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Analytic Implication

KIT FINE*

Parry presented a system of analytic implication in [7] and [8], Dunn
[2] gave an algebraic completeness proof for an extension of this system and
Urquhart [10] later gave a semantic completeness proof for Dunn's system
with necessity. This paper establishes completeness for Parry's original system,1

thereby answering a question of GόdeΓs [6], and then, on the basis of the
completeness result, derives decidability; it also deals with quantificational
versions and other modifications of his system.

Section 1 contains some informal remarks on the notion of analytic impli-
cation. They are not strictly relevant to the later analysis, although they may help
to place it in perspective. Section 2 presents the semantics and Section 3 exhibits
a system of analytic implication. Section 4 helps to demonstrate that the system
is equivalent to Parry's, and Section 5 establishes completeness. Finally, Section
6 outlines the theory for some related systems.

1 Informal remarks One may distinguish between the propositional content
(/?-content) and constitutive content (c-content) of a sentence. The /^-content is
the proposition or thought conveyed by the sentence. The c-content consists of
elements from which the proposition is formed. Thus the c-content of "Socrates
is a philosopher" consists of the concept philosopher and, perhaps, an element
corresponding to the term "Socrates".

This is a rough and intuitive distinction; no particular interpretation for
"proposition", "concept", "element", etc. is presupposed.

This paper originally appeared in the Proceedings of the Conference on the Philoso-
phy of Language and Logic held at the University of Keele in April 1979. These Pro-
ceedings were put out by the Keele University Library and received a very limited
circulation. An account of the present semantics has been given in Part 2, Section 11
of [5], and similar ideas have been pursued in [3]. I should like to thank Alasdair
Urquhart for helpful conversations on the subject of my paper.
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A strictly implies B if the /?-content of A contains that of B. For analytic
implication it is also required that the c-content of A contains that of B. There
is thus a certain symmetry in the conditions. It is possible, of course, that the
propositional content is so colored by the c-content that an independent require-
ment for analytic implication cannot be formulated. However, in all cases that
come to mind, it is possible to separate out the/7- and c-content in a significant
manner.

Strict implication can be taken in various ways. It can be structural or
intensional, i.e., a question of logical form alone or of nonlogical material as
well. It can be syntactic or semantic, i.e., characterized "concretely" in terms
of rules or "abstractly" in terms of models.

It is natural to take the pairs structural/syntactic and intensional/semantic
together, but this is not necessary. For example, if the structural, syntactic notion
is a matter of derivation within a logic, then the intensional, syntactic notion
is a matter of derivation within an applied theory, say a logic with meaning
postulates.

Similar possibilities exist for containment of c-content: it can be structural
or intensional, syntactic or semantic. Suppose we define "the c-content of A con-
tains that of B" as follows: any concept of B is definable in terms of the con-
cepts of A. Then the concepts can be identified by logical form alone or by
nonlogical material as well, and definition can be characterized in terms of deriv-
able equivalence, or valid equivalence. Thus there is a structural relationship
between "x is a bachelor" and "x is not a bachelor" (for not-P is definable in
terms of P), but only an intensional relationship between "x is a bachelor" and
"x is not an unmarried man".

In defining analytic implication, one could cross the boundaries of this
mutual classification. For example, one could take containment of/7-content as
structural and containment of c-content as intensional. However, this would be
highly unnatural, for the categories of the classification represent various points
of view. Thus it is natural to regard analytic implication itself as structural or
intensional, syntactic or semantic.

For containment of c-content, there is another important ambiguity. Are
the concepts of a sentence the ones from which the proposition is ultimately or
immediately formed? For example, if P is a complex predicate, say "grand-
father", then is Father a concept of "x is a grandfather" or only Grandfather?
In the first case, "x is a grandfather" analytically implies "x is a grandfather or
x is a father", in the second case it does not.

There are advantages to both positions. The first position ties in well with
the view that the elements of a sentence are the primitive terms (of some fixed
vocabulary) from which the sentence is formed. However, there are no interest-
ing structural relationships between primitive terms, and so there is no theory
of structural definability in analogy to the theory of deducibility or logical con-
sequence. The second position, on the other hand, allows one to develop such
a theory within the object-language; for "Pα-> (Qa-+ Qa)" will express the fact
that the (possibly complex) predicate Q is definable in terms of the (possibly
complex) predicate P.

Where does Parry stand on these issues? [7], pp. 152-153, suggests that
analytic implication is syntactic and either structural or intensional, and that the
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concepts of a sentence are the ultimate or primitive ones. Thus, in accordance
with this conception, one might define "A analytically implies B" as: whenever
A is a formula of a system, B is a formula of the system too and deducible from
A. In other words, whenever A is a formula of a system, B must be obtain-
able from A by means of both the formation and transformation rules.

2 Semantics Formulas are constructed from an infinite set of sentence-
letters SL, the truth-functional connectives & and - , and the further connec-
tives -•, D, and 4. A-> B, ΏA, and A 4 B are read as "A analytically implies
B9\ "necessarily A", and "the c-content of A is included in that of 2?", respec-
tively. In Parry's system, the connectives D and <! are not used. A model 21 is
a sextuple (W, R, I, u, φ, y), where:

W (worlds) is a nonempty set
R (accessibility) is a reflexive and transitive relation on W
Iw (contents) is, for each w G W, a nonempty set
Uw (compound) is, for each w G W, an associative, commutative, and

idempotent operation on Iw

φ (valuation) c W x SL
yw (content-assignment) is, for each w G W, a function from SL into Iw

(7W, u w ) is, of course, a semilattice: for a, b G /w, a uw b represents the
compound or union of the contents a and b; < w is the corresponding semilat-
tice ordering, i.e., a <w b iff a Uw b = b.

For A a formula, 2(A), the language of A, is the set of sentence-letters
occurring in A. yw is extended to all formulas through the condition:

yw(A) =yw(pι) Uw... uw yw(pn), for 8(^4) = {pu...,pn} .

Relative to a model 21, the truth-predicate |= is then defined by the following
clauses:

(i) w [= p iff φwp
(ii) w (= -B iff not w V B

(iii) w \= B & C iff w \= B and w \= C
(iv) wV B-^CΊϊϊ (Vι;) (wRv =» yv (C) <v yυ (B)) and (Vv) (wRv & υ N

B^υϊC)
(v) wϊΏB iff (W) (wRv =>υϊB)

(vi) wϊB<C\ϊΐ(yυ) (wRv^yv(B) <vyv(C)).

The set of formulas Δ has a model 21 if, for some world w in 21, w (= A (rela-
tive to 21) for each A in Δ. The formula A is valid if {-A} does not have a
model.

Two variants on the modelling are worth noting. The first is that, by the
representation theorem for semilattices, each content can be regarded as a set
of concepts and u w can then be treated as set-theoretical union. This is the
approach in [10]. The second is that each model can be replaced by an equiva-
lent model in which (IW9 Uw, yw) extends (Iv, \JV, yv) whenever wRυ. In terms
of the concept modelling, this means that any model is equivalent to one in
which: (a) each concept of υ is one of w if wRv; and (b) a concept in A at w is
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in A at v if it is a concept of v and wRυ. These equivalences are established by
"injecting" the contents (or concepts) of accessible worlds into any given world.

How does the modelling above accord with the informal discussion in Sec-
tion 1? We can regard the structure of possible worlds as approximating, in some
ill-understood way, to syntactic notions of deducibility and definability. Alter-
natively, we can regard the possible worlds as being of independent interest in
a semantic account of these notions. It is then natural to give a conceivability
interpretation of R, along the lines of [4]. wRv if v is conceivable relative to w,
i.e., if v can be completely described by using the concepts that are required to
describe w. Condition (a) above is now mandatory, for new concepts cannot be
used in the description of an accessible world, although some old concepts may
not be used at all.

3 The systems The postulates of my system are:

I 1. Taut = the set of tautologous formulas
2. Modus Ponens (for D)

II 3. D(ADB) D (DA D DB)
4. ΠA D A
5. DA D OΠA
6. A/DA

III Ί.(A<B&B<C)D(A< C)
8. (A< C&B< C) D(A&B< C)
9. A<B if 2(A)£2(B)

IV 10. (A<B)D Ώ(A<B)
V 11. (A-+B) = D(ADB) & (B<A).

The postulates for this system are particularly perspicuous: System I gives
the propositional calculus; II the system S4 for D; III states, in effect, that <(
forms a semilattice, IV says that content-inclusions hold necessarily; and V gives
an equivalent for -• in terms of D and ̂  and could, of course, be replaced by
a definition.

For reference, we shall list the postulates for Parry's system (A14 has been
simplified slightly):

Al A&B-+B&A
A2 A-+A&A
A3 A-*—A
A4 — A - + A
A5 A & (B v C) -> (A & B) v (A & C)
A6 Av(B&~B)-+A
A7 (A-+B)&(B-*C)-+(A-> C)
A8 (A -> B & C) -+ (A -+ C)
A9 (A-+B) & (C-+D)-+(A &C-+B&D)

A10 (A-+B) & (C•-> D) - (AM C -> Bv D)
All A-+B-+(ADB)
All A~B&f(A)-+f(B)
A13 f(A)^(A^A)
A14 ((-A-+A) & (A-+B)) ^> (-B-+B)
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A15 -(A DB)-+-(A-+B)
MP A,Ά-+B/B
Adj A,B/A&B.

In A12 and A13,/(v4) is a formula that contains an occurrence of A and f(B)
is the result of substituting B for that occurrence of A.

4 Equivalence We wish to establish that the two systems are equivalent. In
fact, we shall only establish that my system can be derived from Parry's. Equiva-
lence will then follow from the completeness of the former system and the
soundness of the latter.

For the connectives • and 4, we use the definitions:

DA = (A-+A)->A
A<B = B-+ (A-*A).

Parry's definition of \3A is, in effect, -A -> A\ in his system, the two defini-
tions are equivalent.

The derivation proper, under Theorem 1, is preceded by some lemmas:

Lemma 1 \-A for A tautologous.

Proof: As in [1].

Lemma 2 YA -+A.

Proof: By A3 and A4.

Lemma 3 \-A -» B => Y A D B.

Proof: By A l l and modus ponens.

Lemma 4 YA ̂  B and Yf{A) => Yf(B).

Proof: Assume YA ~ B and Yf(A). Then Y(A~B) &f(A) by Adj. and so
f(B) by modus ponens.

Lemma 5 Y(A -• B) & (A -> C) -+ (A -> (B & C)).

Proof: Y(A -+ B) & (A -* C) -+ (A & A -> B & C) by A9. By A2 and A8, h
A ~ A & A. So the result follows from Lemma 4.

Lemma 6 h /\" (A -> A) ~+(B^B) if 8(£) c { A , . . . ,^Λ} %

Proof: By induction on the construction of £ . Details are in [2].

Lemma 7 YA-+(B-+B) if %(B) c 8(Λ).

Proof: Mainly from Lemma 6 and A13. Again, details are in [2].

Lemma 8 Y((A-+A) & (B -> B) -• 5 ) D ((^-^ .β) ->.S).

Proo/: Mainly from A14. See [2].

Lemma 9 Y[AΛ(ADB)]->B.

Proof: We wish to show Y[A & {-A vB)] -> B. Y[A & (~Λ v ^ ) ] -> (A &
~A)v(A &B) by A5. Y[(A & ~A)\ι(A & B)] -> (A & B) v (A & ~v4) by
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Al, Lemma 4 and the definition of v. Y [(A & B) v (A & -A)] -> A & B by
A6. Finally, M & 5 -+ B by A8 and Lemma 2.

Lemma 10 M awtf \-A D B => \-B.

Proof: From Adj, Lemma 9, and modus ponens for ->. We refer to Lemmas
1 and 10 together, as PC.

Lemma 11 h ( 5 - > C ) D ( ( Λ - > £ ) - > ( Λ - > C ) ) .

Λ Ό O / h ( # ^ C) D ( 5 - £ & C) by PC, and Lemmas 2 and 5. h[(Λ -+B) ->
(Λ -> 5 ) ] & ( 5 - 5 & C) D [(v4 -» 5 ) - (Λ -* 5 & C)] by PC, A12, and
Lemma 3. \-[(A-> B) ̂  (A-+B & Q] D [(A ̂  B) -• (^4->C)] by A8, A7,
and Lemma 3. The result now follows by PC.

Lemma 12 \-A => h^ -> A if 2(A) c g(fi).

Proof: By induction on the proof of v4. It suffices to show, in any particular
case, that there is a formula C such that h(C-> C) ->^4 and 8(C) c ?(>4). For
then YB -> (C -• C) by Lemma 7 and h# -> -4 by A7.

(a) A an axiom. Then A is of the form C-+ D. By Lemma 11 and PC,
h(C-* C) -> (C-> C) and we are done.

(b) >1 from C and D by adjunction. Suppose 8(^4) c g(5). Then h^-^ C
and h£ -• D by IH. Hence \-B^C&Dby Lemma 5.

(c) A from C and C-> ,4 by modus ponens. By IH, \-[(C-+C & (A-+
A)] ->Cand \-[(C->C) & (A-+A)] -* (C->A). So by Lemma 5,
h[(C-+C) & (A-+A)] -+C & (C-+A). \-(C->A)-+(CDA) by

All, and so [-C & (C ̂  A) ^ C & (C D A) by A9 and Lemma 2.
But hC& (CD.4)->,4 by Lemma 9; and so h(C& ( C - ^ ^ ) ) ^ ^
by A7. Therefore \-[(C-> C) & (A -+ A)] -+ A by AΊ again. Hence
hO4 ->y4) -+ A by Lemma 8.

Lemma 13 YA =* h(Λ-*>4) D ((B^B) -+A).

Proof: Suppose h^. h(5->>!) D [(5->5) -> (5->>4)] by Lemma 11. Since
YA, Y(B-+A) -+Aby Lemma 12. So, by A7 and P C , Y(B-+A) D ((B-+

B)-*A).

Lemma 14 Y(A-+B) D (C-* (A-+B)) if2(C) Ώ2(A).

Proof: Y(A->B) D ((A-+A)-> (A-+B)) by Lemma 11. hC-> (A-+A) by
Lemma 12. Hence Y(A -+ B) D (C-> (A -> B)) by A7 and PC.

Theorem 1 A a theorem of Parry's system => A a theorem of our first
system.

Proof: We go through the postulates of our system one by one. h refers to
provability within Parry's system.

I: 1. By Lemma 1.
2. By Lemma 10.

II: The definition of DA is (A -+A) -+ A. By Lemmas 2, 4, and 12, we can
replace DA by TA -+A, where TΆ is any theorem with the same language as A.
Similarly, A < B = B -• (A -• A) can be replaced by B -• TΆ.
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3. The postulate is equivalent to [(TA&B -• (A D B)) & (TA -* A)] D
(TB^> B). Letting the antecedent be Ant, YAnt D [TA & TA&B -* A & (A D
5)] by A9. But H-4 D £) & ̂  - B by Lemma 9. So \-Ant D (TΆ &TB->B)
by A7 and PC. But then YAnt D (TB-+B) by Lemma 8.

4. \-((A-+A)^>A) D {(A-*A) DA) by Lemma 3 and All. YA-+A
by Lemma 2. Therefore Y((A -+A) -+A) D A by PC.

5. \ (TA-+A) D [TA-*(TA-+A)\ by Lemma 14.
6. From Lemma 12.

Ill: 7. h4/ιf( = (5 -* 7^) & (C -+ Γ*)) D (£ -> 5) - 7^ by Lemma 13. So
h4wf D C-> 7^ by A7 and PC.

8. h>4/i/( = (C-> 7^) & (C-> 7^)) D C-> TA&TBby Lemma 5. But TΆ

& TB can now be replaced by TA&B.
9. For 8(^4) g ?(B), h^-^ (^ -^^1) by Lemma 12.

IV. 10. HB->TA)D(TAAB-+(B^>TA)) by Lemma 14.
V. 11. There are three things to prove:

(a) (A-+B)D Ώ(A DB). \-(A^B) D TΆ&B->(A-+B) by Lemma
14. \-(A-+B)-+(A-> B) by Al 1. Therefore h (A - B) D TA&B -•
(A D B) by A7 and PC.

(b) {A -• B) D (B < A). (-£ -• (B-+ B) by Lemma 12. Therefore
(A-+B) DA-+ (B-+B) by Lemma 11.

(c) (Ώ(ADB)&B <A)D(A^ B). \-Ant( = (TA&B -+ (A D B)) &
(A -+ TB)) D (A -+ TB). YA -> TΛ by Lemma 12. Therefore h
Ant D (A -* Γ^^) by Lemma 5. YAnt D (TA&B -+ (A D B))
and YA -+ A by Lemma 2. So by A7, PC and Lemma 5, YAnt D
(A-+ (A & (A DB))). But Y((A D B) & A)-+B by Lemma 9.
Hence YAnt D (A -> B) by A7 and PC.

It is worth noting that the theorem D (A D B) & B < A D (A -> B) gives
a uniform way of establishing A -+ B in Parry's system: first establish D(A D
B) = 7^& i ? -+ {AD B), and then establish 5 ^ A = A -> TV For example, it
immediately follows from Lemmas 1 and 12 that A -> B is a theorem if 4̂ D B
is a tautology and $(B) ς; £(^4). All of the schemes A1-A6 are instances of this
principle.

5 Completeness We use the Henkin method. Define deduction (h), the-
ory, consistent, m(αximαlly) consistent) in the usual, i.e., classical, way.

Lemma 15 Δ, A Y B =» Δ h A D B.

Lemma 16 Each consistent set of formulas is contained in an m.c. theory.

Given a theory Δ, define —Δ by:

A ~ABtffA <B,B<AGA .

—Δ is reflexive by postulate 9, symmetric by definition, and transitive by postu-
late 7. Now let 7Δ = {|̂ 4|—Δ: A a formula} and define UΔ by:

\A\~AUA\B\~A=\A&B\~A .

That this definition is good follows from:
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Lemma 17
(a) A < A' Y A & B < A' & B, and
(b) B < B' Y A & B < A & Bf.

Proof: (a) A' < A' & B by postulate 9; and so A < A' Y A < A' & B by postu-
late 7. Also, YB < A' & B by postulate 7 again. Hence A < Af Y A & B < A'
& B by postulate 8. The reasoning is similar for (b).

We define the canonical model 21 = (W, R, /, U, 0, γ) by:

W = {Δ: Δ is an m.c. theory}

R = {<w, v) G W2: A Ev whenever ΏA G w}

/={<w,/ v v>: w e W}

U = {<w, Uv,): ^ G Ψ }

φ = {<w, ̂  G FT X SL: p G w}

Ύ = {<*>, {<P, | p h w > : p e S £ } : w G W).

Lemma 18 2ί fa a model

Proof: W\s nonempty by Lemma 16 and consistency of the system. R is reflex-
ive and transitive by the postulates for D in group II. </w, u w ) is a semilattice
for each w G W by postulate 9.

Lemma 19 w V A (relative to %)iffAE w.

Proof: It suffices to establish that the relation A G w satisfies the truth-con-
ditions (i)-(vi). (i)-(iii) follow from the group / postulates, (iv) follows from
postulate II,(v) and IΙ(vi). (v) follows from the postulates for D. That leaves
(vi). First, we show that yw(A) = |^4|~w. (For ease of reading, we may drop
the subscript w.) If %(A) = {pu... ,pn} then y(A) = y(px) u . . . U y(pn) =

\pι\ U . . . u \pn\ = \pι &.. .&pn\ = \A\ by postulate 9. Second, we show that
yw(B) <w yw(C) iff B < CE w. yw(B) <wyw(C)is equivalent to the follow-
ing statements: \B\ < \C\ (by above); \B\ U \C\ = \C\ (by definition of U); \B
& C\ = \C\; B & C - C; B & C ̂  CG w (by postulate 9);B 4CEw (by postu-
lates 7, 8, and 9). Finally, we show that condition (vi) is satisfied. By the above,
it suffices to show that B < C G w iff (Vi;) (wRv => B 4 C G w). But by (v), the
R.H.S. is equivalent to D (B < C) G w; and B < C G w iff D (B < C) G w by
postulates 4 and 10.

It is now standard work to establish:

Theorem 2 Every consistent set of formulas has a model.

Corollary YA iff A is valid.

Our models yield to the method of filtrations. Hence:

Theorem 3 Any consistent formula has a model.

Corollary The two systems of analytic implication are decidable.

6 Further systems
1. We can impose different conditions on the accessibility relation R. In

the system, this merely corresponds to adopting different postulates for D. For
example, suppose that R is to be an equivalence relation. Then the postulate
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— ΏA D D — ΏA should be added to the system in D, 4, and ->. Alternatively,
postulate —A -» (A -> — A) or —A D (A -> —^4), 4̂ implicational, should be
added to a system in -> alone.

The structure of conceptual relations can also be varied. The most natu-
ral condition is that this structure be the same from world to world, i.e., that
(Iw, Uw) = (Iv, Uv) and yw = yv for any worlds w and v. This corresponds to
adding -(B < C) D D-(B < C) or -A -• (A -> -A), A of the form C -
(B -* B), to the respective systems.

It should be noted that the two additions above are not independent of one
another. The S5 postulates imply the postulates for world-invariance of concep-
tual relations. Indeed, this fact could be established directly by the model-
theoretic construction mentioned at the end of Section 2.

2. Another change, suggested by Parry [6], arises from treating analytic
implication as a concept. No proposition not containing this concept could then
analytically imply a proposition containing that concept. Semantically, 7^ will
now assign a content to both D and 4, and yw(A) = yw(cι) U^.-.u^ yw(cn)9

where {c l s . . . ,cn} is $'(A)9 the set of sentence-letters and non-truth-functional
connectives occurring in A. In the system, postulate 9 should now be subject to
the condition that 2'(A) £ 2'(B).

No system in -* alone will then be equivalent to the system above. For D
and 3! will have to be defined in terms of -+, so that the same content will attach
to both of them.

Going one step further in this direction, one can allow that the truth-
functional connectives contribute to the content of a sentence. This raises the
question of whether there is any connection between the contents of different
truth-functional connectives. At the one extreme, we can give the same content
to all of the connectives. At the other extreme, we can require that the content
of c be included in that of d iff d is definable in terms of c. Thus on the first
proposal, p will not (analytically) imply — p although p v p will imply —p;
while on the second proposal, the previous implication will not hold, although
p D p will imply (p D p) \J p since v is definable in terms of D.

Let us say that a definition of a connective is analytic if each connective
in the definiens is definable in terms of the definiendum. For example, any defi-
nition of Sheffer stroke is analytic, whereas the definition of D in terms of v
and - is not. Now on the second proposal, only analytic definitions are accept-
able for otherwise the definiens will contain more content than the definiendum.
Thus this proposal raises anew the problem of functional completeness.

The smallest complete basis will consist of each connective that cannot be
analytically defined in terms of connectives that individually do not suffice to
define the given connective. In terms of the lattice of all systems of truth-
functions that are closed under definition, the connectives of the smallest com-
plete basis will correspond to those systems that are not the least upper bound
of two other systems. By consulting the diagram on page 101 of [9], we see that
these are the systems D 2 , L4, R l t O i , O4, O2, O3, R2, R3, S^ Pi, Ff+2, F£ + 2 ,
F 2 , F 6 , F3

μ + 2, F?+ 2, F Γ 2 , F£+ 2, μ > 2, FΓ, F4°°, F2°°, F6°°. Some of the entries are
rather strange: for example, (p = q Ξ= r) is in the basis but (p s= q) is not, since
it has the analytic definition (p Ξ= q = t).

It is not clear that systems which are functionally complete in this strong
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sense have much interest outside the context of analytic definition. Perhaps the
best that can be said for them is that a stratified system of this sort would allow
one to obtain every (functional) subsystem of propositional logic in a straight-
forward manner.

3. Systems for analytical implication can be extended to the predicate cal-
culus. A simple system is obtained from our sentential one by adding the stan-
dard quantificational rules and by requiring of postulate 9 that every predicate
of B be a predicate of A. The resulting system is complete for the semantics in
which the domains of possible worlds are nondecreasing and in which contents
are assigned to predicates.

So far, we have thought of c-content primarily in terms of concepts. How-
ever, one could also include within the content of a sentence any object which
it was about. Thus "Socrates is a philosopher" and "Plato is a philosopher"
would differ in content because they are about different individuals.

In terms of the semantics, each object would be assigned a content (per-
haps the object itself). Content could then be extended to all sentences in one
of two ways. Either the content of a sentence is the union of the contents of its
predicates and of the objects assigned to its free variables, or the content of A
is the union of the above content and the content of all objects in the domain
in case A contains a bound variable. Thus on the first account, the content of
VxA(x) is the intersection of the contents of A (a) for a any name of an object
in the domain; while on the second account, the content of VxA(x) is the union
of the contents of all such A(a).

The first account seems to be more natural, for in order to understand
VxA{x) I need not know (or, at least, possess names for) the objects in the
domain of the quantifier.

In terms of the system, the first account requires of postulate 9 that any
variable in A also occur in B and the second account requires, in addition, that
A contains a bound variable only if B does. Other changes may also be required.

4. It should be possible to construct the analytical analogue of other impli-
cation notions, e.g., those of intuitionism or of E. The semantics could be
straightforwardly modified, although more work would be required for proofs
of completeness.

NOTE

1. I mean the full system of [7] with adjunction, A14 and A15.
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