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On n-Equivalence of Binary Trees

KEES DOETS*

Summary and introduction This note presents a simple characterization of
the class of all trees which are n-elementary equivalent with B,,: the binary tree
with one root all of whose branches have length m (for each pair of positive
integers n and m). Section 1 contains some preliminaries. Section 2 introduces
the class Q(n) of binary trees and proves that every tree in it is n-equivalent
with B,, whenever m =2" — 1. Section 3 shows that, conversely, each n-
equivalent of a B, with m =2" — 1 belongs to Q(n). Finally, all n-equivalents
of B,, for m < 2" — 1 are isomorphic to B,,.

1 Preliminaries Define the relation =" between models of the same finite
vocabulary (not containing function-symbols) using induction on » by

(1) A =° Biff A and B have the same true atomic sentences
(2) A ="*! Biff both

(i) va€ Aibe B(A, a) =" (B, b)

(i) vbeBlae A(A, a) =" (B, b).

Also, when a € A*, define the first-order (!) formula 0 (Xos. .., Xg—1) Of
quantifier rank n by

1) Ugo is the conjunction of all formulas with at most xy, . . .,Xx,_; free satis-
fied by @ in A which are either atomic or negated atomic

(2,) 0.‘_;1+1 is kaV UélA(b) A /\ HXkU;~<b).
beA beA

For a definition of the Ehrenfeucht-game and a proof of the next lemma (be it
in the context of linear orderings) I refer to [1], pp. 93-96, 247-252 and 359-361.

*I thank Piet Rodenburg for communicating his question (answered by 2.5 below) on
which this note is a digression, and Prof. Specker for a lecture featuring Ehrenfeucht-
games.
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1.1 Lemma The following are mutually equivalent:

(1) A="B

(2) A and B have the same true sentences of quantifier rank < n

(3) Player II has a winning strategy in the Ehrenfeucht-n-game between A
and B

4 BEodl

1.2 Lemma Suppose that A and B are finite linear orderings. Then A ="
Biff |A| = |B| or |A|, |B] =2" — 1.

Proof: cf. [1], Corollary 6.9, p. 99 and exercise 6.10, p. 100.

2 Binary trees

2.1 Definitions, notations Assume that < partially orders the nonempty
set T.

(1) Tisatreeif, forallxe T, x| = {y € T|y < x} is a finite set linearly
ordered by =. The height of x, h(x), is the order type of x|.

(2) The tree T is binary if it has a least element (its roof) and every non-
maximal element has exactly two immediate successors.

(3) A branch through T is a maximal linearly ordered set. A branch above
x € Tis a branch in the subtree x T = {y € T'|x < y}. The order type
of a branch is called its length.

The characterization promised is contained in the following

2.2 Definition Let n = 1. The binary tree T satisfies Q(n) iff the following
conditions are met:

Q.1(n) Ifn=2thenaxvy=x(y=x);if n=3thenvxay=xvz=y(z=
y).

Q.2(n) Every branch through 7 has length = 2" — 2.

Q.3(n) Some branch through 7 has length =2" — 1.

Q.4(n) For all x € T and m < 2"~! — 1: if some branch above x has
length m then every branch above x has length m.

Notice that every binary tree satisfies Q(1): Q.1(n)-Q.3(n) only demand some-
thing if n» =2; and Q.4(n) is nontrivial for n = 3 only.

2.3 Theorem If the binary trees T' and T? satisfy Q(n) then T' =" T2

Proof: Induction on #. The case n = 1 is trivial. Assuming 2.3 to hold for » we
check it for n + 1 using Ehrenfeucht-games. Thus, suppose £ € T'! is the first
move of player I in the (n + 1)-game between 7! and T'2. There are three cases
to consider:

A) h() <2"—1.
Decompose 7! in:

(i) two top-trees ¢! and ¢2, final sections of T'! the roots of which are
the two minimal elements of ¢1
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(ii) the linear ordering ¢! of type A(¢)
(iii) the trees ¢, (Where a < ¢; there are none if A(¢) = 0): the root of ¢,
being the immediate successor of @ € ¢| not below ¢.

Since T satisfies Q(n + 1), it is clear that all trees in this decomposition satisfy
Q(n). For instance, Q.1(n) is inherited from Q.1(n + 1) by final sections (this
is true even if n =1 or n =2!). Q.4(n + 1) implies Q.4(n); and if T satisfies
Q.4(n + 1) then so do its final sections.

By Q.2(n + 1), each branch in, say, ¢! has length =2"*! — 2 — h(¢) —
1>2"' -2 —(2" — 1) — 1 =2" -2, i.e., has length =2" — 1. Thus, ¢! has
Q.2(n) and Q.3(n). The same goes for the other subtrees.

Now player II answers ¢ with some s € T2 for which A(s) = h(¢). Let j be
the isomorphism between ¢! and s . s induces a decomposition of 72 similar to
the one described for ¢ in which all trees satisfy Q(n). By induction-hypothesis,
corresponding trees in the decompositions are n-equivalent. Therefore, II can
win the remaining n-game using the following strategy: above ¢ or s he uses win-
ning strategies between ¢’ and s’ (i = 1, 2). Below ¢ or s he answers using the
isomorphism j. Finally, a move in some #,(a < t) by I is answered using a win-
ning strategy between #, and s;(,) and vice versa.

This strategy is clearly winning for II since the union of partial isomor-
phisms between corresponding substructures in the decompositions is a partial
isomorphism between 7! and T2

(2) There is no branch of length = 2" — 1 above ¢.

By Q.4(n + 1) there exists # < ¢ such that all branches above u have length
2" — 2. Hence, u is the root of a final section B, of T'! in which all branches
have length 2" — 1.

Since T2 satisfies Q.1(n + 1) (for, n + 1 =2) and Q.4(n + 1), there exists
v € T? which is the root of a final section B, of T? isomorphic to B,. (1)

By Q.2(n + 1), ul and v! have order types =2"*! —2 — (2" — 1) =2" —
1; hence u! =" vl by Lemma 1.2. (2)

If a < u, branches above a through u have length =2" — 1; by Q.4(n + 1)
therefore, all branches above @ have length = 2" — 1; in particular, all branches
through u, have length = 2" — 1. Thus, u, satisfies Q(n). The same goes for the
vp(b < V).

By induction-hypothesis, u, =" v, whenever a < u and b < v. (3) Now II
uses the following strategy. First, he answers ¢ using the isomorphism (1). The
remaining #n-game is dealt with as follows. Between B, and B,, II goes on using
the isomorphism (1). Below u or v he uses the winning strategy (2). If I makes
a move x in some u,(a < u) for the first time while a has not been played yet,
I is granted the extra move a as well. Then II answers a by some b < v using (2)
and next answers x by some y € vy, using (3).

Of course, if @ has been played before, b has been fixed already and no
extra move is granted (this occurs in particular when x isn’t the first move in u,
by either player).

(3) h(r) =2" — 1 and some branch above ¢ has length =2" — 1.
By Q.4(n + 1) then, all branches above ¢ have length =2" — 1. Hence, in
the decomposition described under (1) above, ¢! and ¢? satisfy Q(n). If a <
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t, branches above @ through ¢ and, hence, all branches above a, have length
= 2" — 1; thus ¢, satisfies Q(n).

Since T2 satisfies Q.3(n + 1) and 2"*! — 1 =2(2" — 1) + 1, II can find
s € T? such that A(s) = 2" — 1 while some branch above s has length =2" — 1.
It follows that s, s? and all s,,(b < s) satisfy Q(n). For the remaining n-game,
IT uses a strategy similar to the one used under (2) above; except that above s
or ¢ he uses that s' ="t (i =1, 2).

2.4 Examples The following trees satisfy Q(n).

1. The binary tree B,, all of whose branches have length m = 2" — 1.

2. Infinite binary trees provided that, along every infinite branch, all finite
side-trees are of type 1. Moreover, such finite side-trees have to occur
infinitely often on each infinite branch.

2.5 Corollary Finiteness of trees is not a first-order property on the class
of all binary trees.

2.6 Corollary “Every branch has length =2" — 1” and its negation “Some
branch has length <2" — 2” (n > 1) cannot be expressed by first-order sen-
tences of quantifier rank n on the class of (finite) binary trees.

3 Q(n) in first-order terms By 2.4, B,, satisfies Q(n) whenever m = 2" — 1;
hence 2.3 gives one half of the following

3.1 Theorem Let m = 2" — 1. A binary tree T satisfies Q(n) iff T =" B,,.

The other half is established by Propositions 3.2-3.4 below. These results
(together with 1.1) show that Q(n) can be expressed by a first-order sentence
of quantifier rank n which therefore, together with some first-order quantifier
rank-4 axiomatization of binary trees (instead of requiring that each x| be finite
in 2.1.1 we merely demand it to be a discrete linear ordering with first and last
element), is logically equivalent to the sentence o described in Section 1 (where
A =B,) (whenn=4and m=2"-1).

Notice that, by definition, Q.1(7) has been expressed by a first-order sen-
tence of quantifier rank < n. Q.2(n)-Q.4(n) are dealt with by 3.4, 3.2, and 3.3,
respectively.

In the sequel, »<* and ¢~* denote the formulas obtained from ¢ by
restricting quantifiers to the sets { y|y < x} and {y|x < y}, respectively.

3.2 Proposition Define the sentences ¢, by:
¢ is Ax(x = x)
Gnt is AX(d5F A G77%).
Then ¢, has quantifier rank n and it holds in a tree iff there is a branch
of length =2" — 1.

Proof: Obvious.

For the next propositions, ¢! and ¢? are defined as in case (1) of the proof
of 2.3.

In view of 2.6, the next result is not entirely trivial.
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3.3 Proposition Let k be any integer =1 and T a binary tree such that
="*1 B,. Then T satisfies Q.4(n + 1).

Proof: We may assume # > 1 since otherwise Q.4(n + 1) is trivially satisfied.
Suppose « is a branch of minimal length m < 2" — 1 above some ¢ € T such
that some branch above ¢ has length >m. Assume « is a branch through ¢'.
Let u be the root of ¢!. Then o — {u} is a branch of length m — 1 above u
and hence, by minimality of m, all branches through ! have length m; and
all branches through #? have length = m. Choose x € By such that (T, u) ="
(Bg, x). (1) By (a variation on) Lemma 1.2 it follows that all branches through
B, = {y € By|x < y} have length m. Let 8 be a branch through ¢ of length
£>m.

We may assume that 3 is finite since T satisfies Q.1(3) (this is a quanti-
fier rank-3 sentence true in By and n + 1 = 3). Furthermore, let y € By be the
element # x with the same predecessors as x. Notice that if s € 8 and (7, u, s)
=""1(By,x,z)thenz=y,sincen—1=2landsgunvw<u (w<s)isa
quantifier rank-1 sentence true in (7, u, s).

The proof is finished by indicating how I can defeat II in the n-game
between (7, u) and (B, x), contradicting (1). If m < 2"~! then I, by picking
the largest element s of 8, wins the n-game: II has to answer with a maximal ele-
ment z = y, whence there remain m — 1 < 2"7! — 1 elements in {w < z|y <
w} = {w < z|w £ x} and I can defeat II in n» — 1 more moves by playing on 3
below s (use 1.2). If 27! < m then 2"~! < ¢ and I picks s € 8 such that {v €
Bls < v} has 2""! — 1 elements. On penalty of losing (cf. 3.2) II must answer
with a z = y above which there are branches of length =27~! — 1. But then
{w<zlyswlhas=m—2""1<2"—1-2""1=2""1_1 elements left and
I needs only #» — 1 more moves on 3 below s to defeat II.

3.4 Proposition Suppose k = 2" — 2. Let T be a binary tree such that
T ="*1 By. Then T satisfies Q.2(n + 1).

Proof: Suppose that some branch « through T has length ¢ < 2"*! — 2. Since
the quantifier rank-(n + 1)-sentence

vX(1¢* = 3y(x < y))

(¢,, defined in 3.2) holds in By (for 2” < 2"*! — 2), « has an element ¢ of height
2" -2,

Now {s € a|t < s} is a branch above ¢ of length £ — (2" — 1) < 2"*! —
2 — (2" — 1) = 2" — 1; hence, by 3.3, every branch above ¢ has length ¢ — (2" —
1). Now the quantifier rank-(n + 1)-sentence Vx(¢;* v ¢;*) is satisfied in By;
on the other hand, x = ¢ is a counterexample in 7.

3.5 Proposition For each m < 2" — 1 there is a quantifier rank < n-sen-
tence ¢y, such that for all trees T: T E ¢%, iff all branches through T have
length m.

Proof: Left to the reader.
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3.6 Corollary If m< 2" —1and T is a binary tree such that T =" B,, then
T=B,.

3.7 Corollary B,="B iffm=korm, k=2"~1.
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