiomatization of binary trees (instead of requiring that each $x \downarrow$ be finite in 2.1.1 we merely demand it to be a discrete linear ordering with first and last element), is logically equivalent to the sentence σ_{\varnothing}^n described in Section 1 (where $A = B_m$) (when $n \ge 4$ and $m \ge 2^n - 1$).

Notice that, by definition, Q.1(n) has been expressed by a first-order sentence of quantifier rank $\leq n$. Q.2(n)-Q.4(n) are dealt with by 3.4, 3.2, and 3.3, respectively.

In the sequel, $\phi^{< x}$ and $\phi^{> x}$ denote the formulas obtained from ϕ by restricting quantifiers to the sets $\{y|y < x\}$ and $\{y|x < y\}$, respectively.

3.2 Proposition Define the sentences ϕ_n by:

$$\phi_1$$
 is $\exists x(x=x)$
 ϕ_{n+1} is $\exists x(\phi_n^{< x} \land \phi_n^{> x})$.

Then ϕ_n has quantifier rank n and it holds in a tree iff there is a branch of length $\geq 2^n - 1$.

Proof: Obvious.

For the next propositions, t^1 and t^2 are defined as in case (1) of the proof of 2.3.

In view of 2.6, the next result is not entirely trivial.

3.3 Proposition Let k be any integer ≥ 1 and T a binary tree such that $T \equiv^{n+1} B_k$. Then T satisfies Q.4(n+1).

Proof: We may assume n > 1 since otherwise Q.4(n+1) is trivially satisfied. Suppose α is a branch of minimal length $m < 2^n - 1$ above some $t \in T$ such that some branch above t has length t. Assume t is a branch through t. Let t be the root of t. Then t and t is a branch of length t above t and hence, by minimality of t all branches through t have length t and all branches through t have length t and length t and t are length t and length t are lengt

We may assume that β is finite since T satisfies Q.1(3) (this is a quantifier rank-3 sentence true in B_k and $n+1 \ge 3$). Furthermore, let $y \in B_k$ be the element $\ne x$ with the same predecessors as x. Notice that if $s \in \beta$ and $(T, u, s) \equiv^{n-1} (B_k, x, z)$ then $z \ge y$, since $n-1 \ge 1$ and $s \ne u \land \forall w < u \ (w < s)$ is a quantifier rank-1 sentence true in (T, u, s).

The proof is finished by indicating how I can defeat II in the *n*-game between (T, u) and (B_k, x) , contradicting (1). If $m < 2^{n-1}$ then I, by picking the largest element $s ext{ of } \beta$, wins the *n*-game: II has to answer with a maximal element $z \ge y$, whence there remain $m-1 < 2^{n-1}-1$ elements in $\{w < z | y \le w\} = \{w < z | w \ne x\}$ and I can defeat II in n-1 more moves by playing on β below s (use 1.2). If $2^{n-1} \le m$ then $2^{n-1} < \ell$ and I picks $s \in \beta$ such that $\{v \in \beta | s < v\}$ has $2^{n-1}-1$ elements. On penalty of losing (cf. 3.2) II must answer with a $z \ge y$ above which there are branches of length $\ge 2^{n-1}-1$. But then $\{w < z | y \le w\}$ has $\le m-2^{n-1} < 2^n-1-2^{n-1}=2^{n-1}-1$ elements left and I needs only n-1 more moves on β below s to defeat II.

3.4 Proposition Suppose $k \ge 2^{n+1} - 2$. Let T be a binary tree such that $T \equiv^{n+1} B_k$. Then T satisfies Q.2(n+1).

Proof: Suppose that some branch α through T has length $\ell < 2^{n+1} - 2$. Since the quantifier rank-(n + 1)-sentence

$$\forall x (\neg \phi_n^{< x} \to \exists y (x < y))$$

 $(\phi_n \text{ defined in 3.2})$ holds in B_k (for $2^n \le 2^{n+1} - 2$), α has an element t of height $2^n - 2$.

Now $\{s \in \alpha | t < s\}$ is a branch above t of length $\ell - (2^n - 1) < 2^{n+1} - 2 - (2^n - 1) = 2^n - 1$; hence, by 3.3, every branch above t has length $\ell - (2^n - 1)$. Now the quantifier rank-(n + 1)-sentence $\forall x (\phi_n^{< x} \lor \phi_n^{> x})$ is satisfied in B_k ; on the other hand, x = t is a counterexample in T.

3.5 Proposition For each $m < 2^n - 1$ there is a quantifier rank $\leq n$ -sentence ϕ_m^n such that for all trees T: $T \models \phi_m^n$ iff all branches through T have length m.

Proof: Left to the reader.

3.6 Corollary If $m < 2^n - 1$ and T is a binary tree such that $T \equiv^n B_m$ then $T \cong B_m$.

3.7 Corollary $B_m \equiv^n B_k \text{ iff } m = k \text{ or } m, k \ge 2^n - 1.$

REFERENCE

[1] Rosenstein, J. G., Linear Orderings, Academic Press, New York, 1982.

Mathematics Institute University of Amsterdam Amsterdam, The Netherlands