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Subcountαbility Under Reαlizαbility

CHARLES MCCARTY*

/ Abstract Among the open problems in the metamathematics of construc-
tivity catalogued by Michael Beeson in [2] are those of the consistency of IZF
with SCDS and with SCMS. SCDS is the assertion that every discrete set is sub-
countable; SCMS asserts that every metric space is subcountable.

Solutions to the SCDS and SCMS problems serve not only to advance the
techniques of model theory for intuitionism, but also to give some confirmation
to three distinct insights into the overall structure of constructive mathematics.
The first insight is that of Bishop, who suggested that even the strongest con-
structive systems should admit interpretations that reveal constructive mathe-
matics as having "numerical meaning". The second insight is GreenleaPs
intuition that the mainspring of the constructive theory of cardinality is not "raw
size" of sets, as it is on the classical account, but rather logical or mathemati-
cal structure. The third is perhaps more a presupposition of traditional intui-
tionism than an insight. It was presupposed by Brouwer that the domain of
significant mathematics includes only sets which are, from the classical stand-
point, relatively small and highly structured.

By working the model-theoretic approach to realizability which derives
from Kleene's work, we show that the full intuitionistic set theory IZF is con-
sistent with SCDS and SCMS. In fact, both SCDS and SCMS hold in a realiz-
ability structure, V(Kl), which is a close relative of forms of realizability
presented by Beeson in [1].

We also formulate a new principle, SCAS, which is a strong generalization
of both SCDS and SCMS. SCAS is the assertion that every set with strict apart-
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answering a question posed by Dana Scott. The results of this work have been reported
elsewhere in [6]. The author wishes to thank Giuseppe Rosolini, Dana Scott, and Simon
Thompson for their conversation, assistance, and encouragement.
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ness is subcountable. We prove that V(Kl) satisfies SCAS. This fact reveals that
the features of V(Kl) underlying the truth of SCMS and of SCDS are far more
constructive than one might initially have expected.

2 Background and motivation In 1968, Bishop encouraged mathematicians
to see constructive mathematics as fundamentally numerical, or as having what
he called "numerical meaning". According to Bishop, the link between the con-
structive and the numerical had been forged by Kronecker:

In my book I proposed, in the spirit of Kronecker rather than Brouwer,
that the integers are the only irreducible mathematical constructs. This is not
an arbitrary restriction, but follows from the basic constructivist goal —that
mathematics concern itself with the precise description of finitely perform-
able abstract operations. It is an empirical fact that all such operations re-
duce to operations with the integers. [3]

Unfortunately, Bishop's proposed analysis in [3] of the Kroneckerian
"numerical meaning" notion was overly restrictive. In attempting to make the
idea precise, Bishop overspecified; he tied the notion directly to GόdeΓs Dialec-
tica interpretation. Technical difficulties aside, this approach offends the spirit
of traditional intuitionism which emphasizes insight and a direct apprehension
of meaning unmediated by formalism.

This is not to say that there is no natural way to meld intuitionism with
"Kroneckerianism". One can make the idea of numerical meaning concrete by
specifying that a branch of mathematics has numerical meaning if every result
of that branch is uniformly interpretable as a statement about the elements of
some numerical structure. Arguably, the numerical structures are, at least, the
functional types over ω together with subobjects and quotients of the types. With
no further ado, one can see that a great deal of mathematics has numerical
meaning in this sense if pure analysis does. We will show that, in the realiz-
ability structure V(Kl), the basic structures of concern to analysts, the abstract
metric spaces, are numerical structures. In particular, we will show that V{Kl)
satisfies SCMS: every metric space is a subobject of a quotient of ω, i.e., every
metric space is subcountable. It follows that, in V(Kl), analysis can go on over
a small category. This means that there is a set containing all the structures one
needs to get along in analysis.

In [2] Beeson asked whether the strongest formal system appropriate to
Bishop's brand of constructivism, the formal system IZF, is consistent with
SCMS. At the same time, he put a seemingly easier question. Beeson asked if
it is consistent with IZF to take all the trivial metric spaces, the discrete spaces,
to be subcountable. Here, a set S is discrete iff equality on S is classical:

Vx, y € S(x = y v ~x = y).

Greenleaf has argued (in [5]), on the basis of a number of constructive
cardinality results, that the cardinality of a set in constructive mathematics is
determined not so much by its size but more by its structure. Classically, we
think of cardinality as being measured extrinsically —by a set's functional rela-
tions with some standard measure, such as the ordinals. Constructively, says
Greenleaf, we ought to think of cardinality as determined not by this extrinsic
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concept of size, but primarily by properties intrinsic to the set, properties which
relate directly to its internal "proof-theoretic" structure. It would be some con-
firmation of this idea to show that, over a very natural model of IZF, those
properties of sets which one easily construes as intrinsic (like discreteness and
metricity) strongly affect the size of the set.

In the standard realizability model, the fundamental internal structure of
a set is (ordinary) recursion-theoretic. Roughly, the more we know about the
"decidability" of a set in V(Kl) the more structure it has. The consistency
results for SCDS and SCMS draw connections between this recursion-theoretic
understanding of structure and Greenleafs ideas. Familiar mathematical con-
ditions on a set, like discreteness, are connected to recursive structure and thence
via realizability to cardinality.

In dismissing the bulk of Cantor's theory of the cardinals (in particular,
anything beyond the second number class), Brouwer was presupposing that all
significant mathematics can go on in collections which are, classically at least,
cardinally small or mathematically well-controlled. That V(Kl) \\- SCMS shows
that V(Kl) is a universe of constructive mathematics which satisfies Brouwer's
presupposition. Here, all of analysis can be "covered by subsets of ω"; every
metric space is the image of some ω-subset. This means that when the situation
is viewed from a classical standpoint all constructive metric spaces are of rela-
tively low cardinality and that all relations on constructive metric spaces are
representable as relations on some subpartition of ω.

3 Extensional, set-theoretic realizability Solutions to Beeson's problems and
confirmation of our three insights come from extending Kleene's ideas on realiz-
ability to full set theory, and treating the resulting interpretation as an exten-
sional class model of the theory.

Intuitionistic Zermelo-Fraenkel set theory, IZF, was proposed originally as
a regimentation of the concept of constructive set exploited by Bishop in his
"New Constructivism" (cf. [3]). It would be heuristically, but not foundation-
ally, accurate to view IZF as a modification of ZF in accord with a minimal con-
straint. Briefly, IZF comes from conventional ZFC by dropping full AC,
reformulating the Fraenkel-Skolem replacement axiom as a scheme of collection
and putting transfinite induction on € in place of foundation. The constraint
which mandates these changes is the reasonable demand that no set theory
qualify as constructive if the theory entails TND: φ v ~φ. As is well known (cf.
[2] and [6]), the conventional ZF axioms, even in Heyting's predicate logic, entail
TND, tertium non datur.

To get down to particulars, IZF is formulated in the familiar single-sorted
first-order language with e as its sole nonlogical primitive. In this setting the
axioms of IZF are all the instances of (1) through (8):

Axioms of IZΓ
(1) Vz(z Gx~z€y)-+x = y (extensionality)
(2) iz(xezΛyez) (pair)
(3) 3.yVzVMGJc(zGM^zG y) (union)
(4) 3j> Vz (z E y ~ z £ x Λ φ) (separation)
(5) 3y vz (vw Gz(uex)-+zey) (power)
(6) 3JC (0 EXΛV yexlzexyez) (infinity)
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(7) Vy E x 3z φ -• 3« Vy E x 3z E w 0 (collection)
(8) Vx (Vj E Λ: φ(y) -+ φ) -> Vx φ. (transfinite induction)

(4) and (7) are schemata to which the usual restrictions apply.
In classical predicate logic, the IZF axioms are equivalent to those of ZF.

In Heyting's intuitionistic logic, the equivalence fails; IZF derives neither a clas-
sical foundation nor the general law of excluded third, TND.

Our treatment of realizability has affinities to the standard treatment of
Boolean-valued models for classical set theory. We work over a ground model
of classical ZF. We usually allow AC in our ground model, but it is not rele-
vant here. First, a "realizability universe", V(Kl), is defined recursively

V(Kl)o = 0
V(Kl)a+ι=P(ωX V(K)a)

v(κi)= u nκ)β.
γ

β<\

We define realizability (!h) over V(Kί) for the language of ZF extended
with elements of V{Kl), used autonomously. Here/, g E ω, and a, b, c, d E
V(Kl).

Definition 1
e Ih a E b iff lc((eθ9 c) E b and e{ Ih a = c) (1)
e |h a = b iff Vc, /(</, c) E a implies that {eo}(/) Ih c E 6 and

</, c ) G f t implies that {e{}(f) h c G a) (2)
e Ih φ Λ ψ iff e0 ||- φ and ^ Ih ψ (3)
e Ih φ v φ iff either β0 = 0 and ex \\- φ or e0 Φ 0 and ex |(- ψ (4)
β Ih Φ - 0 iff V/(/ Ih Φ implies that {e} (/) Ih ̂ ) (5)
e | h ~ Φ iff V/^/lhΦ (6)
έ?lh Vxφ iff VύrelhΦ(^) (7)
e Ih 3JC φ iff 3tf e Ih Φ(flr) (8)

We say that V(Kl) satisfies φ (in symbols, V(Kl) Ih φ) whenever 3« « Ih φ.

Generally <, ) represents set-theoretic pairing. ( ) 0 and ()i are for the first-
and second-projections with respect to number-theoretic pairing. Occasionally,
we will use <, ) for number-theoretic pairs also, but we hope that context will
sort things out.

Of course, there is a basic soundness theorem whose proof shows V{Kl)
to be a model of the intuitionistic set theory IZF. The result is well known and
the details are straightforward.

Theorem 1 (Soundness) V(Kl) Ih IZF + ECT + PA + RDC + UP +
AC(ω) + ~KS+ ~CTP.
ECT is Extended Church's Thesis for total functions, PA is Blass's Presenta-
tion Axiom, RDC is relativized dependent choice, AC(ω) is the axiom of choice
over ω, UP is Troelstra's Uniformity Principle, KS is Kripke's Schema, and CTP
is Church's Thesis for Partial functions. For explanation and further illumina-
tion of these principles, cf. [1] or [6].

4 SCDS Once we have shown that V{Kl) Ih SCMS, it is really superfluous
to give a separate proof that V(Kl) Ih SCDS. This is because IZF h SCMS -*
SCDS and V(Kl) is sound for IZF. We begin, however, with a proof that
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V(Kl) Ih SCDS because this more elementary result is so instructive. It reveals
interesting internal features of our model and serves as a fine example of our
approach.

Remarks:
(i) The operation ||<, >|| on V(Kl) represents internal set-theoretic pairing,

in that we have

Vflr, b E V(KI), V(Kl) Ih \\(a9 b)\\ = (a, b).

(ii) ω = {(n, n): n E ω}, where n = {<ra, m): m E n}. ω represents ω in
V(Kl), in that V(Kl) Ih ω = ω.

(iii) As far as membership is concerned, ω is realizability absolute. This
means that for m, n E ω, K(Λ7) Ih ra = fl if and only if m - n, and V(Kl) Ih
ra E ft if and only if m < n.

(iv) Since F(A7) is a model of intuitionistic logic plus identity, 3wEω
m Ih Vx(x = x). Fix / to be such an m.

As a preliminary we prove what is in itself an important result. Lemma 1
shows that the external or realizability notion of set, that notion of set which
we see in the structure V{Kl) from the outside, is represented internally also.
We can put this more "philosophically" by saying that V(Kl) has the means to
reflect on its own underlying notion of constructive set and to express the result
of reflection as another set in V(Kl). But, even if you do not care to wax poetic
about it, Ih is a very useful gadget for the following proofs. Fis the ground
model against which we have defined V(Kl).

Lemma 1 For any s E V(Kl), |h5 = {</i, I<Λ, a)\\): h Ih a E s} E V(Kl).

Proof: The lemma follows immediately from facts (a) and (b):

(a) For any s E V(Kl), {a: V(Kl) Ih a E s} E V
(b) For any s E V(Kl), {b: V(Kl) Ih s = b} E V.

(a) and (b) are proved simultaneously by ordinal induction using items (1) and
(2) of Definition 1.

On closer inspection, the realizability set |h5 proves to be a function when-
ever s is realizably discrete. In particular, lh5 turns out to be a function that
"subcounts" s; in V(Kl), \\-s is a function which maps a subset of ω onto s.

Lemma 2 V(Kl) Ih (s is discrete => lh5 is a function which "subcounts"s).

Proof: As the realizability clause for -• demands, we show how to compute,
from the "numerical evidence" that the antecedent of the theorem-formula
obtains, evidence for the truth of its consequent. Before we go into that, we
should note something quite general about discrete sets in V(Kl). We prove that,
if s is realizably discrete, n Ih a E s and n Ih b E s , then V{Kl) h a = b.

Assume that e \\- "5 is discrete" and that n Ih a E s and n Ih b E s. Then,

e Ih Vx, ye s(x = y v ~x = y),

so e i ther

{e}((n, Λ > ) 0 = 0 a n d {<?}««, n)hha = b
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or

{*}«/!, /i>)o Φ 0 and {e}«/i, Λ2>)χ Ih ~tf = b.

However, since (n, n) Ih a E 5Λfl E s and / Ih # = #, M((f l , ^>)o = 0. There-
fore, {e}((n, n))γ \\-a = b. Hence, F(#/) Ih a = b.

Now we can show that, realizably, if s is discrete, then \\-s is functional.
Again, let e Ih "s is discrete" and assume that

g\\-\\(a,b)\\e\\-s

h\\-\\(a9c)\\e\\-s.

Then, from the readability clauses governing atomic statements (Definitions 1(1)
and 1(2)), there are |<Λ, d)\9 ||<m, d*)\\ E V(Kl) such that

<^o, \\<n,d)\\)e\h

and

g{\\-\\(a,b) \\= \<n,d)l

while

<A0, Um,d*)iehs

and

Using the realizability of the obvious properties of pairs and of the transitivity
of identity, we have

g o = n = m = h0.

Without loss of generality, we can say that

go Ih d E s
go hd'es
gιhb = d,

and

hγfrc = d*.

From above, we have that {e}((g0, go))ι Ih d — d*. Another application of
transitivity now yields functionality of \\-S9 that V(Kl) \\- b = c.

It is easy to see that lh5 is realizably onto and this will complete the proof.
lh5 is realizably onto if and only if

V(Kl) Ih Vx(x E s -> 3γ((y9 x) E lb))

The latter is obviously true: Let n Ih a E s, then,

</!,/> IhKβ, a)\\e\\-s

and we are done.
The realizability of SCDS now follows immediately from the lemma and

we have

Theorem 2 V(Kl) Ih SCDS.
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5 SCMS Our proof of the following:

Theorem 3 V(Kl) Ih SCMS

is an adaption, to a more complex case, of the SCDS theme. Again, we show
that, realizably, if <M, p> is a metric space, then \\-M "subcounts" M. For this
proof, we need to mention some familiar properties of metric spaces and a some-
what less familiar property of the reals in V(Kl).

Remarks:
(i) As is well known, if <M, p> is a metric space, then p is a metric such that

(a) Vx, y E Mir E R((x, y, r) E p)
(b) Vx E MVr E R((x, x , r ) G p = * r * 0 ) and
(c) Vx, y E MVs E 7?(<x, j>, s> E p Λ5 « 0 => x = y).

R is the structure of Cauchy reals, 0 is the identically zero Cauchy sequence,
and « is the usual equality relation on R.

(ii) Let CR = {((e, />, e): e is the Turing index of a recursive Cauchy
sequence, /is its modulus, and e = {<«, |<Λ, {β}(π))|): « E ω}}. CR is, inter-
nally, the set of Cauchy reals of V(Kl):

V(Kl) hCR = R.

A proof of Lemma 3 will suffice for the theorem.

Lemma 3 V(Kl) \\- (<M, p) is a metric space => \\-M "subcounts" M).

Proof: Again, the only real difficulty is the proof that, under the appropriate
assumptions, \VM is realizably functional.

Assume that n Ih a E M and that n \\- b E M. Also assume that V(Kl) \\-
"<M, p) is a metric space". Then, using Remark (i)(a), there is an e E ω such
that

e Ih Vx, ye M 3r E CR{x, y9 r) E p.

It follows from Remark (ii) and Definition 1 that

3r{β}«/i, n))\\-reCRA \\(a, a, r)\\Ep

and

{e}((n, n))oι Ih r = {*}«/!, Λ>)OOO.

Also,

35{^}««, Λ>) |h 5 E C ^ Λ 1 <tf, 6, J>I E p

and

{e}«/i, Λ> )oi Ih 5 = M « / I , / I > ) O O O .

Therefore, F(AT/) Ih r = 5. With the readability of (i)(b), we have that

V(Kl) Ih r * 0,

and immediately,

F(#/) Ih 5 « 0.
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Finally, a readability witness for (i)(c) yields V(Kl) Ih a = b and it is clear that
a witness for this fact can be calculated effectively from n and a witness for
V(Kl) Ih "<M, P) is a metric space."

Corollary 1: V{Kl) Ih Every metric space has a subcountable basis.

Proof: Immediate from the SCMS and soundness theorems.

Corollary 2: V{Kl) Ih The category of metric spaces is equivalent to a
small category.

Proof: Again, trivial.

6 Apartness and subcountability The style of reasoning exhibited above
admits yet another generalization. Beyond giving a more general result, this will
reveal the extent to which SCDS and SCMS depend for their realizability on
nonconstructive principles. For instance, the truth of SCMS in V(Kl) appears
to rely on a somewhat incidental (and nonconstructive) fact about the Cauchy
reals under realizability —that they correspond with the recursive reals of CR.
That the reliance is wholly apparent is shown by directing our attention to the
more general notion of sets with strict apartness relations. Historically, apart-
ness relations were introduced to satisfy the construed vists' need for a "posi-
tive concept" of inequality on the reals. We will prove that, in V(Kl), every set
admitting strict apartness is subcountable. This result entails V(Kl) Ih SCMS Λ
SCDS and shows that all these rely upon no fact which is more strikingly non-
constructive than the admissibility of number realizability itself.

Definition 2 R^xxx is a strict apartness (relation) on x if and only if, for
all y, z£x,

(i) y = z~~R(y9z)
(ii) R(y,z) ~R(z, ^), and

(iii) R(y9z)-+Vrex(R(y9r)vR(z,r)).

Intuitionistically, the reals have a natural apartness on them given by the
separation of Cauchy sequences. Every metric space then inherits a strict apart-
ness from the reals via its metric.

We say that a set with a strict apartness on it is an apartness space. The
claim that every apartness space is subcountable is abbreviated 'SCAS'.

Theorem 4 V(Kl) Ih SCAS.

Proof: As in Lemma 2, we need only check that, in V(Kl), |(-s is functional
whenever s has R as a strict apartness. To that end, we assume that

e Ih "R is a strict apartness on s".

We also assume that n If- a E s and n \\- b E s. Let m \\- R(a, b). Given the defi-
nition of strict apartness, we know that there is a partial recursive # such that

#(/w, n, e) \VR(a, a)vR(b, a).

Because of the realizability of Definition 2(i), #(m, n, e)0 Φ 0 and #(m,
n, e)x t-R(b, a).

But, by the same token,
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#(m,n,e)hR(a9b)vR(b9b).

Since #(m, n9 e)0 Φ 0, V{KΪ) Ih R(b, b). But this is impossible; by Definition
2(i), no element of s can be realizably apart from itself. Therefore, our origi-
nal assumption, that V(Kl) \\-R(a, b) is false. It now follows from part (6) of
Definition 1 that 0 | |—R(a, b). Another use of Definition 2 shows that there
is a partial recursive Ψ such that Ψ(e) \\- a = b.

We can now replay the proof of Lemma 2 to show that \\-s subcounts s in
V(Kl).

It is a simple matter to check that the readability of SCAS faithfully incor-
porates all the work we have accomplished so far:

Corollary 3 V(Kl) Ih SCAS Λ SCMS Λ SCDS.

Proof: We remarked en passant that, even constructively, every discrete set
admits the discrete metric. Hence, IZF h SCMS -• SCDS. Furthermore, IZF h
SCAS -+ SCMS; as we remarked above, every metric space (M, p) inherits a
strict apartness from the reals via p.

Unfortunately, it is not the case that apartness characterizes subcountability
in V(Kl); demonstrably, the converse of SCAS fails over V(Kl):

Theorem 5 In V(Kl), there is a subcountable set which is not an apartness
space.

Proof: Equality on a set s is stable just in case it is constructively true that

v#, y E S(—x = y-+x = y).

It is obvious from Definition 2(i) that, on every apartness space, equality
is stable. Hence, to prove our theorem it suffices to show that there is, realiz-
ably, a subcountable set on which equality is nonstable. The most direct ap-
proach would be to define, in V(Kl), a nonstable equivalence relation on ω
itself.

Let T(x, y9 z) represent the conventional set-theoretic formalization of the
unary Kleene Γ-predicate. We set, for e9 / E ω,

e -/i f f (3m T(e, e, m) v -3m T(e, e, m))

- ( 3 m Γ(/,/, m)v~3m Γ(/,/, m)).

We will abbreviate 43m T(e, e, m) v —3m T(e> e, m)' as Φ(e).
IZF h "{(e,f): e ~/} is an equivalence relation on ω", so, by soundness,

{(e, / ) : e — /} is an equivalence relation in V{Kl). Assume that

V{Kl) |h Ve,/E ω(~~(e ~/> - (e - / ) ) . (1)

It follows that

V(Kl) Ih ve E ω(—Φ(e) -+ Φ(e)).

It is a matter of pure constructive logic that

ve — Φ(e).

Hence, we have

V(Kl) IhVβEωΦ(e). (2)
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In [6], we have shown that (2) reduces to the solvability of the halting problem
in Section 5. Therefore, assumption (1) is false and the theorem is proved.

7 Final comments As we mentioned before, our first proof of V{Kl) \\-
SCMS gives the distinct but faulty impression that the truth of the result depends
essentially on the recursiveness of recursive realizability. The dependence is
marked by the presence of principles like R = CR (or, alternatively, ECT). Our
proof of V(Kl) If- SCMS via a proof of V(Kl) If- SCAS banishes that impres-
sion completely. Clearly, the truth of SCAS depends upon little more than the
abstract notion of number realizability itself. In particular, the notion is that
there is, on the natural numbers, a suitable representation of the applicative
structure of constructive proofs. One now sees that SCAS (hence, SCMS and
SCDS) will hold under any variant of realizability which exploits the abstract
idea. Among such variants are hyper arithmetic realizability, and realizability
based on the indices of functions recursive in some fixed degree.

Again and again, realizability shows off the sorts of "extra information"
carried naturally by the constructive logical constants. The solution of the SCDS
conjecture is a good (and simple) example of this information-bearing aspect of
the constants. The discreteness of a set is seemingly a logical property, a con-
straint set down on the "logic" of equality over a set. Subcountability is clearly
a mathematical property which is, on the face of it, totally independent of dis-
creteness. Our proof of the consistency of SCDS shows that a (coded) proof,
in IZF, of the logical discreteness of a set can be "unpacked" to give up the
mathematical information that the set is realizably subcountable.

NOTE

1. The implicit trifurcation of the class of ordinals into zero, successors, and limits
reveals the fact that we are defining V{Kl) within a classical metatheory. It is not
constructively true that every ordinal is either zero, a successor, or a limit and a for-
tiori, this classical result is not a consequence of IZF. The recursive definition of
V(Kl) and, indeed, all our metatheoretic work, could be carried out constructively
and within the confines of IZF. But, out of sympathy for the classical reader, we
have refrained from this constructivization. V{Kl) can even be defined without ref-
erence to the ordinals by setting V(Kl)x = P(w x (J { V{Kl)y: y ex}).
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