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Stationary Logic and Its Friends —II

ALAN H. MEKLER* and SAHARON SHELAH**

Introduction This paper is the successor to "Stationary Logic and Its
Friends — I" [10]. The three sections of the paper can be read independently. The
first two sections assume some familiarity with stationary logic, denoted L(aa)
(see [2]). The third section concerns a closure operation for abstract logic. There
a familiarity with [9] would be helpful.

In the first section we define, for regular λ, the λ-interpretation of L(aa),
denoted L(aax). In this notation, the standard interpretation is L(aaω). The
most easily understandable case occurs when λ < λ = λ. Then for models with
universe λ+, aaλ expresses "for all but a nonstationary set of ordinals of co-
finality λ". We show if λ < λ = λ, then L(aaλ) has the same validities as L(aaω)
and L(aaλ) is (λ, ω)-compact.

The second section is devoted to the proof of the consistency of the
following approximation to the Δ-closure of L(Q) being contained in L(aa).

Suppose Lx Π L2 = Lo, ψι G LX{Q) and ψ2 Ξ L2(Q).
Further suppose every finitely determinate L0-structure either can be
expanded to a model of exactly one of ψ{ of φ2 or can be expanded to a
finitely determinate model of exactly one of ψι or φ2.
Then there is a sentence θ G L0(aa) such that every finitely determinate
model of ψι satisfies θ and no finitely determinate model of ψ2 satisfies θ.
(So θ separates the reducts of finitely determinate models of I/Ί from those

of ψ2.)

(See Section 2 for the definition of finitely determinate. Of course Q is the
quantifier expressing "there exist uncountably many".) In [10] we showed that
every consistent L(Q)-sentence has a finitely determinate model. So this result
establishes the consistency of the Δ-closure of L(Q) being contained in L(aa)
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relative to some large class of models. Assuming MA + ^CH the displayed
sentence is false ([8], Theorem 1.3).

The third section is a prolonged observation motivated by the algebraic
intuition that homomorphic images are as fundamental as subalgebras. A com-
mon requirement on a logic is that one can talk about definable substructures
(i.e., via relativization, cf. [1]). However, many common logics, such as L(Q),
do not allow us to talk about definable homomorphic images; i.e., modeling out
by definable congruences. We show that demanding a logic be congruence closed
is innocuous. Every logic has an easily described congruence closure which
inherits most of the good properties of the logic.

The results in the first section are due to Shelah. Shelah had a plan for a
proof that it is consistent that the Δ-closure of L(Q) is contained in L(aa). In
[10] we promised this proof would appear here. Unfortunately the proof was
flawed. Mekler realized that using finite determinancy the proof could be altered
to work if we weaken the assumption and conclusion. The third section is due
to Mekler.

1 The λ-interpretation Assume λ is a regular cardinal. We now describe the
semantics of the language L(aaλ). Fix X. Let Dλ(X) be the filter on P\+(X)
generated by those filters F such that player II has a winning strategy for the
game G(F). Here players I and II alternately choose elements of an increasing
λ-chain of elements of Pλ+(X). Player II wins if the union of the chain is in F.
Dχ(X) is closed under the intersection of λ many elements and under diagonal
intersection; i.e., if {Fa: a G X} ^ Dλ(X), then {A\A G Fa for all a G A) G
Dλ(X) (cf. [5] or [7]).

This filter can be best understood in the case where λ < λ = λ. In this case
Dλ(λ+) is just the restriction of the cub filter to the ordinals of cofinality λ. In
fact Dχ(X) has an alternative definition.

1.1 Proposition Suppose λ < λ = λ and P = {/: a^—^X: a < λ+} ordered
by inverse containment. Then FG Dλ(X) iffl \YP g~ι" F contains the inter-
section of a cub with the ordinals of cofinality λ. {Here g is a name for UG.)

Define L(aaλ) (i.e., the λ-interpretation of L(aa)) by letting A N
aaλsφ(s) iff {s G Pλ = (A): A N ψ[s]} G Dλ(A). Note that the axioms and
rules for L(aa) given in [2] are sound for L(aaλ). So any sentence universally
valid for L(aaω) is also universally valid for L(aax). We will show: if λ = λ< λ

then the validities of L(aaλ) are the same as the validities of L(aaω). In view
of the preceding remark it will suffice to show: if a sentence ψ has a model in
the ω-interpretation then it also has one in the λ-interpretation.

One might wonder why we restrict ourselves to one cofinality; i.e., why not
use the cub filter on λ+ rather than restricting to the ordinals of cofinality λ?

1.2 Example Let L(ax) denote the logic defined by A N axsφ(s) iff {s G
Pλ+(A): A |= ψ[s]} contains a cub. Let ψ express: L is a λ+-like dense linear
order aλs (sup s exists); for all a and b cf{x: x < a} = cf{x: x < b}. (Use a
ternary function to express the last clause.) Then φ has a model iff λ = ω.
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1.3 Theorem Suppose λ is an uncountable regular cardinal and λ< λ = λ.
(1) A sentence φ E L(aa) has a model in the λ-interpretation iff it has a model
in the ̂ -interpretation.
(2) L(aaλ) is (λ, ω)-compact, i.e., any finitely consistent set of sentences of
cardinality λ has a model.

Proof: (1) The proof is similar to that of Chang's two-cardinal theorem ([3],
Theorem 7.7, p. 438). We begin by studying the structure (H(κ), E) where K
is some fixed cardinal >2 ω i . By way of explaining our interest in it, note that
for any sentence φ E L(aaω) (we assume L(aa) E H(κ)) φ has a model iff
(H(κ), E) N 'V has a model". Enrich the language by adding a binary naming
relation R (as in Chang's two-cardinal theorem) and for each formula φ(x) E
L(aa) a relation Rφ(x) defined so that <//(*), E> (= Vx (Rφ(x) ~ ψ(x)). For
the moment all models will be (first-order) elementarily equivalent to (H(κ), E>
in the expanded language. To simplify notation we will write for φ E L(aa)
"A |= φ[a]" instead of "A |= Rψ[ά}". Also we systematically confuse b E A
with {x: A hxEZ?}.

1.4 Lemma
(1) Suppose A = [jAj(an elementary chain) where: a < λ+; each At is satu-

rated\ for all /, ωAi = ωΆ°; and for all /, \Aj\ = λ. Then there is a saturated
model B>A such that \B\ = λ and ωB = ωA°.
(2) Suppose A is saturated, ά EA, A N stat s φ(s, a) and \A\ = λ. Then A can
be extended to a saturated model B such that: \B\ = λ; A E B; B |= φ[A, ά\\
and for be A and θe L(aa) if B V Θ[A, b] then A |= stat s θ(s9 b).

Proof (oϊ Lemma): (1) This is just the key step in the proof of Chang's two-
cardinal theorem.

(2) Fix an enumeration {aa: a. < λ} of A which we will treat as a set of
variables. Let X = {xa: a < λ} be a set of variables. We will define an increas-
ing sequence pa(a < λ) of complete types over the empty set and an increasing
sequence A^OL < λ) of subsets of A of cardinality <λ so that: (a) for all a the
variables of pa are Xα U Aα where Xα = {xβ: β < α} and {αβi β < α} <Ξ Aα;
(b) for all α, Th(A)Aα c pα; (c) for all α and y E A U X, (y E x0) E pα iff
there is α E Aα so that (α = y) Ep α ; (d) φ(xo, ά) Ep\\ and (e) for all θ E
L(α#) VJC((0(ΛΓO> x) ΛJCEJCO) -> stαt s θ(s, x)) Gp\. A consequence of (e) is:
(f) Vx(xE ω-^ΛΓEXo) G/7, since (J/(κ), e) N ααsVx (x G ω-+s(x)).

We will define an equivalence relation on A U ̂ f by y = z iff (y = z) E
(J/?α. Then we let 5 = A U AVΞ where the relations are defined in the obvi-

ous way. Some care must be taken to ensure B is a saturated model. Since this
is a matter of routine enumeration we will just describe how the iteration is done.

Let Ao be the domain of a countable elementary submodel of A which
includes the constants of φ and α0. Let/?0 = Th(A)Ao.

Claim p{ =PoU {φ(xθ9 α)} U {α Ex 0 : α eA0} U {V*(0(xo, x) Λ X E X 0 ) -
5 /αί 51 0(5*, x)): θ E L(αα)} /s consistent.

Proof (of claim): By diagonal intersection for all 0 E £(##) (H(κ), E) N tfαs1
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Vx(s(x) -+ (aa t θ(t, x)-+θ(s9 x))). Also (//(*), E) h aas 3y Vz(s(z) **z ey).
Since A is elementarily equivalent to (H(κ), E), p{ is finitely satisfiable in A.

Let p\ be any complete extension of p{. Suppose pa(& > 1) has been
chosen and qa(xa) is some type over Xa U Aa containing p α . (The qa should be
chosen so that B will turn out to be a saturated model.) Note that /?ά+i = ^ α U
Th(A)Λoμ{aa} U {aa E x0} is consistent. In fact any finite subset already occurs
in q^, where the variables are replaced by elements of Ao. If (xa £ x0) E qa,
then let Aa+i = Aa U {aa} and pa+i be any complete (consistent) extension of
Pa+i- Suppose (xa Gx0) E qa. Let p£ be a complete extension of p'a. Since A
is saturated, /?„ is realized in A where the elements of Aa U {#α] are interpreted
as themselves. Choose a E A so that Ara is interpreted as # in such a realization.
Let pa+ι be a complete extension of p£ U {xα = a} and let ^4α+i = Aa U
{έ?α, #}. At limit ordinals take unions.

1.5 Lemma_ There is a model B so that for all φ(x) E L{aa) and b GB9 B
satisfies φ[b] in the λ-interpretation (denoted B N xψ[b]) iff B |= Rφ[b].

Proof: We use the same strategy as in [2]. Partition {a: a <λ+ and cf (a) =
λ} into λ+ disjoint stationary subsets Sψ[StB](Ψ(s, x) E L(aa) and b E λ + ).
Choose a continuous elementary chain Aa(a < λ+) of models so that: the
underlying set of each Aa is some ordinal <λ + ; for all a, ωA° = ωA(X; for all
α, Aa+ι is saturated of cardinality λ; if cf(a) = λ, a E Aa, ψ(s, x) E L(aa) and
>4α 1= aasφ(s9 ά)_, then v4α+1 N ψ[Aai a]; (Aa E .4 α + 1 ); and if α E S l̂Jf5] and
Aa N stats \l/[s, b] then ^4α+1 |= ̂ [>4α, 6]. Lemma 1.4 is exactly what is needed
to show such a chain exists. Let B = [J Aa. Next we show that if cf(a) = λ

then Aa E B. By the construction ^4α E ̂ 4α+i and ^4α+i N \Aa\ = ω (since ^4α N
"flfα5(|.s| = ω)"). So there i s/E ̂ 4α+i such that ^4α+i N "/is an onto function
from ω to Aa". Since ωB = ωA°, AA(X+ι = A%. An easy induction on the con-
struction of formulas shows B is the desired model.

To finish the proof we drop our convention about the use of "model". In
(H(κ), E) there is a connection between internal and external satisfaction:
namely (H(κ), <Ξ) V "M V aasφ(s)" iff (//(*), G) N aas "M N ^(5 Π M ] W .
Now we turn our attention to B (of Lemma 1.5). Suppose B N "Mis a struc-
ture". (Recall that we confuse M with {x: B |= x E M} equipped with the obvi-
ous functions and relations.)

Claim For all ψ(s, x) E L(aa), A E B and fn eM9 M Nλ ψ[AΠM, fn] iff
B V "MN ψ[̂ 4 ΠAf, m]".

Proof: The proof is by induction on the construction of formulas. The only
interesting case occurs when ψ is aatψ(t, s9 x). Suppose B V "M V aatψ[t9

ADM, fn]99. By Lemma 1.5 B Nλ aat "M N φ[t ΠM, A Π M, m] w . Also B (=λ

ααί 3ΛΓ Vz (x E z ^ ^(Λ:)). SO there is F E Dλ(B) such that for all C E F,
C E £ and 5 Nλ "Af N ^[C Π M, A Π M, m\". By the induction hypothesis
M |=λ ^[C Π M J Π M , m]. Hence M |=λ aatφ[t, A Π M, m]. The other
direction is much the same.

Finally, to prove that if φ E L(aa) has a model in the ω-interpretation then
it has a model in the λ-interpretation, note that: φ has a model in the ω-
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interpretation iff for some M e Ao, Ao N "Λf t= φ" iff M* (=λ ψ (The notation
is from the proof of Lemma 1.5.) As has already been noted the other direction
follows from [2].

(2) Suppose λ is uncountable, Γ c L(aa), T is finitely consistent, and
\T\ = λ. We can assume Γ ς Ao (from the proof of Lemma 1.5). Add a con-
stant M to the language. Since Th(H(κ)9 E) U {"M |= φ": ψ E Γ} is consis-
tent, this theory has a saturated model C of cardinality λ. The reduct of C to
the language of (H(κ), E) is isomorphic to Ao. Hence there is some MGA0

so that for all φ E Γ, Ao 1= "Af h tf". Hence M* |=λΓ.

1.6 Corollary Suppose λ /s regular and λ < λ = λ. Γ/ze/7 L(aaλ) satisfies
LS(λ+); i.e., any consistent sentence has a model of cardinality at most λ+.

2 Determinant Δ-pairs Say L(Q)-sentences φx and ψ2 form a A-pair for
finitely determinate structures if e/ΪΛβr every finitely determinate structure in the
common language can be expanded to a model for exactly one of φγ or ψ2

 o r

every finitely determinate structure in the common language can be expanded
to a finitely determinate model of exactly one of ψι or ψ2- In this section we
will show it is consistent that if L(Q)-sentences φx and φ2 form a Δ-pair for
finitely determinate structures then there is an L{aa)-sentence in the common
language which separates the reducts of finitely determinate models of φx from
those of φ2 (i e., there is an L(aa)-sentence θ in the common language such that
every finitely determinate model of φγ satisfies θ and no finitely determinate
model of φ2 satisfies 0). Call such a 0 a determinate interpolant between φx

and -*φ2.
Given a pair of L(Q)-sentences φx and -*φ2 with no determinate inter-

polant we will define three notions of forcing. All these will turn out to be the
same as adding ωx Cohen reals. We will use this fact to show that if we add ω{

Cohen reals then φx and ψ2 are not a Δ-pair for finitely determinate structures.
Because of the completeness theorem for L(aa) "having no determinate inter-
polant" is an absolute property. So we'll have to show that after adding ωx

Cohen reals if ψ1 and Φ2E:L(Q) are a Δ-pair for finitely determinant structures
then φι and -tφ2 have a determinate interpolant.

To begin, fix Lu L2 and Lo = Lx Π L2 and sentences φx E Lγ(Q), φ2 E
L2{Q). Assume no θ E L0(aa) is a determinate interpolant between φι and ~^φ2.
So if we let Σ = {θ E L0(aa): DETX U {φ{} h 0} then Σ U DET2 U {φ2} is con-
sistent. Here DETi denotes the determinancy scheme for Lι(aa)\

a a s x . . . a a s n φ ( s { , . . . , s n ) v a a s , . . . , a a s n - > φ ( s 2 , . . . , s n )

where φ(su . . . , s j is an £/(##)-formula. Recall a model is finitely determinate
if it satisfies DET.

Just as in the proof of Craig's interpolation theorem from Robinson's
consistency theorem we can prove:

2.1 Lemma There are complete consistent theories Tι E L/(aa) (I < 2) such
that T0Q Tl9 T2; φ{ E 7} (/= 1, 2); andDET^ Tt{aa) (/<2).

To avoid degenerate cases we will assume every model of To has a de-
finable subset which is both uncountable and co-uncountable. (If not, add unary
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predicates U, V, and W. Replace 7) by the theory expressing: "(7 and V parti-
tion the model into disjoint subsets"; each axiom of 7) relativized to (7; and
"JFis an uncountable co-uncountable subset of V".)

Expand the languages Lι by adding unary predicates {(/,: IE iy}. Here 7/
is the order type of the rationals. Let 7/ be the deductive closure of 7/ U
{ψ(Uiι9. . ., Uin) ~ aasx . . . aasnψ(su. . ., sn): ψ G L^aa) and i{ < . . <

2.2 Lemma £tfcΛ 7/ is complete and consistent. Further 70 9 T{9 Γ2.

Proof: Clearly each 7)' is consistent since any model of 7) can be expanded to
a model of any finite subset of 7/. Consider any sentence φ(Uιι9. . ., t//Λ) G
Ll(aa) (where all the new predicates are displayed). Since 7/ is complete
and contains DETh either aasγ... aasn ψ(sι,..., sn) G 7/ or aas\... aasn

^ψ(su. . . ,*„)€ 7,. So either ^ C ^ , . . . , Uin) G 7/ or -ψ(ί/; p . . . , Uin) G 7/.
Similarly 70 C Γ{, 7£.

Having constructed 7/(/ < 2) we now consider only the first-order part
and construct new theories 5/(/ < 2). Choose λ so that every countable (first-
order) theory has a saturated model of cardinality λ. (As usual an absoluteness
argument can be found to eliminate the need for assuming such a λ exists.) For
/ < 2, let (Ah U ) i e η be a saturated model of 7/ of cardinality λ. For / G η and
/ < 2, let V\ = U £#. Note: if / < y G η then [// 5 Uj. Also each t// is closed

under the operations of Ah Let ^ be the two-sorted model B{ = 04/ Π (U F/),
{V\\ i Gη}, e). We will use x, y, z to denote variables of the first sort; s, ty u
to denote variables of the second sort; and E to denote the membership relation.
Let Si be the theory of Bt and K{ the language of S/.

2.3 Lemma
(1) For all / < 2 am/1 G 77, F/ = |J Vj and Vj Φ V\ (1 <y).

( 2 ) 5 0 C S 1 , S 2

(3) For any formula ψ(Xχ,..., xm, s{,..., sn, tu...,tk) G Kh the following

formula is in S/.

VJCV5VfVU((Λ(X/JE'/1ΛJC/ £ I W 1 )Λ(5 1 C . . . C Sn C t\ . . . C tk) Λ

(5j C . . . C S W C II! C . . . C Uk)) -> ( 0 (X, 5, f) « ψ ( X , 5, fi))) .

Proof: (1) Clear.
(2) Since {A1, UJ)iGr} \LQ is saturated of cardinality λ and elementarily

equivalent to (A0, C/f)/GV (A1, Uj)iGη \LQ = 04°, Uf). Any such isomorphism
induces an isomorphism of Bt \K0 with Bo.

(3) Fix / < 2. (To simplify notation we drop the /.) Consider ix < . . . <
in<jι <...< j k 9 in < A < < j'k and au . . . , am G Kyp Kyί. Choose /„ <
/Vn-i < j \ , j \ so that a{,..., am G F//ϊ+1. Choose σ an automorphism of η fixing
all / < in+ι so that σ(yr) =j'r(\<r<k). Since 7 D ̂ ^ 7 , (.4, ά, C//)/ei,

 Ξ

(>4, ά, l/ σ ( 0 ) / € Ξ i r By saturation (v4, α, £/,-)/£„ = (^, α, Uσ{i))^η. So there is an
automorphism of B fixing # i , . . . , αm, K/,,..., Vin such that for 1 < r < k the
image of Vjr is Fy;.

Choose K > 2ω. Let N < (H(κ), G) so that N is countable and S/ G 7V(/ <
2). Let M(i>) denote ω (1 + v). For / < 2 the conditions of Qι are the /?[«!,...,
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am, M(0), M(vι),..., M(vn)] such that: ai9 vj < ω t ; p(x9 s) is a complete
S rtype; p E N; α, * «,• iff x, ΦXj<Ξp9 α, E Λf(i>/)(Af (0)) iff X/Zk/ E /?; and if
α, E M O + 1 ) \ M ( Ϊ > ) then for some j , j ' v = Vj and v + 1 = jy. Order β by
containment.

2.4 Lemma
(1) For all I < 2 am/ a < a>i, {#: a E dom q] is dense in Qh (For q = p[a\9... 9

a m , M ( 0 ) , M ( ^ ) , . . . , M ( ^ ) ] rfow 9 = { « ! , . . . , a m > M ( 0 ) , M ( v γ ) 9 . . . 9

M ( ^ ) } . We ignore the fact that M(v) is also an ordinal.)
(2) For all I < 2 ΰwd ẑ  < ω l 5 {̂ : M(^) E rfom ^} /51 rfe^^e in Qι.

Proof: This is straightforward. The only things to note are that VsVt3u(s C
/ -• s C u C t) E So and for all « V s W a ^ j φ C t -> ( x β Λ (-UC ^5))) E So.

2.5 Lemma For all I < 2, forcing with Qι is the same as adding ωλ Cohen
reals.

Proof: This is much like the proof of Lemma 1.5 in [10]. For limit ordinals
λ < ωi, let Pλ denote {q: a E dom q implies a E M(λ) and M{v) E dom q
implies v < λ}. Since we only allow countably many types, P λ is countable.
(This is the reason for the choice of N.) At limit stages we take unions. So to
finish the proof it suffices to show for all limit λ: if q E Qι there is qf E P\ so
that for all rGP\ extending q\r and q are compatible. (The hypothesis on So

guarantees the appropriate posets are nontrivial.)
Suppose q isp[ά, β, M(0), M(vx),... >M(vn), M(τx),.. .9M(τk)] where

aj<ΞM(λ)9 vj<λ9 βj£M(λ) a n d r , s>λ. Let q' =p'{a, M(0), M(vx),...,
M{vn)] (wherep'(x, s) is the obvious restriction of p(x, γ, s, t)). Letpι(x, z,
s, ΰ) E N be any complete type extending p'. Suppose r = P\[ά, 7, M(0),
M(vι),...,M(rn), Λf(σι)9...,Af(σm)]. For any φ(x9 γ, s9 t) E p, Vtlγ
((Λfe C tj)) -> φ(x, y, s, I)) Gp'. Hence 3 ? 3 J ( ( Λ ( J / C /,-)) Λ (Λ(W, C ίy))) Λ ̂ (X,

y, s, t)) Gp\. So rU q can be extended to a condition.
For / = 1, 2 and ? G β/, let q\Q0 denote {^[ά, M(0), M ( Ϊ Ί ) , . . . ,

Af(fn)l € ςr: ^(x, S) E AΌ} Also for G c β ^ let G r β 0 = {̂  ^βo: ^ E G}.

2.6 Lemma Suppose I = 1,2. If G is Qι-generic, then G\Qois Q0-generic.
Also for all q E Qo there is q' E Qι so that q' \Q0 = q.

Proof: This lemma is true since SQQS/. Here we use the ability to quantify over
variables of both sorts.

Suppose now G/ is ^/-generic (/ < 2). Let (Ah M(v), G)v<ωι be the
Kι-structure with universe ω{ whose diagram is determined by G/ (i.e., At V
R[au.. .,am] iff there is some q E G/ such that R [aΪ9..., am] E q). We now
inductively associate with each L^aa)-formula φ a ^/-formula ψ*. If ψ is
atomic then ψ* is ψ. (We confuses(x) and xEs.) Also ( 1 ^ ) * is -1 (ψ*)9 (ψ/\θ)*
is φ* Λ ί *, and (3x0) * is 3x0*. Suppose ψ is aasθ and the free variables of ψ
are X!, . . . ,xΛ, 5 Ί , . . . , 5 W . Let ̂ * be V5((Λ(JC, £ S ) ΛΛ(5, C S)) -•(?*).

2.7 Lemma Lei 4̂/ βr/2ί/ G/ 6e ύf5 βfftoi e (/ < 2). F/x α j , . . . , α w , M ( Ϊ Ί ) , . . . ,
M(vn) and φ(xι,... ,xm, sλ,... ,sn) ^Lι(aa).Aι f= ̂ [ α i , . . . , α m , M(vx)9...,
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M(vn)] iff for some q G Gh φ*[aλ,..., ctm, M(vx)9..., λf(vn)] G q. Further
Aι N DETh

Proof: The proof is by induction on the construction of formulas. The only dif-
ficulties occur when dealing with the quantifiers. To handle the existential case
it suffices to show: if 3xψ[x, ά, M(0), M(γχ)9..., M(yn)] G q, then for some
β and r Ώ q ψ[β, ά, M(0), M{vx),..., M(vn)] G r. (This implies the relevant
density property.) We may assume q is p[a, M(0), M(vχ),..., M(vn)]. Fur-
ther, sincep is a complete type we may assume ψ includes "xΦ a" for all / and
φ either includes "xEM(vι)" or "-IJC£M(*>/)". There are various possibilities.
We will only do one representative case. Assume 0 < v\ < ... < vn, v\ is a. limit
ordinal and φ includes xE(M(vι)\M(0)).

By 2.3.1 we can assume ψ[x9 a, A/(0), M(v{)9. . ., M{vn)] includes
3s(M(0) C s C M ( J Ί ) Λ JCJSS). SO p(y9 t) can be expanded to a type (in N)
r{x* y> ?t 51) which includes ^(JC, j , / ) , / 0 C 5 C / i , and xEs. Choose β G
M(1)\M(O). So r[|8, α, M(0), Λ / ( I Ί ) , . . . ,Λf(i/π), Λf(l)] is the required con-
dition.

Consider a formula 0050[αi,.. ., am9 M{vλ),.. ,9M(vn)9 s]. Consider any
condition q = p[au . . . , am, M(0), M ( I Ί ) , . . . ,M(f Λ )]. By Lemma 2.3(3)
either Vs((*<XiEs) Λ Λ ( M ( ^ ) C J ) ) - * e * ( a i , . . . , am, M{vx)9..., M(pn)9 s))Eg
or V5((Λ(α/£S) ΛΛ(Af(^ ) C 5)) -* - i 0 * ( a i , . . . , am, M(vx),..., M ( ^ ) , s)) G flr.
In the first case for all large enough r and r Ξ2 q if M(τ) G ί/orar then
0 ( α l f . . . , α m , M ( ^ ) , . . . , M ( ^ ) , M(τ)) G r. So if q G G/ then ^ 7 N
αα5 0 [ α i , . . . , α m , M ( Ϊ Ί ) , . . . ,M(vn)]. In the other case A\ |= α α ^ - i ^ t α ! , . . . ,
α m , Λf(i^),..., M(vn)9 s]. This completes the proof as well as showing A\ Y
DETh

2.8 L e m m a For any Lι{Q)-sentence ψ G 7 ) , A Y ψ. In particular for 1=1,
2, Aι N ^/.

Proof: View ^ as an L(##)-sentence; i.e., Qxθ is replaced by aasaatlx(t(x) Λ
-i5 (x) Λ θ). It is not hard to see that if ψ G 7} then ^* G 5/.

Remark: We have a way to construct finitely determinate models of any con-
sistent L(Q) sentence which also works for LPOS. The reader might wonder if
these methods apply to L(aa)-sentences consistent with Det. To see that they
fail suppose Tcontains the sentence expressing " < is an ω rlike order". Then
S will contain a sentence expressing "for all ssups does not exist". Here S and
T play the roles of 5/ and 7) above.

2.9 Theorem It is consistent, assuming the consistency of ZF, that if φι,
Ψi^ L(Q) form a A-pair for finitely determinate structures then ψγ and -*φ2

have a determinate interpolant.

Proof: Let P be the poset for adding ωi Cohen reals. Assume H is P-generic
and that I/Ί and ψ2 form a Δ-pair for finitely determinate structures in V[H].
Suppose I/Ί G Lχ(Q) and ->^2 Ξ L2{Q) have no determinate interpolant in
L0(aa), where Lx Π L2 = Lo. Let βo> βi and β 2 ( ^ ^) be as above. By Lemma
2.5 there is G G V[H] so that G is βo-generic and V[G] = V[H]. Let A{ be the
canonical name for A\ (where At is as in Lemmas 2.7 and 2.8). Since ψι and φ2

form a determinate Δ-pair and 1 \\-Qo "Άo is finitely determinate" (AQ)G can be
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expanded to a model of φγ or a model of φ2 (which, depending on how φx and
φ2 form a determinate Δ-pair, we may be able to assume is finitely deter-
minate.) For definiteness assume (A0)G can be expanded to a model of φ\
which is finitely determinate.

Choose p E G s o that p Ih "ΆQ can be expanded to a model of φχ\
Choose q E Q2 so that q\Q0=p. Choose G2 (?2-generic so that V[G2] = V[H]
and q GG2. (The existence of such G2 is implied by the homogeneity of P.) Let
GOJ= G2\Q2. Note that (A2)G2\L0 = (Ao)Go. Also p E Go. So V[H] t=
"(AO)GO can be expanded to a finitely determinate model of φ2" (namely
(A2)G2). Since p E G o, V[G0] f= "C4O)G O

 c a n ^e expanded to a finitely deter-
minate model of φx". But ωf = ω^[G°] = ωf[H]. So any finitely determinate
model of φx with universe ωi in V[G0] remains a finitely determinate model of
Φι in V[H]. So V(H] |= "C4o)σo

 c a n be expanded to a finitely determinate
model of φ\ and to a finitely determinate model of φ2".

Remark: Under MA + -ιC// there are sentences φΪ9 φ2 E L(ζ?) forming a
Δ-pair with no determinate interpolant between φ2 and -ιψ2 Indeed the usual
example where I/Ί says " Γ i s a special Aronzajn tree" and φ2 says " Γ i s not an
ω r tree or Γhas a branch of length c V suffices ([8], Theorem 1.3).

3 Congruence closed logics In this section we will define what it means for
a logic to be congruence closed. Being congruence closed like being closed under
relativization is a natural requirement to place on a logic. However L(Q) is not
congruence closed. We will see that the congruence closure of a logic is easily
constructed and preserves many of the good properties of the logic. We first
review what we mean by a logic. (We follow [9].) For simplicity assume no
language has function symbols. To a class K of structures of a fixed similarity
type, closed under isomorphism, is associated a quantifier Qκ. To illustrate,
suppose K is a class of structures closed under isomorphism with a binary
relation R and a constant symbol c. A typical formula χ(ίv, y) beginning with
Qκ is Qκx, (x0, xι) (φ(xf w), φ(xθ9 xu vv), y), where φ(x9 w), φ(xθ9 xl9 W)
are formulas whose free variables include x and xθ9 xu respectively. For all
structures, A9 A N χ[a, b] iff (φ(x, a)A\ ΦA(x0, xu a), b) E K. A logic £ is
obtained by adding to Lωω some quantifiers QK(K G JC) and giving £ = L{QK:
KG JC) the obvious syntax and semantics.

A logic is congruence closed if for any formula φ(x\, x2, y) and φ(y)
there is a formula φ* such that: for all A and a GA9 A N φ*[a] iff Φ(X\, x2,
a)Λ is a congruence relation with respect to the relations used in φ and A/= \=
φ[a/=]. Here = denotes the equivalence relation φ(x\, x2, a). A Δ-closed logic
is obviously congruence closed. The congruence closure of a logic is easily
described. For K a class of structures closed under isomorphism, let K* be the
class of structures (A, Ξ ) such that s is a congruence relation on A and
/ 1 / Ξ G I For convenience assume = is the first relation in the similarity type
of (A, s > . Given a logic £ = L(QK: K E JC) let <£* = £((?** : Ke JC).

3.1 Proposition <£* fa ίΛe smallest congruence closed logic extending <£.

Proof: First note: <£ c £ * (i.e., interpretable); e.g., Qκx9 (xθ9 xλ) (φ(x9 w),
φ(xθ9 xl9 w)) is equivalent to Qκ*x9 (xθ9 xo)9 (xΪ9 x2) (φ(x9 w)9 xo = xθ9 φ(xu
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x2, w)) Also if JC' is any congruence closed logic extending <£, then <£* C <£'.
It remains to show <£* is congruence closed. But this is a simple induction.

3.2 Proposition Suppose £ is a logic and £ * its congruence closure.
(1) If £ is obtained by adding K quantifiers to Lωω then so is £*. (Note: K may
be finite.)
(2) If £ is axiomatizable, so is £*.
(3) If £ has the Tarskiproperty, so does £*.
(4) If £ is (K, λ)-compact, so is <£*.

Proof: (1) is a consequence of the construction of £*. For (2), see 2.24 in [9].
(3) is an induction on formulas in <£*. (4) follows since £* c Δ(£) ([9], 2.13).

3.3 Example The congruence closure of L{Q) is L{QE) where QEx, (x0, xx)
(Φ(x, y), φ(xo, X\9 y)) expresses "Ψ(XQ9 X\, y) is an equivalence relation on
φ(x, y) and ψ(xo, X\, y) has at least Xx equivalence classes". This quantifier
is due to Feferman [4]. He introduced this quantifier in order to extend L(Q)
to get a logic strong enough to handle Keisler's [6] counterexample to Δ-
interpolation in L(Q). To see how QE fits in with the discussion above, let K
be the class of structures (with no relations or constants) of structures of cardi-
nality at least K}. Then L(Q) is L(QK) and QE is Qκ\

Recall Keisler's example. Let Ao be a model with an equivalence relation
with Ko uncountable equivalence classes. Let Ax be a model with an equivalence
relation with Hx uncountable equivalence classes. Then Ao and A\ are L(Q)-
equivalent but not L(QE)-equivalent. So Keisler's example shows L(Q) is not
congruence closed. Note that AQ and A\ are ω-homogeneous models of an ω-
categorical theory. (By A being ω-homogeneous we mean if ά and b are finite
sequences satisfying the same type then there is an automorphism of A taking
a to b.)

The following proposition is useful for showing models are equivalent in
the Beth closure of a logic.

3.4 Lemma Suppose A, B are ω-homogeneous models of an ω-categorical
theory and A is £-equiυalent to B. Then A is Beth(£)-equivalent to B.
(Beth(£) is the Beth closure of £.)

Proof: We first give a description of Beth(£) (cf. [9], p. 168). Suppose ψ(P,
R u . . . , R n ) i s a B e t h d e f i n i t i o n i n £ ; i . e . , v R x . . . R n l - ι P ψ { P , R u . . . , R n )
is valid. (Here all the relations of ψ(P, Ru..., Rn) are displayed.)

Let Kφ be the class of models of the form (A, Ru... ,Rn, a) such that
t h e r e i s a P G A m s o t h a t ( A , P , R χ , . . . , R n ) N ψ ( P , R χ , . . . , R n ) a n d a G P.
Let £{ = (Qκ*: ψ a Beth definition in £). Clearly £χ c Beth(£). Also any
Beth definition in £ is equivalent to an explicit «£rdefinition. For example, if
ψ(P, R) is a Beth definition where P is unary and R is binary then the follow-
ing formula is valid P(y) Λ ψ(P9 R) ++ Qκ*x, <*i, x2) (x = x, R(X\9 Xi), y)>
For n < ω analogously define £n+\ from <£„. So Beth(£) = U£n.

To prove the lemma it suffices to show A is £χ -equivalent to B. In fact we
will show for any formula φ(x) G £χ there is a formula ψ*(x) G Lωω such that
A9 B |= φ*(x) ++ φ(x). First note that the definable relations on A are contained
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in the relations invariant under Aut(A). Since A is ω-homogeneous and ω-
categorical, the relations invariant under Aut(A) are exactly the Lωω-definable
relations. So for any ψ(x) G £ there is ψ*(x) G Lωω such that A f= ψ(x) <->
ψ*(x). Since A is ^-equivalent to B9 B f= ψ(x) ++ ψ*(x). We now show an
appropriate ψ* exists by induction on ψ G £χ. The only interesting case occurs
when Φ(XQ, . . . , xn9 xn+\9..., Xk) is of the form

QKφZ, <Zo>, , <*m> (pU, * ) , βo(?O» *)> > θm(zm, X), X0, . , Xn) ,

where φ is a Beth definition in £ of an «-ary relation. By the inductive hypoth-
esis we can assume p, θ0,..., 0m Ξ Aoω

Consider any α i , . . . , ak G A. Assume there is R <Ξ An so that (p(z, ά)"4;
#, #o(£o> ̂ ί^ϊ > θm(zm, a)Λ) \= φ. Since φ is a Beth definition, R is invariant
under Autu{A). So there is a formula χ(^, x) G Lωω such that 7? = χ(γ9 a)A.
This formula depends only on the type/?(x) which a satisfies. Let χp denote the
formula χ. Since A is ω-categorical, we can take p to be a formula of Lωω.
Also as ,4 is JC-equivalent to B, if B (= /?[5] then (p(z, 5)*, x p ( j , ά ) 5 , ô(̂ o»
6 ) s , . . . , θm(zm, b)B) N </>. Let / be the (finite) set of types p such that Xp(y9

x) exists.
Now assume no such R c An exists. This is a property of the type/? which

ά realizes. This is expressible in £ by saying "p(x) implies no formula (there are
only finitely many nonequivalent ones) χ(y, x) defines such an R". Since B is
also ω-homogeneous, for all b G B such that B (= p[b] there is no such R.

So A, B (= φ(x) - ( ( V P(Z)) Λ Λ (P(« "^ XpUi, ,Xn, « ) ) •
WpG/ / /?G/ /

3.5 Theorem
(1) 5e//z (L(Q)) is not congruence closed.
(2) Beth (L(Qcf)) is not congruence closed. (Qcf is Qκ where K is the class of
linear orders of cofinality ω.)

Proof: (1) Apply 3.4 to Keisler's example.
(2) Let A\ be (η9 <) and A2 be any ω-homogeneous dense linear order of

cofinality ωi (e.g., η-ωι). Define < on At x 2 (/ = 0, 1) by (a, i) < (a',j) iff
a < a'. Then Ax X 2 is L(Qc/)-equivalent to A2 X 2. (The point is that in
Ai x 2 there is no definable infinite set with a definable linear order —even
using parameters.)

3.6 Proposition Suppose £ is a congruence closed logic. Then Beth {£)
and w.Beth (£) are congruence closed. (w.Beth (£) is the weak Beth closure
of £; i.e., we demand explicit definitions for any relation P such that
3 = 1 P t ( P , i ? o , . . , W is valid.)

Proof: We only give the proof for Beth (£). It suffices to show £x is con-
gruence closed. Suppose ψ(P, Ro, , Rm) is a Beth definition of P in £. Let
K = Kψ. By 3.1 it is enough to show Qκ* is a quantifier in £ i . Since £ is con-
gruence closed there is a formula ψ*(P, E, Ro,..., Rm) such that for all A, {A,
EA, PA, R£,...,R£) N ψ* iff EA is a congruence relation and (A/EA,
PA/EA, RA/EA,..., RA/EA) N φ. Clearly, φ*(P, E9R0,..., Rm) is a Beth

definition of P.
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