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Classical Harmony*

ALAN WEIR

1 A standard metaphor used in explaining the notion of a valid argument
is that the conclusion of such an argument is contained in the premises. Now
if the conclusion is contained in any very direct sense then the argument will lack
epistemic value; it will not be of use in persuading someone to accept the con-
clusion who does not already do so but does accept the premises (cf. [2], pp.
3OOff). The classical logician has a fairly straightforward reply to this dilemma:
the conclusion is only contained in the premises in the sense that it is true in any
situation in which all of the premises are true. Since this fact may not be at all
evident, deductive argument, in establishing it, is epistemically useful.

For such a logician, then, validity is a semantical notion characterizable
independently of the epistemic notions, such as that of proof, which are used
as tests for it. Now this classical conception has come under a great deal of
attack, especially from those who subscribe to the Wittgensteinian slogan that
meaning is use and interpret it as requiring that all ingredients of meaning can
be made manifest in our use of sentences, especially in teaching or communi-
cating their senses, for it is often claimed that classical bivalent semantics, in
ascribing truth values to sentences regardless of whether these values are dis-
coverable, violates this requirement. Alternative conceptions of truth are then
advanced which, by tying it closely to proof, justification, or a similar epistemic
concept, enable one to explicate validity in a way more in keeping with the above
interpretation of the Wittgensteinian slogan.

The most radical proposal is to eschew entirely an appeal to the concept
of truth in explications of validity and rely purely on proof-theoretic notions.
It is clear that if one is to do so, one must discriminate among purported proofs;
otherwise any and every proof-system, including trivial ones in which every for-
mula is a theorem (such as Prior's infamous system for his connective "tonk"
[7]), will be equally acceptable as explications of the concept of validity. More-
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over, if one hopes to persuade others to adopt one's own account of validity
when evaluating and criticizing arguments then one must propose constraints on
what is to count as a proof or inference rule which are both natural and nonar-
bitrary. One especially valuable desideratum on such constraints is that they
make nonmetaphorical sense of the notion of containment which forms part of
the intuitive notion of validity.

A number of different proposals have been made as to the form of these
constraints. Perhaps the most attractive program is that which has been devel-
oped by Prawitz from some suggestions of Gentzen (see [4], p. 33; [5], and [6];
also [1], pp. 220-222; and [8]). Gentzen's idea was to treat the introduction rules,
in a natural deduction system, as canonical. They provide the meanings of the
logical constants and hence are valid by definition. The validity of elimination
rules, on the other hand, is to be determined by their relation to the introduc-
tion rules; they must be in some sense uniquely determined by the latter and yield
no more than their consequences ([3], pp. 80-81).

In making clearer sense of these ideas, the standard strategy has been to
appeal to normalization procedures in natural deduction proofs. There one
applies reduction steps in order to eliminate any maximal formulas, formulas
which occur as conclusions of introduction rules (and perhaps some other types)
and major premises of elimination rules. Taking the introduction rules as valid
by definition, one tries to define the valid elimination rules as those for which
there are appropriate reduction procedures. These transform any proof terminat-
ing in an instance of the elimination rule in which a major premise stands as con-
clusion of an introduction rule into one in which the conclusion is reached
directly by means of introduction rules or other separately specifiable "canon-
ical" rules. In this way introduction and elimination rules can be shown to "har-
monize" with one another in an interesting sense.

This is the main idea behind Prawitz' "Inversion Principle" ([4], p. 33) and
it may be said to provide an explication of the idea that the conclusion of a valid
argument is contained in the premises: one cannot get anything out of a set of
premises, by using elimination rules, that is not already in the set, in the sense
of being deducible by means of definitionally valid introduction rules applied
to canonical proofs of the premises.

Normalization theorems also enable us to demonstrate that our proof sys-
tem satisfies interesting global constraints, such as conforming to a Subformula
Principle: proofs in normal form, shorn of their maximal formulas, contain no
formulas which are not related in pleasing ways to the premises or conclusion
(for instance, are subformulas of a premise or the conclusion). And Subformula
Principles yield, in turn, neat conservativeness properties: one can lay down that
rules for a logical constant K must ensure that it is noncreative. That is, if 4̂
is not derivable from Δ in the logic of the fragment of the language without K,
where A and each member of Δ belong to that fragment, then neither is it deriv-
able from Δ in the expanded system which contains K together with its infer-
ence rules. Again one might claim that this conception of noncreativity is an
explication of the idea of the containment of the conclusion in the premises in
a valid argument.

Now one theme which emerges quite strongly from the work of those
engaged in following up Gentzen's idea is that the conception of validity which
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will result from this program may well be one under which distinctively classi-
cal rules of inference turn out to be invalid. In the nature of the case it cannot
be conclusively shown to the satisfaction of all contending parties that classi-
cal logic fails to pass natural constraints on the interrelations of inference rules,
since constraints natural for classicists may not be natural for nonclassicists and
vice versa. But it is not unreasonable for an opponent of classical logic to hope
that proof-theoretic constraints of sufficient generality may gain the approval
of classicists, yet turn out to be violated by classical logic and hence provide per-
suasive reasons for the classicist to abandon his logic. Thus classical logic fails,
in its standard formulations, to satisfy the simple Sub formula Principle and
Conservativeness Principle mentioned above, though these principles are satisfied
by intuitionist logic. Negation is proof-theoretically creative, in classical logic.
Adding it to the -» fragment of classical logic yields Peirce's Law:

(({A-+B)^A)-+A)

as a new theorem, for instance. Adding it to the -», v fragment generates as a
new theorem

(UA->(B\/C))-+«A^B)v(A^C))) .

Similarly one cannot, without some forcing, view classical logic as given
by a system of introduction rules together with elimination rules justifiable in
terms of the former by means of Prawitz' Inversion Principle, for the distinc-
tively classical principles, such as double negation elimination or classical reduc-
tio, resist any simple attempt to make them conform to the Principle (cf. [4],
pp. 34-35). But note also the anomolous position of ex falso quodlibet inside
the scheme of introduction/elimination rules. Prawitz, indeed, was led to con-
jecture that minimal logic alone was sound and complete with respect to the type
of validity concept he was after ([6], p. 246).

For a classicist, of course, the preservation of the truth of the premises in
the conclusion is the only important conservation principle and the proof-
theoretically creative powers of negation are hardly surprising, given the tight
fit between a sentence and its negation in a bivalent language. That classical logic
is too strong to satisfy purely proof-theoretic attempts to make sense of the
notion of the containment of conclusion in premises is, again, unsurprising given
the radically nonepistemic notion of truth used in classical semantics; nor will
it worry those with a sufficiently hard-headed view of the severe limitations on
human epistemic capacities.

This forthright style of response on the part of the classicist seems to me
to be essentially right. On the other hand, it would be blind dogmatism to sup-
pose that the classical conception of truth as independent of proof stands in no
need of justification. The rebuttal of skeptical attempts to show that the clas-
sical notions are incompatible with plausible assumptions in the theory of mean-
ing is a challenge which the classicist ought to try to meet (though there is no
legitimate requirement that he do so without availing himself of classical logic
(cf. [10], pp. 178-179)). In lieu of such a rebuttal, which would by no means
be a trivial matter, it may be worthwhile for classicists to turn their attention
to proof-theoretic harmony constraints between introduction and elimination
rules to see if the omens in this area really do point away from classical logic.
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Now the classicist will clearly not be after noncreativity constraints designed
to filter out overly strong logics which generate conclusions not contained in the
premises. Rather the classicist will look for "nonleakage" constraints which are
designed to rule out overly weak logics which fail to generate all the conclusions
contained in the premises. If the most natural "nonleakage" and noncreativity
constraints point to different logics as the correct one the classicist need not be
too dismayed, for he need not seek a clear superiority of classical logic over its
rivals in proof-theoretic terms. If we can find principles in terms of which clas-
sical logic comes out on top, and which are at least as natural as those under
which it fares badly, then the proof-theoretic arguments balance out. This is to
the advantage of classical logic, since the prejudices of most logicians are in its
favor and, hence, the onus is on the deviant logician to produce persuasive
grounds for abandonment.

In this paper, I shall attempt to neutralize the proof-theoretic arguments
against classical logic by formulating a "nonleakage" harmony constraint
between introduction and elimination rules which I claim is at least as natural
as Prawitz' Inversion Principle (and, indeed, more justifiably termed an inver-
sion principle than his) and, yet, which classical logic, but not intuitionistic logic,
satisfies. First, the structure of introduction and elimination rules must be laid
down with sufficient generality for the task at hand.

2 Consider the following as a schematic introduction rule for an «-place sen-
tential connective Φ:

(l) μ l} μ<(/)}

pί pkn
Φ(C 1 , . . .C Π )

The notation used here is to be understood as follows. The As, Ps and Cs
are sentence schemata constructed from sentence variables by means of sentential
connectives. The Cs represent constituents of the conclusion, the Pi to Pr(/)S
represent immediate premises of the rule and the set {Aj} is the set of assump-
tions on which Pj depends discharged by the application of the introduction
rule. The superscript / above the discharged assumptions and immediate premises
is to allow for the possibility that more than one introduction rule is provided
for Φ(Ci,... ,Cn). (Thus the standard disjunction introduction has two forms,
one with the left disjunct as immediate premise, the other with right premise.)

Where all the sentence schemata in all the rule schemata are unstructured
sentence variables, then we may call the rule independent. Where all the assump-
tion and premise sentence variables in each rule schemata are subformulas of
the Cs then we may call the rule proper. (1), then, is to be read: Given a proof,
for each j , 1 <j < r(i) of immediate premise Pj, from the set of assumptions
{Aj}, possibly together some further set of assumptions {S/}, then we may infer
Φ(Ci,. . . ,Cn), this conclusion depending on the assumptions Uj=\{Sj}, that
is the union of all the undischarged assumptions on which each immediate prem-
ise depends.
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An instance of the rule is the result of uniform substitution of sentences
for sentence variables in one of the rule schemata.

As a schematic elimination rule consider:

(2) μϊί JΛQ

Φ(C 1 , . . .C y | ) Ml M / ω

Ei

Here Mj is a minor premise for an application of the elimination rule to
Φ(CΊ,... Cn) with conclusion Eh the set {Aj} being the set of assumptions
on which My depends discharged by the application of the rule. Again we allow,
through the variable /, for the possibility that there is more than one elimina-
tion rule for Φ ( C 1 ? . . . Cn) (as, for example, with & elimination).

(2) is, therefore, to be read: Given a proof, for eachy, 1 <y < r(/), of

minor premise Mj, depending on the set of assumptions {A}}, and possibly also

on the set {5/}, together with a proof of Φ ( C l 5 . . . ,CΠ), possibly dependent on

the set of assumptions {SQ}, then we may infer Eh this conclusion depending on
I \r(J) ί en
KJj=o\^j)

Independent and proper rules can be defined as before, extending this time
the definition to cover the minor premises and the elimination consequences, as
well as major premises and assumptions.

Given rules of these forms, we can define proofhood recursively, the base
clause ensuring that every sentence is a proof of itself dependent on itself, and
inductive clauses extending proofs to further proofs by means of one of the
above types of rules. (These proposals for introduction and elimination rules are
taken largely from [5], pp. 35-37.)

3 Armed, then, with characterizations of introduction and elimination rules,
what alternative proposals to Prawitz' Inversion Principle, as a condition on har-
mony between the two types of rules, can be made? My idea is to take Prawitz'
notion of an inverse relationship between corresponding introduction and elimi-
nation rules rather more literally than he does. Take, for example, normaliza-
tion of a maximal disjunct in a system with standard disjunction rules:

Δ Δ
n n

• A , A 2 •

' I — 1 ,Z

AxvA2 C C

— " c

What we have here, as in Prawitz' reduction procedures generally, is the
elimination of an unnecessary detour. We now arrive at the same conclusion,
dependent on the same premises, more directly. But, pace what Prawitz says,1

there is nothing one might wish to call inversion here. For we have not restored
what had already been established prior to disjunction introduction, namely,
Ai. Compare functions. One might substitute for the composition of two func-
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tions/and g a function h at least as simple as the simplest of/and g, hence sim-
pler than fOg, and such that h agrees with fOg on every argument for which
fOg is defined. This would clearly represent a gain in simplicity. But such a
function has nothing to do with an inverse function/"1 such that/O/" 1 is the
identity function. Could we treat introduction and elimination rules (/rules and
E rules for short) as inverses in a sense strongly analogous with "inverse" as it
applies to functions? This would seem to require that application of an / rule
(E rule) for a constant K immediately followed by application of an E rule (/
rule) for that same constant should leave us in precisely the same position we
started from just prior to application of the first rule. This is clearly not the case
with a maximal occurrence of disjunction: C need not be identical with Ah the
premise of the original application of v/, nor need the assumptions on which
it depends be just those on which A t depended at that stage. However, compare
the following proofs involving conjunction:

Δ Γ Δ Γ

A B A B

A&B A&B

A B

These illustrate a sense in which standard &I and &E rules are, in one direc-
tion, inverses of one another. Our starting point was two proofs, one of A and
one of B. From this position (after reduplicating this starting point on the right)
we can return to the starting point, those two conclusions dependent on the same
undischarged premises, by applying &/immediately followed by &E. The rules
are in a direct sense inverses of one another.

What about the opposite direction: &E followed by &/? Here the start-
ing point is a proof of A & B. If the rules are inverses in this direction then by
proceeding from this point (possibly reduplicated) by applications of &E fol-
lowed by & / we must be able to return to a proof of A & B from the same
undischarged assumptions. This is easily seen to be the case, as follows:

Δ Δ

A&B A&B

A B

A&B

If we turn to -> we come across a more complicated case. The starting point
for standard -»/ is a proof of some sentence B possibly dependent on another
sentence A. The rule then gives us:

n

AA

B
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From here alone there is no route to the starting point, a proof of B from Δ and
A. But in applying -*/we have, of course, discharged all occurrences of A as
assumption. Hence it is entirely legitimate to introduce A as a further premise.
In doing so we do not add to the premises present at our starting point. And
now we are easily able to show that in the introduction followed by elimination
direction ->/ and ->E are inverses2:

AAn

B

A^B An

B

Similarly, from the condition for application of ->E, namely a proof of A ->
B, one is not going to get very far. But if one allows oneself to add the requi-
site minor premise, thus bloating, normally, the number of undischarged
assumptions, one can still return, by application of -*E followed by -•/, to the
original situation. For one can, of course, use the discharge permission in the
introduction rule as follows:

A-+B A1

B

A-+B1

All this suggests a rather different two-part Inversion Principle from
Prawitz', one part concerned with introduction rules followed by elimination
rules, the other concerned with the opposite direction. First of all, let us say that
Π, a proof or sequence of proofs, is a sufficient condition for Φ under R iff
application of R to the conclusion(s) of Π yields Φ. Then, suppose that Π is a
sufficient condition for Φ(Cι,.. .Cn) under an introduction rule R for Φ.
Graphically:

JA[} JAQ

Φ(Cl9...Cn) " Pj Pki)

Φ ( C 1 , . . . C Π ) /

When this holds, the Inversion Principle then requires that there be a sequence
of proofs each formed by deriving Φ ( Q , . . . Cn) from Π by R, adding the dis-
charged assumptions {A)), 1 <j < r(i), as minor premises, and applying an
elimination rule for Φ, and which is such that this sequence is also a sufficient
condition for Φ under R, with the same major premises and dependent on the
same assumptions as Π. We can represent this graphically as:

π > π
Φ(c 1 , . . . c jμ lT. . . μί ( ί )} ... Φ(cu...cn)jAΪ} ... μί ( / )}

P[ P'r(i)
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In the elimination followed by introduction direction we will require that,
when Π is a sufficient condition for an application of elimination rule R to Φ,
graphically

Ei " Φ ( d / . . . C Λ ) M{ Mki)

% E

there is a proof whose conclusion is Φ(C 1 ( . . .Cn) and which consists of a
sequence of instances of Π, each followed by R, which is in turn followed by
an instance of an introduction rule for Φ, at which all the minor premises M),
1 <y < r(/), are discharged. Graphically:

I ! i I

M\ M; ( 0 ' M\ M U)'
π π

— P
 E τ~E

Φ ( C 1 ( . . . C n ) "

(Here ! marks the step at which the minor premises are discharged by applica-
tion of the /-rule.)

Putting the two parts together we get the following

Inversion Principle

(a) I-E

JMΪ {A'rU)i

Φ(C, ...,Cn)
 P f P ^ i

Φ(C,, ..Cn)

Π _ — ^ Π _ _ _
Φ(C,, ..Cn) {A\} ... μ^ ( 0 } ... Φ(C l f ..CB) M',} ... {Λ<(/)}

£ ••• E

pi pun

When the sufficient condition for application of an /-rule obtains, application
of that rule followed immediately by application of elimination rules for the rele-
vant constant returns us to the sufficient condition for application of the /-rule.
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(b) E-I
{Λ\} {A'r0)}

Π = φc,, ... Cn) M{ M/(0

* ' E

! t ! t

Ml M/(0 Ml M/(/)

π π
E E

Ex Es

7 !

HCU ~Cn)

When the sufficient condition for application of an £-rule obtains, application
of that rule followed immediately by application of introduction rules for the
relevant constant returns us to the sufficient condition for application of the
.E-rule.

This principle seems to me to require introduction and elimination rules to
be inverses of one another in a sense as close as one could get to the sense in
which a function can be the inverse of another. When this principle holds for
a pair of rules, then, given that one has arrived at the sufficient condition for
the application of one rule, application of that rule followed immediately by that
of its inverse returns one to the sufficient condition for the first. Note also that
this principle is, in a sense, the inverse of Prawitz' Inversion Principle. Where
the latter was concerned with whether certain types of redundancy in a proof
can be eliminated, the principle above is concerned with the opposite. It holds
if we can find redundant loops in which one type of rule followed by the other
returns us to exactly the same place.

Of course, when concerned with the first-order business of attempting to
prove object language sentences, such redundancy in proofs is not a virtue. But
here we are concerned with the metatheoretic business of formulating a natu-
ral harmony constraint relating introduction and elimination rules, and we need
not require that the proofs which exhibit the working of the principle be use-
ful for any other purpose. The above principle does formulate a neat and obvi-
ous balance between / and E rules. We may say, then, that a system which is
too weak to balance its / and E rules in this way, by deriving the conditions for
applying one type of rule from the conclusions of the other type applied to those
conditions, does not extract all that is contained in the premises—there is some
"leakage". This logical system is inadequate in the way a set of mathematical
axioms is inadequate if it is supposed to characterize a structure in which the
inverse of every function expressible in the formalization exists yet the existence
theorems in question are not provable from the axioms.

True, this explication of the notion of containment is somewhat strained.
But so too, it seems to me, is the explication which invokes Prawitz' Harmony
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Principle. If it seems less so, this is only because one has already decided on an
approach in which a subset of rules are distinguished as canonical. Granted this,
the idea of characterizing other rules as creative or not immediately suggests
itself. This whole approach, therefore, sets up a severe soundness test; one might
say it is weighted against strength in logics. But it is not much use as a complete-
ness test since any logic which contains the full set of logical constants together
with the canonical rules which, it is claimed, give them their meaning, will be
complete according to a definition of validity in which an argument is valid if
canonical rules applied to canonical proofs of the premises can generate its con-
clusion. If we are after a challenging proof-theoretic criterion of completeness
we must choose a criterion which is biased more in the opposite direction,
namely, against weakness in a logical system. We have to propose proof-
theoretic powers which we think are inherent in the logical constants and which
must be revealed in any complete proof system. The balance between introduc-
tion and elimination rules for a given constant required by the above Inversion
Principle seems as natural a criterion of that form as any.

We have seen how the standard rules for & and -> meet the constraint. Are
there rules for the other connectives which also meet it? Negation can be brought
into the scope of the principle, of course, by defining —A as (A -• *) , * being
some absurdity constant, and subsuming it under the case of the conditional.
But it also satisfied the principle directly, when given these introduction and
elimination rules:

-/ : ~E:

A1 -A A

~Al

That it satisfies the principle directly can be shown as follows:

(a) (b)

? ~Λ A'
* *

~AX A ~Al

*

But disjunction, with its standard rules, clearly does not satisfy the principle.
Having concluded Ay B from A by v/, there is no way, in general, to conclude
A from the disjunction by vE. Nor is it possible, in general, to derive A v B by
v/ from a conclusion C of an application of vE.

Take, however, these rules for disjunction:
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v/*: v£*:

A v B -A Ay B ~B
1 1

~B -A B A

A B
1 1

Ay B Ay B

These satisfy the Inversion Principle as follows:

(a)

~B

A

A v B ~B

A

(with a symmetrical proof where B is the premise of v/).

(b)
1

Ay B -A

B
1

A v B

(with a symmetrical proof where ~B is minor premise). Furthermore, these rules
constitute a formulation of classical logic (I will call this formulation C~ hence-
forth), for excluded middle, exfalso quodlibet, and standard disjunction elimi-
nation are all derivable using them:

Excluded Middle:

-A

Ay -A

Ex Falso Quodlibet:

A

Ay B -A

B
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Standard vE: _

A

~C C

AvB -A

B

~C C
3

~C *
3 —2

Cv~C —C

c
Conversely, v/* and vis* (disjunctive syllogism) are derivable in the standard
classical systems (taking classical reductio ad absurdum as the classical addition
to the standard intuitionist natural deduction system):

v/*: ,
-A

B
2

~{A\/B) A\/B

A
2

~(AvB) AvB

AvB

(The proof is symmetrical where — B is the discharged assumption in v/*.)

Disjunctive syllogism:
— 1 2 —1

~A A ~B B

AvB * *

*
—2

(The proof is symmetrical in the other case.)
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Can the Inversion Principle be extended to the predicate calculus? In order
to do so, we must generalize the schemata for introduction and elimination rules.
This could be done by permitting the sentence variables to stand for sentences
with free variables, the schemata being constructed by means of quantifiers as
well as sentential connectives. We should also allow that we may specify, with
respect to a subproof of a premise Pj, or minor premise Mj, a list of variables
none of which must occur free in any of the undischarged premises in {Sj} (see
[8], p. 361). On this understanding of more general natural deduction rules it
can be seen that the standard universal quantifier rules obey the Inversion Prin-
ciple (in what follows Ft stands for the result of substituting a closed term t, new
to F, for all free occurrences of x in F):

Δ

Ft

VxFx t not in Δ.

Ft

A

VxFx t not in Δ.

Ft

VxFx

Just as clearly, the standard existential rules do not obey the Inversion Princi-
ple. The constraints on the parameter in the existential elimination rule prevent
one from deriving, by its means, a premise, Ft, of existential introduction from
the conclusion, 3xFx, of the introduction rule. This is because t cannot occur
in the conclusion of the rule if it occurs in the discharged premise. Yet, there
is no other way for Ft to be derived. Similarly, one cannot derive, by 3/ alone,
3xFx from an arbitrary conclusion, C, of 3E.

The amended rules for disjunction, however, suggest the following
amended rules for the existential quantifier:

3/*

n

Vχ(~χ=t -+ ~Fx)

Ft
n

ixFx

IE*
ixFx vx(~x = t -• ~Fx)

Ft
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It is easily seen that these rules obey the inversion constraint:

I-E

1

Vx(~x = t -• ~Fx)

Ft
1

3xFx Vx(~x = t -> -~Fx)

Ft

1

3xFx Vx(~x = t -» ~Fx)

Ft
1

3xFx

Moreover, if we permit ourselves standard identity rules in order to treat
of the identity constant introduced (say, reflexivity and Leibniz' Law), then the
system of logic which results is the classical predicate calculus with identity (I
will call this system C). For, from one set of rules, the other can be generated
as derived rules. To illustrate:

3/ => 3/* 2

1 Fa
Vχ(~χ = t -+ ~Fx) 3

~3xFx 3xFx

Ft *

3xFx ~3xFx -Fa

* ~a = t-> -Fa
1

~vx(~* = t -> ~Fx) Vx(~x = t -> ~Fx)

3xFx

where a is chosen so as not to occur in F.

3/* => 3/

Ft

3xFx
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IE => 3E*

V*(~x=/ -+ ~Fx)

2

Fa ~Fa

a = ί Fa

3xFx FJ_

Ft

3E* =*3E Here we require a lemma on substitution in proofs. In standard nat-
ural deduction systems we have:

Substitution Lemma If Π is a proof of Φ from A then Hal, is a proof of Φj,
from A*a, t and a being closed terms.

(Δ'a is the set of Ψ such that Ψ is θ^, for some θ in Δ, θ^ is the result of uni-
form replacement of t by a in θ, Ua is the result of uniformly replacing all
occurrences of a as a parameter in a quantifier rule by some term distinct from
a and new to Π, and Π^ is the result of substituting a for t in every formula in
Π.)

A proof of this lemma can be found in [9], pp. 67-69. It can be checked
that the same reasoning yields a proof of the lemma with regard to C.3

Hence, if we have a proof of the form:

FtA

π
c

there exists also a proof of the form:

Uai

Ci

Furthermore, if the conditions for 3£ are satisfied, then F^ = Fa, since t is not
in Fx; Δ£ = Δ, since t is not a member of Δ; and C^ = C, since t is not in C.
Hence, the following is a proof in the amended system:



474 ALAN WEIR

— l

Fa A

Π *i __2

c ~c

*

-Fa

~a = t -> -Fa !

3xFx vχ(~χ=t -> ~Fx)

Ff Δ

Π
2

c ~c

~g3 I
3 2

Cv~C —C

C

(Note that the application of V/ marked ! is correct since a is not in C, or in
any undischarged assumptions on which C depends.)

Classical predicate calculus with identity, then, admits of a formulation,
purely in terms of introduction and elimination rules plus the rules for the iden-
tity predicate, in which the rules harmonize in the manner laid down by the
above Inversion Principle. Intuitionistic logic, however, does not admit of a
"standard" formulation which satisfies that principle.

To illustrate what I mean by standard, consider proofs of A v B from A
and from B, both atomic. A standard formulation of intuitionistic logic would
possess a normalization property: these proofs will be transformable into nor-
mal form proofs possessing the usual intuitionistic normal form properties. For
one thing, nothing will occur in the proof unless it is a subformula of the con-
clusion or of a premise. So only formulas built up from A and B by means of
v will occur, and, hence, only disjunction rules will feature. Moreover, every
path in the proof can be divided into an elimination section (perhaps empty) fol-
lowed by an introduction section (perhaps empty). All formulas in the elimina-
tion section are proper subformulas of the preceding formula (if there is one)
and all formulas in the introduction segment are proper subformulas of the suc-
ceeding one (if there is one), the sections divided by a minimum formula which
is a subformula of the succeeding one, unless it is the absurdity constant.4

Now the last step in the normal form proof of A v B cannot be vF else
there will be a path containing only major premises of vF and hence a complex
undischarged assumption. The conclusion must be obtained, then, by v/, the
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premises being proper subformulas of A v B, i.e., A in one case, B in the other.
In order for this to be possible, the v/ rule must be an instance of a rule with
the general form:

vJ:
n n

{Q JDJ}

A B
n n

Ay B Ay B

But no such v/ rules can be part of a formulation of intuitionistic logic
which meets the above Inversion Principle. For, if the right-hand introduction
rule met the principle, then there would be proofs of this form:

A v B XDJ)
E

B

But take the special case where B = -A. Since the following is a rule, primitive
or derived, in intuitionistic logic:

π

AA

—n

-A A
n

—A

then, if the Inversion Principle were to be satisfied, we would have the following
proof, A atomic:

— l

_Λ_ —2
A v ~A JDJ\

—j

-A A
1

-A

Ay -A
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But, of course, A v ~A is not provable in intuitionistic logic, where A is atomic
(as can be shown proof-theoretically or semantically using, e.g., Kripke trees).
Hence the Inversion Principle fails for any standard formulation of intuitionistic
logic.

4 We have seen, then, that there is a formulation of classical logic which
satisfies the Inversion Principle, though no standard formulation of intuitionistic
logic does so. Intuitionistic logic, however, clearly meets Prawitz' Inversion con-
straint while standard formulations of classical logic do not. Neither does the
above formulation C~. Disjunction is the stumbling block. For disjunction,
there are two possible types of occurrence of maximal formulas for each intro-
duction rule:

(a)
1

~B A

Γ
A

1

AMB ~B

A

and

(b)

~B A

Γ
A

1

Ay B -A

B

(The case is symmetrical where B is the premise of v/*. Note that the deriva-
tion of ex falso quodlibet on p. 19 is abnormal.)

Case (a) is easily handled by transforming the maximal fragment to:

Γ

~B A

A

where if ~B is maximal in the new proof, it is nonetheless of no greater logi-
cal complexity than A v B and eliminable, in turn, by the ~ reduction step.
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But the best we can do in case (b), it seems, is:

~B A Γ

A -A

2

~B *
2 1

B\/~B — B

B

Here the occurrence of By ~B is maximal of type b and may be of greater log-
ical complexity than A v B. An attempt to apply the normalization procedure
to this proof would simply lead to

~B A Γ

A -A

2 1

~B — B

~£ *

B\/~B B

B

and thus to a normalization loop.
The situation can, however, be improved a little: we can carry out further

transformations of the form of Prawitz "atomizing" transformations ([4], p. 40)
to ensure that the only maximal formulas of the form A v ~A have an atomic
disjunct (let us call a formula of that form a "LEM " and say that it is a LEM
of A). The general transformation we are after acts on fragments of proof of
the form:

-A A

-A *

Av~A —A

A

(that is, proofs of classical reductio within the amended system) to produce new
proofs of A from Δ in which the number of maximal LEM formulas of the same
complexity as A v — A is reduced (and no new such formulas of higher complex-
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ity are created). Successive applications of such transformations ensure that any
maximal LEM formulas which occur in the final proof have an atomic disjunct.
If we describe a proof in that state, with no other type of maximal formulas,
as in normal form, the result is that every proof in C~ can be transformed into
a normal form proof of the same conclusion, from premises among those in the
original proof.

Can this normalization result lead to any interesting Subformula property?
The following is provable:

Subformula Principle Every formula in a normal proof in C~ is
(a) a subformula of a premise or the conclusion f subformula, for brevity); or,
if not, is
(b) the negation of a subformula; or, if neither, is
(c) a maximal LEM with an atomic disjunct which is a subformula; or, if none
of these, is
(d) a double negation of an atomic subformula and the minor premise of an
application of\/E* with major premise as in (c).

But this could hardly be claimed to be a very interesting or natural subformula
property.

The classicist may claim that there is nothing surprising in negations, dou-
ble negations and instances of the law of excluded middle cropping up noncon-
servatively in classical proofs, given the law of bivalence which holds in the
intended interpretation of classical logic. But when we move to C things become
even worse. For the sentence discharged when concluding 3xFx by 3/*, and also
used as minor premise in 3is*, with that generalization as major premise,
namely, v#(~x = t -> ~Fx), bears no simple relation at all to ixFx. Even the
Subformula Principle above, then, does not hold in C. There is a more restricted
principle, however, which does hold. Let us say that P < Q iff every predicate
constant, individual constant not occurring as a parameter in V/, and atomic sen-
tence variable which occurs in P, also occurs in Q. Then

Restricted Subformula Principle Every formula in a normal proof in C
bears < to a premise or to the conclusion.

A classicist might claim that the above Subformula Principle is as neat as
needs be required, it being unsurprising that V, -», ~, v, and = are proof-
theoretically creative in classical logic given the known interdefinabilities among
them (apart from identity). But there is no gainsaying the untidiness of the sub-
formula principle. This derives from one main source: the nonindependence and
impropriety of the v and 3 rules. Structured schemata involving negation come
into the v rules. The 3 rules are even worse off, involving no less than V, ~, -*,
and =. Hence the rules are not independent. Moreover, for no v or 3 rule are
all the premises or assumptions subformulas of the constituents of the conclu-
sion (in the / case) or a major premise (in the E case). Hence they are not proper.

The introduction of = into the 3 rules is particularly unfortunate since not
only is it not in the circle of classically interdefinable constants but it brings
along with it the Laws of Identity, which fall outside the neat set up of purely
introduction and elimination rules otherwise obtaining.
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This last difficulty can be overcome by moving to second-order logic and
defining / = u as vF(Ft <-* Fu). Second-order 3 rules could be given, analogous
to the first order, except that {~Vx(Ax «-> Fx) -> -QxFx) plays the role of
Vx(~x = t -+ -Fx) with A a predicate parameter and Qx x a second-level
concept (considering only the monadic case for simplicity). Thus the difficulty
over = will not arise at the second-order level for <- can be defined in terms of
the constants at hand or introduced as a primitive with introduction and elimi-
nation rules which satisfy the Inversion Principle above,5 as well as permit of
reduction procedures for maximal formulas. Unfortunately, normalization
results do not hold for second-order quantification, else the consistency of arith-
metic could be proven with arithmetic, contrary to GδdePs Second Incomplete-
ness Theorem (cf. [4], pp. 71-73]. The stumbling block is that substitutions of
predicates for predicate variables may increase the logical complexity of the for-
mulas so that new maximal formulas introduced by reduction steps may be of
higher complexity. This problem could be met by moving to ramified second-
order logic but this, by introducing a relativity into the concept of identity, is
not particularly attractive.

Nonetheless, when the balance of considerations are weighed up, it seems
to me that classicists have little cause to worry. Classical logic does not admit
of formulations which have neat Subformula Properties or satisfy Prawitz'
Inversion Principle. Nonetheless, it does satisfy a restricted Subformula Prin-
ciple and, moreover, a very natural Inversion Principle which intuitionistic logic
fails to satisfy. While the considerations behind the latter principle may be said
to favor strength in logics, the considerations behind the use of Prawitz'
principle —the idea of the noncreativity of elimination rules —may be said with
equal justice to favor weakness. Neither attitude can form a non-question-
begging base for evaluating classical logic against a more constructivist alterna-
tive. Proof-theoretically, then, there seems little to choose between the two
logics, at any rate for a classicist. Constructivists attempting to persuade clas-
sical logicians to abandon their logic in favor of a weaker logic, with all the crip-
pling restrictions on classical mathematics and, therefore, on physical science
that this implies, would be better advised to concentrate not on proof theory but
on semantics, for they may be able to demonstrate some serious incoherence
in the notions of truth and meaning appropriate to classical semantics. I doubt
very much whether this can be done, but that is a different, and even more com-
plex, story.

NOTES

1. ". . .By an application of an elimination rule one essentially only restores what had
already been established if the major premise of the application was inferred by an
application of an introduction rule." See [4], p. 33.

2. In a particular case involving vacuous discharge there may be no assumption A to
appeal to in ->E. But the question of harmony requirements between introduction
and elimination rules should be conducted at the general level of the rule schemata,
where the discharged assumption is provided as part of the rule schema.
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3. For simplicity, I have considered only noncomplex terms. Tennant's Proof depends
on the observation that Φt™ is (Φm)t™, where t, m, and n are terms which are not
variables. Thus

k

Vχ(~χ= t -> ~Fx)

π
Ft

k

ixFx

becomes

k

\/x(~x = t -> ~Fx) m Am

Un

Ftm

[3xFx]m

Observing that Vx(~x = t -* ~Fx)% is VJC(~JC = C -+ ~Fx™), [3xFx]% is 3x[Fx^]f

and that Ft™ is F^C» t n i s last proof is:

ΠΛ

Γ n ιn

k

in which the last application of 3/* is correct. Given the inductive hypothesis that
the proof of F^t™ is valid, so too is the proof of the conclusion. Similar reasoning
applies to 3E*. v/* and vE* are easily seen to satisfy the lemma since the substitu-
tions distribute over the connectives. Reflexivity of identity is trivial, while for Leib-
niz's Law we have only to note that

Δ Γ

Π Σ

a = b Fa

Fb

becomes, after substituting and observing the identities among formulas noted above:

n A n

n Ln

a™ = b™ Fa™

Fb™
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4. See [4], p. 52 for paths and p. 53 for the division into sections. Because of the effect
of the standard v and 3 elimination rules in allowing the same formula to occur as
both premise and conclusion, these properties strictly hold of segments, not formulas
(see p. 49).

5. Actually the biconditional does not quite satisfy the Inversion Principle. There are
the following proofs:

—n —n —m —m

B A B A

A B A B
n m

A~B B A~B A

A B

But here we use minor premises from different / rules in deriving the premises
for <-/. Again in this proof:

— l —l

A~B B A~B A

A B
— ,

A ~B

the conditions obtaining for «-> elimination on the right-hand side are not exactly the
same as those on the left, but sufficient conditions for +-E under a different E rule
for A «-> B than the latter. However, a slight generalization of the Inversion Princi-
ple would enable the biconditional to satisfy the Principle.
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