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On n-Equivαlence of Binary Trees

KEES DOETS*

Summary and introduction This note presents a simple characterization of
the class of all trees which are ^-elementary equivalent with Bm: the binary tree
with one root all of whose branches have length m (for each pair of positive
integers n and m). Section 1 contains some preliminaries. Section 2 introduces
the class Q(n) of binary trees and proves that every tree in it is ^-equivalent
with Bm whenever m >2n — 1. Section 3 shows that, conversely, each n-
equivalent of a Bm with m > 2n — 1 belongs to Q(n). Finally, all ^-equivalents
of Bm for m < 2n — 1 are isomorphic to Bm.

1 Preliminaries Define the relation =n between models of the same finite
vocabulary (not containing function-symbols) using induction on n by

(1) A Ξ=° B iff A and B have the same true atomic sentences
(2) A =n+ι B iff both

(i) VaGAlb(EB(A9a) =n (B, b)
(ii) VbeBlaeA(A,a) =n (B, b).

Also, when a G Ak, define the first-order (!) formula σί( je 0 , . . . ,#*-i) of
quantifier rank n by

(Γ) σg is the conjunction of all formulas with at most xOi... ,xk-X free satis-

fied by a in A which are either atomic or negated atomic

(2') σ* + 1 is Vxk V σϋ~<b> Λ Λ *Xk<*S~<b>-
b(ΞA b^A

For a definition of the Ehrenfeucht-game and a proof of the next lemma (be it
in the context of linear orderings) I refer to [1], pp. 93-96, 247-252 and 359-361.

*I thank Piet Rodenburg for communicating his question (answered by 2.5 below) on
which this note is a digression, and Prof. Specker for a lecture featuring Ehrenfeucht-
games.
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1.1 Lemma The following are mutually equivalent:
(1) A =n B
(2) A and B have the same true sentences of quantifier rank < n
(3) Player II has a winning strategy in the Ehrenfeucht-n-game between A

and B
(4) B¥σ&

1.2 Lemma Suppose that A and B are finite linear orderings. Then A =n

Biff\A\ = \B\or\A\f \B\ > 2 " - l .

Proof: cf. [1], Corollary 6.9, p. 99 and exercise 6.10, p. 100.

2 Binary trees

2.1 Definitions, notations Assume that < partially orders the nonempty
set Γ.

(1) Tis a tree if, for all x G F, xl = {y G T\y < x} is a finite set linearly
ordered by <. The height of x, h(x), is the order type of xl.

(2) The tree T is binary if it has a least element (its root) and every non-
maximal element has exactly two immediate successors.

(3) A branch through Tis a maximal linearly ordered set. A branch above
x G T is a branch in the subtree x ΐ = {y G 7*1* < jμ}. The order type
of a branch is called its length.

The characterization promised is contained in the following

2.2 Definition Let n > 1. The binary tree T satisfies Q(n) iff the following
conditions are met:

Q. 1 (n) If n = 2 then 3xVy > x(.y = x); if n > 3 then Vx3j> > xVz > j>(z =

y).
Q.2(n) Every branch through T has length > 2Λ - 2.
g.3(rt) Some branch through Γhas length >2n - 1.
ζλ4(tf) For all x G 71 and m < 2n~ι — 1: if some branch above x has

length m then every branch above x has length m.

Notice that every binary tree satisfies Q(l): Q l(n)-Q3(n) only demand some-
thing if n > 2; and QΛ(n) is nontrivial for n > 3 only.

2.3 Theorem 7/ίAe W/iαry trees T1 and T2 satisfy Q{n) then T{ =n T2.

Proof: Induction on n. The case n = 1 is trivial. Assuming 2.3 to hold for n we
check it for n + 1 using Ehrenfeucht-games. Thus, suppose £ G Γ 1 is the first
move of player I in the (n + l)-game between Γ1 and T2. There are three cases
to consider:

(1) h(t)<2n-\.
Decompose Γ1 in:

(i) two top-trees tι and t2, final sections of Tι the roots of which are
the two minimal elements of / ΐ
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(ii) the linear ordering tϊ of type h{t)
(iii) the trees ta (where a < t\ there are none if h{t) = 0): the root of ta

being the immediate successor of a E tl not below t.

Since Tι satisfies Q(n + 1), it is clear that all trees in this decomposition satisfy
Q(n). For instance, QΛ(n) is inherited from QΛ(n + 1) by final sections (this
is true even if n = 1 or n = 2!). QΛ(n + 1) implies QΛ(n); and if Tι satisfies
QA(n + 1) then so do its final sections.

By Q.2{n + 1), each branch in, say, tι has length >2n+ί - 2 - h(t) -
1 > 2n+ι - 2 -(2n - 1) - 1 = 2n - 2, i.e., has length >2* - 1. Thus, ύ has
Q.2{n) and Q.3(n). The same goes for the other subtrees.

Now player II answers t with some SET2 for which h{s) = h(t). Lety be
the isomorphism between tϊ and sI. s induces a decomposition of T2 similar to
the one described for t in which all trees satisfy Q(n). By induction-hypothesis,
corresponding trees in the decompositions are ^-equivalent. Therefore, II can
win the remaining «-game using the following strategy: above t or s he uses win-
ning strategies between tι and sι (i = 1, 2). Below t or s he answers using the
isomorphism j . Finally, a move in some ta(a < t) by /is answered using a win-
ning strategy between ta and sj(<a) and vice versa.

This strategy is clearly winning for II since the union of partial isomor-
phisms between corresponding substructures in the decompositions is a partial
isomorphism between Tι and T2.

(2) There is no branch of length > 2n — 1 above t.
By QΛ(n + 1) there exists u < t such that all branches above u have length

2n - 2. Hence, u is the root of a final section Bu of Tι in which all branches
have length 2n - 1.

Since T2 satisfies QΛ(n + 1) (for, n + 1 > 2) and QΛ(n + 1 ) , there exists
v E T2 which is the root of a final section Bυ of T2 isomorphic to Bu, (1)

By Q2{n + 1), uϊ and yl have order types > 2n+ι - 2 - (2n - 1) = 2n -
1; hence wl Ξ Λ L>1 by Lemma 1.2. (2)

If a < u, branches above a through u have length > 2n - 1; by Q.4(« + 1)
therefore, all branches above a have length > 2n — 1; in particular, all branches
through ua have length > 2n — 1. Thus, ua satisfies Q(n). The same goes for the
vb(b< v).

By induction-hypothesis, ua =n υb whenever a < u and b < v. (3) Now II
uses the following strategy. First, he answers t using the isomorphism (1). The
remaining AZ-game is dealt with as follows. Between Bu and Bv, II goes on using
the isomorphism (1). Below u or v he uses the winning strategy (2). If I makes
a move x in some ua{a <u) for the first time while a has not been played yet,
I is granted the extra move a as well. Then II answers a by some b < v using (2)
and next answers x by some y G vb using (3).

Of course, if a has been played before, b has been fixed already and no
extra move is granted (this occurs in particular when x isn't the first move in ua

by either player).

(3) h(t) > 2n - 1 and some branch above t has length > 2n - 1.
By <2 4(AZ + 1) then, all branches above t have length > 2n — 1. Hence, in

the decomposition described under (1) above, tι and t2 satisfy Q(n). If a <
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t, branches above a through t and, hence, all branches above α, have length
> 2 Λ - 1; thus ta satisfies Q(n).

Since T2 satisfies β.3(/i + 1) and 2n+ι - 1 = 2(2" - 1) + 1, II can find
SET2 such that h(s) = 2n - 1 while some branch above s has length > 2n - 1.
It follows that s\ s2 and all fy(Z> < s) satisfy ζ?(«). For the remaining tf-game,
II uses a strategy similar to the one used under (2) above; except that above s
or t he uses that s* =n V (/ = 1, 2).

2.4 Examples The following trees satisfy Q(n).

1. The binary tree Bm all of whose branches have length m > 2n - 1.
2. Infinite binary trees provided that, along every infinite branch, all finite

side-trees are of type 1. Moreover, such finite side-trees have to occur
infinitely often on each infinite branch.

2.5 Corollary Finiteness of trees is not a first-order property on the class
of all binary trees.

2.6 Corollary "Every branch has length > 2n - I"and its negation "Some
branch has length < 2n — 2" (n > 1) cannot be expressed by first-order sen-
tences of quantifier rank n on the class of (finite) binary trees.

3 Q(n) in first-order terms By 2.4, Bm satisfies Q(n) whenever m > 2n — 1;
hence 2.3 gives one half of the following

3.1 Theorem Let m > 2n - 1. A binary tree Tsatisfies Q(n) iff T =n Bm.

The other half is established by Propositions 3.2-3.4 below. These results
(together with 1.1) show that Q(n) can be expressed by a first-order sentence
of quantifier rank n which therefore, together with some first-order quantifier
rank-4 axiomatization of binary trees (instead of requiring that each xl be finite
in 2.1.1 we merely demand it to be a discrete linear ordering with first and last
element), is logically equivalent to the sentence σg described in Section 1 (where
A = Bm) (when n > 4 and m > 2n - 1).

Notice that, by definition, QΛ{n) has been expressed by a first-order sen-
tence of quantifier rank < n. Q.2{n)-QA{n) are dealt with by 3.4, 3.2, and 3.3,
respectively.

In the sequel, φ<x and φ>x denote the formulas obtained from φ by
restricting quantifiers to the sets {y\y < x} and {y\x < y}9 respectively.

3.2 Proposition Define the sentences φn by:
Φx is 3x(x = x)

Φn+ιisix(ΦrΛΦϊx)
Then φn has quantifier rank n and it holds in a tree iff there is a branch

of length >2n - 1.

Proof: Obvious.

For the next propositions, tι and t2 are defined as in case (1) of the proof
of 2.3.

In view of 2.6, the next result is not entirely trivial.
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3.3 Proposition Let k be any integer > 1 and T a binary tree such that
T =n+ι Bk. Then Tsatisfies QA(n + 1).

Proof: We may assume n > 1 since otherwise QΛ(n + 1) is trivially satisfied.
Suppose a is a branch of minimal length m < 2n — 1 above some t G T such
that some branch above t has length >m. Assume α is a branch through t{.
Let u be the root of t1. Then a - {«} is a branch of length m - 1 above w
and hence, by minimality of ra, all branches through tι have length m; and
all branches through t2 have length > m. Choose x G Bk such that (Γ, w) Ξ Λ

(1?£, x). (1) By (a variation on) Lemma 1.2 it follows that all branches through
Bx= {y G 2ί*|x < .y} have length m. Let 0 be a branch through ί2 of length
£> m.

We may assume that β is finite since Tsatisfies Q.I(3) (this is a quanti-
fier rank-3 sentence true in Bk and n + 1 > 3). Furthermore, let yGBkbe the
element Φ x with the same predecessors as x. Notice that if s G β and (Γ, w, s)
ΞE"-1 (5^, x, Z) then z ^ j , since Λ — 1 > 1 and s φ u Λ VW < w (w < 5) is a
quantifier rank-1 sentence true in (Γ, «, 51).

The proof is finished by indicating how I can defeat II in the π-game
between (Γ, ύ) and (Bk, x), contradicting (1). If m < 2n~ι then I, by picking
the largest element s of β> wins the Λ-game: II has to answer with a maximal ele-
ment z ^ y, whence there remain m — 1 < 2n~ι — 1 elements in {w < z\y ^
w} = {w < z\w φ x} and I can defeat II in n — 1 more moves by playing on β
below s (use 1.2). If 2n~ι < m then 2""1 < I and I picks s G jS such that {i G
β\s < v} has 2""1 - 1 elements. On penalty of losing (cf. 3.2) II must answer
with a z ^ y above which there are branches of length > 2n~ι - 1. But then
{w < z\y < w} has < m - 2n~x < 2n - 1 - 2n~x = 2n~ι - 1 elements left and
1 needs only n — 1 more moves on β below s to defeat II.

3.4 Proposition Suppose k > 2n+ι — 2. Let T be a binary tree such that
T =n+ι Bk. Then Tsatisfies Q.2{n + 1 ) .

Proof: Suppose that some branch a through Γhas length I < 2n+ι - 2. Since
the quantifier rank-(w + l)-sentence

vχ{-^Φnx - iy(χ < y))

(φn defined in 3.2) holds in Bk (for 2n < 2n+1 - 2), a has an element t of height
2 " - 2 .

Now {s G α|ί < s} is a branch above t of length £ - (2n - 1) < 2n+ι -
2 - (2* - 1) = 2n - 1; hence, by 3.3, every branch above t has length ί - (2* -
1). Now the quantifier rank-(π + l)-sentence Vx(φJ* v φ ^ ) is satisfied in i^;
on the other hand, x = t is a counterexample in Γ.

3.5 Proposition For each m < 2n - 1 /Λere /s1 a quantifier rank < /ί-setf-
tence φn

m such that for all trees T: T' \= φn

m iff all branches through T have
length m.

Proof: Left to the reader.
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3.6 Corollary Ifm<2n-\ and T is a binary tree such that T =n Bm then
T=Bm.

3.7 Corollary Bm =n Bk iff m = k or m, k >2n - 1.
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