547

Notre Dame Journal of Formal Logic
Volume 27, Number 4, October 1986

Strong Normalization for Typed Terms
with Surjective Pairing

A.S. TROELSTRA

1 Introduction In this note we describe a simple method for reducing strong
normalization (henceforth to be abbreviated as SN) for PRIM(3J), the primitive
recursive functionals with surjective pairing, to SN for PRIM(3y), the primitive
recursive functionals with functional types only. The set of contraction rules
includes the “surjectivity contraction”, that is to say the contraction of a redex
of the form p(p;t)(p,t) to ¢, for all ¢ of the appropriate type, where p is a
pairing operator with inverses p;, p,.

SN for PRIM(J) almost automatically entails SN for certain related sys-
tems of typed terms and conversion rules, via suitable homomorphic embeddings
into PRIM(3) which preserve nontrivial reductions (¢ reduces trivially to ¢’ iff
t’ and ¢ are identical modulo renaming bound variables). Examples of such sys-
tems are: the typed Ay-calculus with surjective pairing; (terms describing) nat-
ural deductions in intuitionistic predicate logic, with respect to proper
conversions (detour conversions) but without permutation conversions (cf. [10],
4.1.3); the terms in the first-order fragment ML, of Martin-L6f’s theory of
types ([6]; ML, is described for example in [2]). In the case of the first two
examples our method for reducing SN for arbitrary terms to SN for the terms
without X in their types can also be applied directly.

In the literature there are several proofs of SN for either PRIM(J) itself [3]
or for natural deduction systems containing at least the rules for —, A, v and
induction, which technically are very close to PRIM(3), so that these proofs can
be adapted to PRIM(3) (e.g., [8], [4], [5]).

None of these published proofs consider the (analogue of) surjective pairing
contraction SP. At least for Gandy’s proof it is easy to show that SP is covered
as well.

A straightforward extension of the proof in [10], 2.2, based on Tait’s
notion [9] of computability, is also possible, as was shown by R. de Vrijer (1982,
unpublished). The result and method of Bercovici [1] are similar and can pre-
sumably be extended to PRIM(J3). De Vrijer adapted the definition of strong
computability SC in [10], 2.2.13, as follows:

Received October 17, 1984, revised March 12, 1985

548 A. S. TROELSTRA

SCo(t) := SN(#), SCy.(f) := SN(£) AVI” € SC,vt’ ¥ H(t't" € SC,),
SCos,(2) 1= SN(£) A VE't" (¢ % pt't” > SC,t’ A SC,").

However, we think that the interest of our result in Section 3 lies not so
much in providing a new proof of SN for PRIM(3) which includes SP, but
rather in showing that SN, for the case where product types are present, is in
fact a simple consequence of SN for terms without product types.

In the remainder of the paper most of the notation is standard. For nota-
tions not explained here, and other background information, see [10], 1.6.2-
1.6.8, 1.6.16-1.6.17, 1.7, 1.8.1-1.8.4, and 2.2,

2 Preliminaries Let 3 be the set of symbols for finite types generated by the
clauses 0 € 3J; if ¢, 7 € J then also (¢)7 € J and ¢ X 7 € J, and let I, be the
subset of J consisting of type symbols constructed without X. J, is the set of
functional or implicational types; types of the form o X 7 are called product
types.

If ¢ = (0y,...,0,), we sometimes write ()7 for (0,)... (g,)7.

Let us write ¢ >, ¢" if ¢’ is obtained from ¢ by contracting a single redex in
t; > is the transitive closure of >, » the transitive and reflexive closure of >;.
The weak Church-Rosser property (WCR) and the Church-Rosser property (CR)
can be stated as

WCR VI't"(E 3 AL = 37 (U B N 517,
CR WVit't"(t et ntt" =" (t' 2t”" A" 2").

In the presence of SN, CR readily follows from WCR (see e.g., [10], 2.2.26),
and since WCR is easily proved for the typed Ay-calculus with surjective pair-
ing, our main result yields another proof of Pottinger’s result [7] that CR holds
for this calculus.

For sequences of terms 7 = (¢1,...,t,), § = (s1,...,5,) we write 7 >, §
iff for some i ¢; >, s; and t; = s; for all j # i; { » §, { > § are defined accord-
ingly.

The terms of PRIM(J) are built by application and A-abstraction from vari-
ables (x, y, z,...) of all finite types, constants 0 (zero), S (successor), pairing
and unpairing operators p, p;, p, for all appropriate types, as well as sequences
F=(ry,...,r,) of constants for simultaneous recursion for all appropriate
types. (We have dropped all explicit references to types, but of course the recur-
sion constants and p, p;, p, must be regarded as syntactically distinct for dif-
ferent types.) Terms which differ only in the naming of their bound variables
are regarded as identical. In substitutions we tacitly assume bound variables to
be renamed, if necessary, so as to avoid clashes of variables.

Let ¢, t', t” be arbitrary terms, = (f,,...,t,), i’ = (t{,..., t,) arbi-
trary sequences of terms. The contractions for PRIM(J) are now given by
(Ax.t)(¢") contr ¢[x/t'], Nx.tx contr ¢ if x does not occur free in ¢, p;(ptt’)
contr ¢, po(ptt’) contr t', p(p,t)(p,t) contr ¢ (surjectivity of pairing); and if
F=(ry,...,r,) is a sequence of simultaneous recursion constants, then r;/'0
contr ¢;, r,-ﬁ'(St") contr ¢/ (Fff’t”)t”.

3 The main result The reduction of SN for PRIM(J) to SN for PRIM(3,)
is obtained via a mapping * on types of J and terms of PRIM(J) transforming
any o € J into a finite sequence ¢* = (0y,...,0,) (7 depending on o) of types

STRONG NORMALIZATION 549

g; € 3, and each term ¢ € ¢ of PRIM(J) into a sequence of terms t* =
(t1,...,t,) with ¢; € 0; (1 =i < n). For the types * is defined by

(@) 0" :=0;
if ¢* = (0y,...,0,), 7= (71,...,7,) then
@) (¢ X 7)* := (01,...,04, Ti,...,Tm), for which we simply write
%, 7*; and
(i) (6—=7)* = ((™)711,...,(6™)Tp).

Thinking of the formation of function types as implication and of X as conjunc-
tion, we see that * on the types corresponds to a well-known procedure for
eliminating A from intuitionistic propositional (-, A)-logic, by which each (-,
A)-formula A is replaced by a finite sequence 4,4, ..., A4, of (—)-formulas such
that A is deducible iff the 4; are all deducible.
* is also defined for terms of PRIM(3J) as follows.
(iv) 0*:=0, S* :=S;
(v) to each variable x € o we assign a sequence x* = (xy,...,X,) with
x* € o* (i.e., x; € ;) such that for x # y x* and y* are disjoint, and
the variables in each sequence are all distinct;
(vi) when ¢* has been defined we put (Ax.t)* := A\x*.t*, i.e., if t* =
(t1,...,tm), (A\x.1)* is the sequence (Ax*.ty,...,Ax*.1,,).
(vii) Let 7 = (ry,...,r,) be a sequence of simultaneous recursion con-
stants, with r € (0'1) SN (0'”)(7'1) N (Tn)(O)O'i, where T = (0'1) N
(0,)(0)g;. Suppose ;" = (051, - .,0i,p;y) then we take

L HEED (AT /S rr=rf,...,r,
where r* is now a sequence of simultaneous recursors with r;; €
(UT) cee (0;)(Tf) cee (T:)(O)ai,j-
(viil) p* 1= AxX*y*.(x*, y* = ATyt ACyroyt
Pl = ATy XY, pyi= NTyryt,
(ix)(et)* is t*'*.
Lemma If t > s in PRIM(3), then t* > s* in PRIM(3;).
The proof of this lemma is completely straightforward, and immediately implies
Theorem SN for PRIM(3y) implies SN for PRIM(J).

Remarks: (i) The mapping * can easily be extended to formulas of intuitionis-
tic finite-type arithmetic with pairing (N-HAj in [10], 1.8.2), leading to a proof
that N-HA is an “almost-definitional” extension of N-HA“, and a fortiori con-
servative over N-HA*.

(ii) We have dealt with sequences of constants for simultaneous recursion
directly; a slight simplification would result by formulating PRIM(3J) with sin-
gle recursion constants only.

Usually one takes only single recursors as primitives, and the existence of
sequences of definable closed terms for simultaneous recursion is deduced from
this (cf. [10], 1.7). However, the proof that these defined constants satisfy the
equations for simultaneous recursion requires (quantifier-free) induction, and
so the corresponding conversion rules do not follow from those for single recur-
sors unless we restrict attention to closed terms.

550 A. S. TROELSTRA
REFERENCES

[1] Bercovici, I., “Strong normalization for typed lambda calculus with surjective
pairing — Tait’s method,” to appear.

[2] Diller, J. and A. S. Troelstra, “Realizability and intuitionistic logic,” Synthese, vol.
60 (1984), pp. 253-282.

[3] Gandy, R. O., “Proofs of strong normalization,” pp. 457-477 in To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, eds. J. P. Sel-
din and J. R. Hindley, Academic Press, London, 1980.

[4] Jervell, H. R., “A normal form in first order arithmetic,” pp. 93-108 in Proceed-
ings of the Second Scandinavian Logic Symposium, ed. J. E. Fenstad, North-
Holland Publishing Co., Amsterdam, 1971.

[5] Leivant, D., “Strong normalization for arithmetic,” pp. 182~197 in Proof Theory
Symposium Kiel 1974, eds. J. Diller and G. H. Miiller, Springer Verlag, Berlin,
1975.

[6] Martin-Lof, P., “Constructive mathematics and computer programming,” pp.
153-175 in Logic, Methodology and Philosophy of Science VI, eds. J. Lo§, H.
Pfeiffer, and K.-P. Podewski, North-Holland Publishing Co., Amsterdam, and
Polish Scientific Publishers, Warszawa, 1982.

[7] Pottinger, G., “The Church-Rosser theorem for the typed N-calculus with surjec-
tive pairing,” Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 264-268.

[8) Prawitz, D., “Ideas and results in proof theory,” pp. 235-307 in Proceedings of
the Second Scandinavian Logic Symposium, ed. J. E. Fenstad, North-Holland
Publishing Co., Amsterdam, 1971.

[91 Tait, W. W., “Intensional interpretations of functionals of finite type I,” The Jour-
nal of Symbolic Logic, vol. 32 (1967), pp. 198-212.

[10] Troelstra, A. S. (editor), Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, Springer-Verlag, Berlin, 1973.

Mathematisch Instituut
Roetersstraat 15

1018 WB Amsterdam
The Netherlands

