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Survey of Generalizations

of Urquhart Semantics

R. A. BULL

0 Introduction It has often been felt that the Intuitionist account of impli-
cation is too inclusive, the most thoroughly argued case against it being that of
Anderson and Belnap. In my opinion the problem is not the irrelevance of
antecedents but the relationship between them, which Intuitionism takes to be
conjunction. Thus it has

((A A B) -> C) -> (A -+ (B -> O )
(A-> (B-+ Q) -* ((A ΛB) -+C),

which are equivalent1 to A -+ (B -+ (A Λ B)) and A-> (B-+A), and to (A -+
(A-+B))-> (A-+B), respectively. Consequences of the second formula, which
1 consider to be counterintuitive, include (A Λ (A ->B)) -+ B, ((A ->_#) Λ (B->
C))-*(A->C), and, together with the contrapositive, (A ->B) -> (A v B) and
(A-+A)-+A. If the relationship between antecedents is not conjunction, one
can introduce some other symbol for it, say °, referred to as fusion or intensional
conjunction. In view of these remarks it is appropriate to consider the logic often
called R+ — W2, with axiom schemas

YA-+A
\-A -> ((A -> B) -> B)
\-(B^C)^«A^B)^(A^C))
\-(AΛB)^A \-(A/\B)^B
H(A -+B)*{A-+ C)) -+(A-+(BΛ C))
YA-+{A vί) \-{B->(A vί)
H(A -* C) Λ (Λ -> O) - ((A \ιB)-+C)
\Γ(AA (B v C)) -> ((^ Λ B) v ( Λ Λ C ) )

K^4^(5->C))-*((^ Λ)-*C)

and the rules

if VA and h^ then ĥ 4 Λ B
if ĥ 4 and YA-+B then h^
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All the papers considered in this survey omit one or other of these formulas to
which I object. In fact their arguments work just as well with both omitted, so
I shall trivially alter the originals and consider this weaker system throughout.

Urquhart [11] introduces a compelling model of truth in terms of 'pieces
of information', which he takes to be sets of formulas. With the amendment just
suggested, I shall take instead lists of formulas. Here lists are collections which
may be permuted, but in which the number of repetitions of each item must
remain fixed, unlike sets. Write O for the empty list, and take a b to be the list
obtained by combining lists a and b in the natural way. (That is, the number of
occurrences of an item in a b is the sum of the numbers of its occurrences in
a and in b.) Then the structure ί = (W, 0, ) satisfies the conditions

a 0 = a
a b = b a

a (b c) = (a b) c

for each a, b, c E W, but not a a = a. A valuation Fis defined on any struc-
ture $ satisfying these conditions by taking it to be a function into {Γ, F} such
that

V(A ~+B, c) = Γiff, for each a, if V(A,a) = Γthen V(B, a c) = T
V(A ΛB,C) = Tiff V(A, c) = Γand V(B, c) = T
V(A v £ , c) = T'ύί V(A, c) = Γor V(B, c) = T
V(A «B, c) =T iff, for some a, b such that a-b = c, V(A, a) = T

and V(B, b) = T.

A formula A is verified by the model ($F, V) iff V(A, 0) = T, and is verified
by the structure ϊ iff it is verified by all models ($, V). it is easy to check that
the theses of R+ — PFare verified by any structure $F which satisfies the condi-
tions above. ([11] also quotes a formula which is verified by any structure,
although it is known to not be in R+. Inspection will show that this verification
requires the condition a a — a which I have omitted.)

A beautifully simple completeness proof for the fragment in -», alone, is
provided by the following canonical model (T, 0, , F) . Take T to consist of
all finite lists of formulas, define on lists as in the previous paragraph, and take

V(A9a) = Tiΐΐ\-Aι^(...(Am^A)...)9

where A\,... ,Am are the items in a.

It is easy to show that V satisfies the conditions of the previous paragraph, and
clearly if V(A, 0) = T then \-A in the logic. One would like to extend this
completeness proof to the whole of R+ — Why taking T to be the set of prin-
cipal theories of R+ — W, with

V(A,a) = T iff A G a.

Here a theory a is a set of formulas such that

if A E a and B E a then A /\B E a
if A E a and \-A -> B then B E a

(in the second condition, \-A -+ B cannot be replaced by A -> B E a in this con-
text). Define on theories by taking
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a b = {C: for some A, B, A G a & B e b & \-A -» (B -> C)}

or, equivalently,

β 6 = {C: for some 5, 5 - > C E a & 5 G f t } .

However it is not clear that principal theories are prime theories, satisfying

if A v B E a then . 4 G α o r 5 G α ,

and a completeness proof with respect to (w.r.t) this semantics has yet to be
found.

In order to obtain a completeness proof for R+ - W, three approaches
have emerged. The first, due independently to Routley and Meyer, and to Kit
Fine, is to work with prime theories instead of principal theories. Since a-b
need not be prime for prime a and b, a more complicated notion of structure
is necessary. The second, due to Abraham (only recently published after a long
delay), is to retain principal theories but find a more complicated definition for
V(A v B, c). The precedent here was Beth's semantics for Intuitionist disjunc-
tion. However this method does seem to make considerable requirements on the
properties of negation, holding not for R+ - Wbut for the logic CR+ - W
which I shall describe later. It will be noticed that none of these methods appeals
to proof theory, in marked contrast to Intuitionist logic. The reason for this at
last became clear when Urquhart ([12] and [13]) used a sophisticated geometrical
argument to show that Cut Elimination is impossible for many logics in the
neighborhood of R — W (or rather, strictly speaking, the deducibility problem
is unsolvable). However this Curse of the Urquharts can be avoided if the usual
distributivity of Λ and v is omitted (though I am uneasy as to the philosophical
justification for this, in spite of the precedent of the so-called quantum logics).
The third approach, then, due to Ono and Komori, is to drop Distributivity,
prove Cut Elimination, and exploit it to establish the properties of

V(A,a) = TiffAu-.-,Am\-A,
where A\,... ,Am are the items in a.

In all these approaches there is a compromise, between loss of the intuitive con-
tent of Urquhart semantics and the complexity necessary for obtaining complete-
ness proofs.

Since it is difficult to conceive other approaches to proving completeness
for logics related to R+ - W, the time seems to be ripe for a survey of the area.
Of course canonical models are not the only topic of interest. Ono and Komori
have unified the area by producing a common generalization of the semantics
used in the first and third approaches mentioned. Further, one would like to see
a metatheory for these implicational logics and their semantics, such as that
developed for modal logic and Kripke frames in the 1970s. However, establishing
an analogue of, say, the modal metatheory of R. I. Goldblatt seems to be quite
impossible. The greater generality of the semantics of Ono and Komori makes
it a more promising candidate for some sort of metatheory.

So far I have concentrated on positive logics, which I shall describe in Part
I below. Urquhart in [11] goes on to discuss possible extensions of his seman-
tics to negation. The most obvious move is



URQUHART SEMANTICS 223

V(-iΆ,a) = Tiff V(Ά,a) = F,

although (A Λ (-*A)) ~>B and B-+ (A v (~vl)) are now verified, a breakdown
of relevance. Since the viewpoint of Anderson and Belnap predominated at that
time, there was a delay in studying this semantics, but Meyer and Routley did
include it in various 'classical' systems. To avoid this breakdown, Urquhart then
suggests

V(A, a) = Tiff V(A9 a*) = F,

where * is a function on W satisfying

O* = O and (a*)* = a.

This alternative, as it stands, does not verify (A ->B) -» (B-+A), but it can be
rescued under the first approach above by suitable further conditions. I shall dis-
cuss these two kinds of negation in detail in Part II below but, to anticipate, the
appropriate axioms are as follows. Adding the more natural to obtain R — W9

take

\-A-+Ά \-A-+A
HA-+B)-+(B-+A).

Adding -ι to obtain CR+ - W> take

h(- (-vl))-»l

and the rule

if \-(A AB) -* (-iC) then \-(AΛC) -> (-*B)9

from which \-A -• (-i(-υ4)) and the rule

if \-A -• B then h(- B) -• (~ A)

can be derived. There is no reason for not adding both, to obtain the system
CR — W. It also turns out that ~ can be added under the third approach, via
proof theory without Distributivity.

A final possible extension is to individual quantifiers, a topic which proved
to be very difficult under the first approach above. Again the reason for this
became clear at last when Fine [4] proved the incompleteness of that semantics
for the natural axiomatization of quantified logic. (It is typical of these implica-
tional logics that the most spectacular results in the area are negatives.) It was
this problem which motivated Abraham in the second approach mentioned
above. Given 'classical' negation, his [2] does yield a completeness proof, which
I shall discuss in Part III below.

Part I Positive Logics

1 Proof theory without Distributivity In the proof theory of Intuitionist
logic, Contraction of antecedents, equivalent to its thesis (A -+ (A -+ B)) -+
(A -• B) which I am omitting, plays a major role. For example, in the usual sys-
tems with only a single consequent, it is used to derive the distributivity of Λ
and v. (It seems regrettably counterintuitive that this property of Λ and v should
depend upon a structural rule. The Maehara system is to be commended for hav-
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ing a more natural derivation.) Further, the known proofs of Cut Elimination
depend essentially upon it. However as Ono and Komori point out in [8], this
dependence is circular; once Contraction is omitted, it is not needed, nor are
Mixes. Therefore they consider the very natural proof theory with initial sequents
P h P for propositional parameters P, and rules

T,A,B,A\-C

T,BfA,A\-C

TV A A,B,Σ\-C T9A VB

A,A-+B9T,Σ\-C YVA-+B

T,A,A\-C T\-A T\-B

T9A*B9A\-C T\-AΛB

Γ, ff, Δ h C

Γ, AAB, Δ f-C

Γ, A, A h C Γ, B, A h C T\-A

T9AvB, A\-C T\-AvB

T\-B

Γ \-A v B

T,A,B,A\-C Γ M Δhff

Γ, AoB, Δ h C T,A\-AoB

As usual their Cut Elimination is a twofold induction on rank and grade,
and the crucial step is that in which the Cut Rule

T\-A A, A9 Σ\-C

A, Γ, Σ h C

has been applied to the principal formula at both its upper sequents. In the typi-
cal case in which that formula is B -• D, the Cut

Γ, B\-D ΣVB Δ, A Π h C

T\-B->D A,B-+D,Σ,Πt-C

Δ, Γ, Σ, Π h C

is replaced by the Cuts

Γ, B\-D A,D,T1\'C

ΣVB Δ, Γ, B, Π h C

Δ, Γ, Σ, Π h C

of lower grade. (Inspection will show how this argument breaks down if mul-
tiple consequents are permitted.)

Given that, in the canonical structure, T is to be the set of principal the-
ories, what are the appropriate conditions on the structures $ = (W, O, , Π)?
They turn out to be
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aΌ = a
a-b = b-a

a (b-c) = (a b) c
a Π a = a
aΓ)b = bΠa

aΠ(bΠc) = (aΠb)Πc
a-(bΠc) = (a-b) Π (a c).

Note that a relation < can be defined by

a < b iff a Π b = a,

and that then the last equation yields

if a < b then a c < b c.

And given that V(A, a) — T is to occur in the canonical valuation iff
Au.. .,Am\- A, where ^ 4 l f . . . >Am generate the principal theory a, what are
the appropriate conditions on valuations? They turn out to be that

if V(P, a) = T& V(P, b) = T&aί)b<c
then F(P, c) = T

for each propositional parameter P, and that

V(A -+B, c) = Tiff, for each α, b such that c a< b,
if V(A, a) = Γthen V(B, b) = Γ,

V(AΛB9 C) = Γiff KU, c) = Γand V(B, c) = T
V(A v ί , c ) = Γ iff, for some α, b such that α Π b < c,

K(>1, α) = Γand V(B, b) = Γ,
F(̂ 4 °B, c) — Tiff, for some #, 6 such that a-b < c,

V(A, a) = Γand F(5, ft) = Γ.

Note how all the conditions except that for Λ have become considerably more
complicated than in Urquhart semantics. As before A is verified by (3, V) iff
V(A, 0) = T.

It is now straightforward to show that each model ( ί , V) satisfying these
conditions verifies R+ — W, except for the Distributive axiom, and that the
canonical structure (T, 0, , Π) and the canonical valuation Fwith

V(A9a) = TiϊfAGa

do satisfy them. Verifying that

Γ h A -+ B iff, for each Δ, Σ such that Γ A ς Σ ,
if Δ h A then Σ\-B

requires Cut Elimination. And verifying the condition that

Γ h A v B iff, for some Δ, Σ such that Δ Π Σ c Γ,
Δ h A and Σ h B

requires, from right to left, an application of the rule for v on the right, and
from left to right the choice A=[A],Σ=[B].
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2 Prime theories Reversing the historical priority, the conceptual priority
seems to lie with Fine [3]. Given that the set of prime filters is not closed under
• as defined in the Introduction, let us take a set ίF together with a distinguished
subset K. In the canonical structure W will become the set T of all theories and
K will become the set P of prime theories. The conditions on JFare the familiar

aΌ = a
a-b = b-a

a:(b-c) = (a-b)'C
if a < b then a-c < b-c.

Here < is a partial-order relation on W which will become c in the canonical
structure. The condition on K is

if c-d < a for a E K then, for some b E K,
d <b & c-b < a.

The conditions on valuations V are

F(P, a) = T iff, for each b E K,
if a < b then V(P, b) = T

for each propositional parameter P, and

V(A -+B9 c) = T iff, for each a,
if V(A, a) = Γthen F(£, a-c) = T,

V(A ΛB,C) = Tiff V(A9 c) = Γand V(B, c) = T,
V(A v B, c) =T iff, for each deK such that c < rf,

K(/l, d) = T or V(B, d) = T,
V(A °B9 c) = Γiff, for some #, 6 such that a-b = c,

K(^, a) = Γand F(£, 6) = T.

It can be shown that the condition above on the values of propositional param-
eters extends to all formulas, and hence that

if V(A, a) = T&a<b then V(A9 b) = Γ,

and for all c E K,

V(A v ί , c ) = Γiff K(yl, c) = Γ or F(5, c) = Γ.

It is straightforward to show that each model (ίF, F) with $ = (W, K,
0, , <) verifies /?+ — PF. In order to handle the canonical model, an Exten-
sion Lemma is needed for extending theories to prime theories. A suitable result
is that if c is a set of formulas satisfying

if A, BE c then A v B Gc

and d is a theory disjoint from c, then there is a prime theory d' with d <Ξ: d',
such that df is also disjoint from c. The proof of this lemma involves enumer-
ating all disjunctions a s 5 o v C o , 5 1 v C i , 5 2 v C 2 , . . . , and making the step-by-
step construction
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dQ0 = d;

diU+l) =djjiϊ djjVBjS/Cj,
d,u+l) = dij U {Bj} if dij V Bj v Cj and

cC\ {A:dij,Bj\-A} = 0 ,
diu+l) = dυU {Cj} if dij V Bj v Cj and

cn{A:dij,Bj\-A}*0;
di(J+i) = dij U {Cj} if dij V Bj v C, and

cfl {A: dij, Bj,\-A}*0;
d(i+i)o = U djj ,

d'=\J di0.
i

Here dy h >1 means that there is a derivation of A from formulas in dy, and so
on. It can now be shown that the canonical structure (T, P, 0, , c ) and the
canonical valuation V with

V(Ά, a) = Tiff A ea

do satisfy the conditions of the previous paragraph.
A similar approach is given in Ono and Komori [8]. A structure $ = (W,

K, 0, , Π) must satisfy the conditions

a 0 = a

a-b = b a

a-(b c) = (a-b)'C

a Π a — a

aΠb=bΠa

aΠ(bΠc) = (aΠb)Πc

(so that < can be defined by a < b iff a Π b - a)

a-ibΠc) = (a-b) Π (a-c)
if a Π b < c then, for some a\ b',

a<a' &b<b' & a' Π b' <c

(in a lattice this condition is equivalent to distributivity)

for each a E K, if a — b (Λ c then a = b or a = c,
for each a G K, if b-d-c < a then, for some df E AT,

d<kd' &b-d'-c<a.

A valuation V is defined on the members of K, and must satisfy the conditions
that

if V(P9 a) = T& V(P, b) = T&anb<c
then V(P, c) = T

for each propositional parameter P, and

V(A -+B, c) = T iff, for each a, beK such that c-a<b,
if K(y4, *) = Γthen V(B, b) = Γ,

V(AΛB9 C) = Tiff V(A, c) = Γand F(,B, c) = Γ,
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V(ΆvB, c) = Γiff V(A, c) = Tor V(B, c) = T
V(A oB, c) =T iff, for some a, b<ΞK such that a-b<c,

V(A9 a) = Γand V(B, b) = T.

Again A is verified by (ίF, υ) iff V(A, 0) = T.
It can now be shown that each model satisfying these conditions verifies

R+ — ̂ including the Distributive axiom. Also it can be shown that the canon-
ical structure (T, P, 0, , Π) with as in the Introduction and Π as set inter-
section, and the canonical valuation V with

V(A, a) = Tiff A Efl

do satisfy the conditions of the previous paragraph. For structures, this involves
using the Distributive axiom to prove that the theories which satisfy the first con-
dition on K above are precisely the prime theories. For the valuations, this
depends upon the fact that, given a formula A and a theory a with A£a, there
is a prime theory b with a c b and A £b.

Clearly there would be advantages in restricting attention to prime theories,
replacing the binary function on theories by a ternary relation R on prime the-
ories. (This is suggested in Fine [3], and is the starting point of the earlier Rout-
ley and Meyer [9], extended to many logics in [10].) Thus Rabc can be defined
within the previous structures by

Rabc iff a b<c;

also < can be defined in terms of R with

a < b iff ROab.

The conditions on structures (K9 O, R) now become

a < a
if a < b & b < c then a < c,
if a < x & Rxbc then Rabc,
if Rabx & x < c then Rabc,
if Rabc then Rbac,
if Rabx & Rxcd then, for some y, Racy & Rybd.

The last, complicated condition corresponds to the Syllogism axioms, and pro-
vides most of the problems in this ternary relation semantics, through the need
to construct the prime theory y of its conclusion. The conditions on valuations
V are now

if V(P, a) = T&a<b then V(P, b) = T

for each propositional parameter P, and

V(A -+B,c) = T iff, for each α, b such that Rcab,
if V(A, a) = Γthen V(B, b) = T,

V(AAB, C) = Tiff V(A9 c) = Γand V(B, c) = Γ,
V(AvB, c) = Tiff V(A, c) = Γor V(B, c) = T
V(A °B, c) -T iff, for some #, b such that Rabc,

V(A,a) = Γand V(B, b) = T.
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Again A is verified by (ίF, V) iff V(A, O) = T.
It is straightforward to check that each model satisfying these conditions

does verify R+ — W. However the canonical construction is more difficult than
it has been so far, precisely because the semantics are simpler. Firstly, the prop-
erties of (T, O, , c ) are established as before. Then it is observed that any
nonthesis A of R+ — Wis excluded by some prime theory T which is regular,
i.e., which includes all the theses of R+ — W. A Γ-theory a, for regular Γ, is
a theory in which the second condition has been replaced by the stronger

if AGa&A-^BET then BE a.

Attention is now restricted to structures (WTi OTi , £ ) , where Wτ is the set
of Γ-theories, Oτ = Γ, and Rτ is defined on Wτ by taking

Rτ abc iff a-bQc.

(In fact if only positive logics are being considered, this move to Γ-theories can
be avoided. Instead the canonical model (P, O, R, V) on all prime theories can
be used —see Section 10 of [9].) It is straightforward to show that (Wτ, O r ,
Rτ) satisfies the conditions above on structures, but of course the condition on
V(A v B, c) would fail for it. Instead (Pτ, OTi Rτ) must be considered, with
attention restricted to prime Γ-theories, for which the condition on R for the
Syllogism axioms becomes difficult. Zorn's Lemma is used to find a maximal
Γ-theory j>r satisfying its conclusion, which can, with some difficulty, be shown
to be again prime. It is now straightforward to show that the canonical valua-
tion Vτ with

Vτ(A,a) = TiffAea

satisfies the conditions above.

3 The generalization of Ono and Komori The greater complication of the
semantics of [8] compared with those of [3] (both discussed in Section 2), has
the advantage that it permits a common generalization with the semantics dis-
cussed in Section 1. In this generalization, given in [8], the condition above
which yields the distributivity of and Π is omitted, while the condition

for each a E K, if a = b Π c then a = b or a = c

is replaced by

for each a E K, if b Π c < a then either c < a
or, for some b' e K, b < bf & b' Π c < α,

which can be derived from it. Now valuations Fmust satisfy the weak condition

V(A vB, c) = Tiff, for some a, beKsuch that a Π b < c,
(V(A,a) = Tor V(B, a) = T)

and (V(A, b) = Tor V(B, b) = T).

Of course, in the presence of the first condition on K9 this becomes the usual
'classical' condition for V(A v B9 c). Further, if Whas a greatest element oo
then this weak condition can be replaced by the strong condition
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V(A v B, c) = T iff, for some a, beK such that aΠb<c,
V(A,a) = Γand V(B, b) = T,

used in Section 1. It can still be shown that both weak and strong models ver-
ify R+ — W without the Distributive axiom.

Part II Two Kinds of Negation

4 Proof theory with signed formulas One way of adding negation to the
system of Section 1 is to replace formulas A by signed formulas TA, FA,3 and
to replace the function Fwith V(A, a) E {T, F} by predicates T(A, a), F(A,
a). In the Hilbert-style formulation one wants to add the axioms

YA -+ A VA-+A
Y(A-+B)->(B^A),

but not formulas such as (A Λ A) -• B and B-> (A v A). Note that in the result-
ing logic, R — W without Distributivity,

\-{Aoβ)-+(A-*B)

\-(A-+B)->(AoB)

are derivable. To achieve the equivalent effects in the Gentzen-style formulation,
first take the initial sequents to be those SP f- SP (where P is any propositional
parameter and S is a parameter for T or F), and take the rules for " to be

Γ, FA h SC T\-FA

Γ, TA h SC T\-TA

Γ, TA h SC T\-TA

Γ, FA h SC T\-FA'

The modifications to the rules for Λ and v are obvious; typically

Γ, FA, A h SC Γ, FB, A\-SC Γ \- FA

Γ, F(AAB), ΔhSC Γ h F(A Λ 5)

Γ VFB

Γ h F(v4 Λ B)'

In choosing the rules for T(A -+B), the clue is to restore symmetry between T
and F, with

TVTA A, 7ff, Σ h SC Γ, 7M h Γg Γ, FB V FA

Δ, T(A -+B),Γ,Σ\-SC Γ h Γ(i4 -> B)

YVFB A,FA,Σ\-SC

A, T(A-+B),T, Σ\-SC

With the rules for F(A -• B), remember that A-+B is provably equivalent to
A o 5, and take

Γ, TA,FB, AYSC TYTA AYFB

T,F(A-+B), AYSC Γ, Δ h F(^l -> B)
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The rules for A ° B are the duals of these, identifying T(A ° B) with F(A -• B)
and F(^4 ° 5) with Γ(>1 -> B). Because of the double nature of the rule for
T(A -> B) on the right, derivations of \-TA for theses \-A of R — W without
Distributivity become much more complex. However, while many cases are
needed the axioms of R — W without Distributivity can still be derived. Inspec-
tion will show that the Exchange structural rule is essential for some of these
negative cases. The Cut Rule with cut signed formula SA can be eliminated just
as before.

The structures $ = (W, O, , Π) are just as in Section 1, the hereditary
conditions on the values of the propositional parameters is replaced by similar
ones on T(P9 a), F(P, a), and the conditions for A are

T(A, a) iff F(A, a),
F(A, a) iff T(A, a).

The conditions on the values of A Λ B and A v B are obvious. The conditions
for A -+ B, corresponding to the rules in the proof theory, become

T(A -» B9 c) iff, for each a, b such that c-a < b,
(if T(A, a) then T(B, b))

and (if F(B, b) then F(A, a)),
F(A -+ B, c) iff, for some α, b such that a-b < c,

T(A, a) and F(B, b).

Again the conditions for A ° B are the dual ones, identifying it with A -> B. A
formula A is verified by a model (3, T, F) iff T(A9 0). The completeness proof
now proceeds just as in Ono and Komori [8].

5 The operation * Both Routley and Meyer [9] and Fine [3] handle nega-
tion in R — JΓthrough the function * introduced in Urquhart [11]. As mentioned
in the Introduction, further conditions are needed to verify the Contraposition
axiom. In [3], * is only defined on the distinguished set K (the set of prime the-
ories for the canonical structure), and the conditions imposed on it are

(« r = a
if a < b then b* < a*.

The condition on V(A, a) is

V(A, a) = T iff, for each beK such that a < 6, V(A, ft*) = F.

In the canonical structure * is interpreted as

a* = {A:A£a}9

and now the completeness proof proceeds without much more difficulty than
before. Correspondingly, in Routley and Meyer [9], the conditions on (K, O, R)
are

(O* = a
if Rabc then Rac*b*,

the condition on V(A, a) is

V(A,a) = Tiff V(A,a*) =F
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and in the canonical structure

a* = {A:A£a}.

In establishing the properties of the canonical structure, * cannot be introduced
until after the move to prime theories, but then there are no great difficulties.

6 'Classical9 negation The discussion in Routley and Meyer [9], of the
canonical model (P, O, R, V) of prime theories, is continued in Meyer and
Routley [5]. A considerable amount of work, including a proof that

V{A°B, O) = Tiff V(Ά, O) = Γand V(B, O) = T

and the addition of a new element O', yields a new canonical model (P', O\
R\ V) which satisfies the following conditions. Take a positive Classical' struc-
ture (K, O, R) to be one in which the definition

a < b iff ROab

and the conditions on < are replaced by

ROab iff a = b.

Now add Classical' negation to obtain CR+ — Wwith the axiom

K-"(->Λ))-*Λ

and the rule

if HA Λ B) -> ( i C ) then HA Λ C) - (-uB),

from which

h4-*(-.(-υ4))
HA Λ (-yA))-+B VB-+(A v (-vl))
if h4-»£then h(-ifi)-* ( iΛ)

are derivable. The corresponding condition on valuations for 'classical' struc-
tures (K, O, R) (but not the ordinary ones of Section 2, in which the hereditary
condition on valuations prevents this move) is

V(-^A, a) = Γiff V(A, a) =F.

The construction of the canonical model (P Γ , Oτ, Rτ, Vτ) is similar in
outline to that sketched in Section 2. However both the prime regular theory T
and the prime Γ-theories in P Γ must now also be consistent-and-complete, i.e.,
they must contain exactly one of A and -*A for each formula A. This requires
yet more hard work, especially when the existence of such a theory must be
proved. The proof of this in [5] involves its Lemma 4, which uses a shortcut
through the theory of ideals in Boolean algebras and an application of the omit-
ted formula {A Λ {A -> B)) -> B (because of the unusual second condition on
theories for R+ - W). However this can be avoided by a direct proof as in [2].

As [6] points out, one can include both negations ~ and ->, obtaining the
logic CR - W. Combining the arguments sketched in Sections 2, 5, and 6 com-
pleteness is proved with respect to 'classical' models (K9 O, R, *, V) which
satisfy the conditions
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ROab iff a = b,
(**)* = a
if Rabc then Rac*b*,
V(^A,a) = Γiff V(A,a) = F9

V(A9a) = Tiff V(A,a*) = F,

among others. (Actually [6] introduces into the formal language a new opera-
tor * with A* = -1,4, but any two of , ~>, * will suffice as primitives. The
completeness proof for CR — Wis not given in [6], but it is worked out in detail
in [1]. The question arises: Is CR — W a conservative extension of R — WΊ Of
course [5] and [6] are working with R and CR, in which the presence of (A -•
(A -> B)) -+ (A -* B) corresponds to the condition Rααα on structures. Using
this extra condition it can be shown that O* < O holds in any ordinary struc-
ture (AT, 0, R, *) , and [5] goes on to show that R is characterized by normal
structures in which O* = O. Making essential use of these normal structures, [6]
proves that CR is a conservative extension of R. In view of all the work which
has gone before, this must be the most difficult result in the area being sur-
veyed.)

7 Propositionαl Abraham semantics Abraham's [2] gives a very different
approach to CR — W, going back to the principal theories of Urquhart semantics
instead of prime theories. As in the Introduction, the obvious difficulty will lie
in the treatment of V(A vB, c), a problem that is solved in Beth's Intuitionist
semantics by introducing certain sets of 'possible worlds', namely the paths and
bars. With this precedent in mind, consider the following generalization of Ur-
quhart semantics. A prestructure % = (W, O, , <, *) satisfies the familiar con-
ditions

aΌ = a
a-b - b-a

a (b-c) = (a b)-c
if a < b then a-c < b-c,

(ay = a,

together with the unfamiliar conditions for *

if a < b then a* < 6*,
a-a* <0
if a-b < 0 then, for some c, a < c & b < c*.

An ideal a of $ is a nonempty proper subset of W such that

iίaGa&b^a then b E a,
ifaEa&bEa then, for some c,

a<c&b<c&cE:a,

which is maximal iff, for each ideal β of ίF,

if α c β then α = β.

A set N of ideals of $ is dense iff, for each a E W, tf E α for some a E N. Given
an ideal iS of 5Γ, it is convenient to write
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a-β = {a-b: beβ}.

A structure ( ϊ , N) consists of a prestructure {F and a dense set N of its max-
imal ideals, such that for each 7 E N,

if a-b E 7 then, for some β,

Later it will be seen that these normal ideals correspond to prime, consistent-
and-complete theories in the canonical structure.

The valuations V are required to satisfy the conditions

VI if V(P, a) = T&a<b then V(P, b) = T,
V2 if (a E a & a E TV imply V(P, b) = T for some be a) then V(Pf a) = Γ,
V3 if (for each x E a, for some j> such that x < j , F(^4, j>) = Γ) then (for

some x E α, F(^4, JC) = Γ),

for each propositional parameter P and formula A, and

K(Λ -+B9c) = T iff, for each α,
if V(A, a) = Γthen F(5, α c) = Γ,

K(>1 Λ B9 c) = Tiff V(A, c) = Γand V(B, c) = T,
V(A v B, c) = T iff, for each 7 such that c E 7 & 7 E N, for some ί/ E

7, V(A,d) = Tor V(B,d) = T,
V(A o B, c) = T iff, for each 7 such that c E 7 & 7 E N, for some #, &,

a-beySc V(A, a) = T& V(B, b) = T,
V{-yA,a) =Tiff, for each b such that a < b, V(A, b) = F,
V(A9 a) = Tiff, for each b such that a* < b, V(A, b) = F.

As usual a formula A is verified iff V(A, O) = T. With these semantics the
proportion of effort required for showing that theses are verified is greater than
with the others. Surprisingly tricky arguments show that VI and V2 hold for all
formulas and, using thiŝ  fact, that all the axioms and rules of CR — W except
h(-> (-»>!)) -* A and \-Ά -+ A are verified by all models. The use of V3 com-
pletes the proof that all theses of CR — Ware verified by this semantics. (Is it
sufficient to assume V3 for the propositional parameters and then derive it for
all formulas? This is not done in [2], but it is shown that V3 holds in the canon-
ical model, so that some models do indeed exist.)

Consider a regular, consistent theory T which is closed with respect to the
rule for classical negation, that if \-(A Λ B) -• -ιC then \-(A Λ C) -• -^B. Note
that the set of theses of CR - W is such a theory. Let Fτ denote the set of prin-
cipal Γ-theories from now on, and consider (P Γ , Oτ, , <Ξ, *) with the usual
operation and the unusual

α* = {A: -iΆeα}.

It can be shown that this is a prestructure, making considerable use of the prime-
ness of T and various theses of CR — W, including

h(A^F) v ((A^F)-*F), where F = £Λ (->£),

HA-+(^A)) v (A-*B)
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h(^4)->(^4) h(^4)^(^4).

The normal ideals of the structure ( ϊ , NΓ) are taken to be the sets

{ a G P Γ : a^b}

determined by all the prime, consistent-and-complete Γ-theories b. It can be
shown that Nτ is indeed a dense set of maximal ideals satisfying the condition
stated above. Proving this uses the Extension Lemma that, given principal T-
theories a, b and a prime Γ-theory c, if a b <Ξ c then there is a prime Γ-theory
b' with 6 <Ξ Z?' and a-b' Qc, This is established by enumerating all the formulas
in the language and adding them to b in succession whenever this does not spoil
the property that a-b' Q c, for the resulting b'. The primeness of b' is derived
from that of c. The usual canonical valuation

Vτ(A9a) = Tiff A <E a

can be shown to satisfy all the conditions stated above.
The proof that V3 holds in this structure involves the consistent-and-

completeness of the Γ-theories which determine the normal ideals. This is unfor-
tunate, for it prevents a similar completeness proof holding for R — W.

Part III Quantifiers

8 A weak proof-theory for first-order logic In [7] Ono adds the natural
rules for quantifiers to the Gentzen-style formulation described in Section 1,
yielding a system which lacks the thesis \-Vx(A v B) -+ (Av VxB) for x not free
in A. This is, in effect, the appropriate Έarcan formula' for quantified logics
of implication and, although it does not hold in Intuitionist logic, it is normally
taken to be an essential feature of first-order logics in the neighborhood of
R+ — W. Taking a domain U of individual constants, the appropriate condi-
tions on valuations are

V(VxA(x)9 c) = Γiff F(v4(w), c) = T for each u E U,
V(3xA(x), c) = Γiff, for some {&,: / £ / } such that f] bt < c, for each

iei
i E /, for some ut E C/, V{A(Ui), bi) = T.

Note that the same domain U is used at each element of W, as in Beth seman-
tics. An extension of the argument sketched in Section 1 yields a completeness
proof. The semantics are then generalized, by analogy with the propositional
case summarized in Section 3. (It is then shown that the Beth semantics are a
special case of this generalization.)

9 First-order Abraham semantics Extend CR-Wto CRQ - Why adding
the axioms

\-VxA(x) -^A(y/x)
\-A -• VxA for x not free in A,
Wx(A ^B)-+ (VxA -> Vx£)
\-(VxA Λ VxB) -+ Vx(A Λ B)
\-Vx(A v B) -+ (A v VxB) for x not free in A,
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and their duals in terms of 3x, and the rule that if \-A (x) then \-VxA (x). The
clauses for the quantifiers in the semantics of [2] are that

V{yxA(x), c) = T iff V{A(y/x), c) = T for all variables y,
V(3xA{x), c) = Γiff, for each a such that c G a & a G N, for some b G

α, V(A(y/x), b) = Γfor some variable .y.

It can still be shown that all theses of CRQ - W are verified, using V3 in the
case of the 'Barcan formula'. In constructing the canonical structure, it is now
necessary to take Γ t o be V-saturated as well, and to use 3-saturated as well as
prime Γ-theories b to determine the normal ideals {a G Pτ: a^b}. Again the
set of theses of CRQ-W satisfies all these conditions. In the Extension Lemma
that, given principal Γ-theories a, b and a prime Γ-theory c, if a-b 9 c then there
is a prime Γ-theory br with b <Ξ b' and a-b' <Ξ c, b and b' must now be satu-
rated as well as prime. Once this is established, the completeness proof proceeds
as before.

In the step-by-step construction for this Extension Lemma, whenever a for-
mula 3xA(x) could be added to b without spoiling a-b' c c, an instance A(y/x)
is actually added. The language is assumed to be countable, so y may be cho-
sen so that it does not occur free in the formulas already added. (The situation
here could be contrasted with that in [4]. The condition on K mentioned at the
beginning of Section 2 is a simpler analogue of the condition on normal ideals
mentioned in Section 7. Both require Extension Lemmas in the proofs that they
hold for the canonical structures, but the simpler condition of Section 2 requires
the more complicated Extension Lemma also mentioned there. And, unlike the
Extension Lemma of Section 7, this cannot be extended to include saturation.)

NOTES

1. The equivalences and consequences mentioned here hold in quite weak systems; the
logic R+ - W about to be described suffices for all of them.

2. This logic has been considered in detail by various logicians working in Australia,
especially Meyer and S. Giambrone in his Ph.D. thesis at ANU.

3. The approach I have in mind, especially the treatment of implication, was first car-
ried out by Zaslavskiϊ in his book Constructive Symmetric Logic [14]. He is work-
ing with Nelson's logic of constructible falsity, so that his treatment of conjunction
and negation differs from that given here. When I later discovered the modifications
of Ono and Komori [8] described here, a referee introduced me to ZaslavskiΓs work.
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