Stationary Logic and Its Friends – II

ALAN H. MEKLER* and SAHARON SHELAH**

Introduction This paper is the successor to "Stationary Logic and Its Friends – I" [10]. The three sections of the paper can be read independently. The first two sections assume some familiarity with stationary logic, denoted L(aa) (see [2]). The third section concerns a closure operation for abstract logic. There a familiarity with [9] would be helpful.

In the first section we define, for regular λ , the λ -interpretation of L(aa), denoted $L(aa^{\lambda})$. In this notation, the standard interpretation is $L(aa^{\omega})$. The most easily understandable case occurs when $\lambda^{<\lambda} = \lambda$. Then for models with universe λ^+ , aa^{λ} expresses "for all but a nonstationary set of ordinals of co-finality λ ". We show if $\lambda^{<\lambda} = \lambda$, then $L(aa^{\lambda})$ has the same validities as $L(aa^{\omega})$ and $L(aa^{\lambda})$ is (λ, ω) -compact.

The second section is devoted to the proof of the consistency of the following approximation to the Δ -closure of L(Q) being contained in L(aa).

Suppose $L_1 \cap L_2 = L_0$, $\psi_1 \in L_1(Q)$ and $\psi_2 \in L_2(Q)$.

Further suppose every finitely determinate L_0 -structure *either* can be expanded to a model of exactly one of ψ_1 of ψ_2 or can be expanded to a finitely determinate model of exactly one of ψ_1 or ψ_2 .

Then there is a sentence $\theta \in L_0(aa)$ such that every finitely determinate model of ψ_1 satisfies θ and no finitely determinate model of ψ_2 satisfies θ . (So θ separates the reducts of finitely determinate models of ψ_1 from those of ψ_2 .)

(See Section 2 for the definition of finitely determinate. Of course Q is the quantifier expressing "there exist uncountably many".) In [10] we showed that every consistent L(Q)-sentence has a finitely determinate model. So this result establishes the consistency of the Δ -closure of L(Q) being contained in L(aa)

^{*}Research supported by Natural Sciences and Engineering Council of Canada Grant #U0075.

^{**}Research supported by the US-Israel Binational Science Foundation.

relative to some large class of models. Assuming $MA + \neg CH$ the displayed sentence is false ([8], Theorem 1.3).

The third section is a prolonged observation motivated by the algebraic intuition that homomorphic images are as fundamental as subalgebras. A common requirement on a logic is that one can talk about definable substructures (i.e., via relativization, cf. [1]). However, many common logics, such as L(Q), do not allow us to talk about definable homomorphic images; i.e., modeling out by definable congruences. We show that demanding a logic be congruence closed is innocuous. Every logic has an easily described congruence closure which inherits most of the good properties of the logic.

The results in the first section are due to Shelah. Shelah had a plan for a proof that it is consistent that the Δ -closure of L(Q) is contained in L(aa). In [10] we promised this proof would appear here. Unfortunately the proof was flawed. Mekler realized that using finite determinancy the proof could be altered to work if we weaken the assumption and conclusion. The third section is due to Mekler.

1 The λ -interpretation Assume λ is a regular cardinal. We now describe the semantics of the language $L(aa^{\lambda})$. Fix X. Let $D_{\lambda}(X)$ be the filter on $P_{\lambda}+(X)$ generated by those filters F such that player II has a winning strategy for the game G(F). Here players I and II alternately choose elements of an increasing λ -chain of elements of $P_{\lambda}+(X)$. Player II wins if the union of the chain is in F. $D_{\lambda}(X)$ is closed under the intersection of λ many elements and under diagonal intersection; i.e., if $\{F_a: a \in X\} \subseteq D_{\lambda}(X)$, then $\{A | A \in F_a \text{ for all } a \in A\} \in D_{\lambda}(X)$ (cf. [5] or [7]).

This filter can be best understood in the case where $\lambda^{<\lambda} = \lambda$. In this case $D_{\lambda}(\lambda^{+})$ is just the restriction of the cub filter to the ordinals of cofinality λ . In fact $D_{\lambda}(X)$ has an alternative definition.

1.1 Proposition Suppose $\lambda^{<\lambda} = \lambda$ and $\mathbf{P} = \{f: \alpha \xrightarrow{1-1} X: \alpha < \lambda^+\}$ ordered by inverse containment. Then $F \in D_{\lambda}(X)$ iff $\mathbf{1} \Vdash^{\mathbf{P}} \tilde{g}^{-1}$, \check{F} contains the intersection of a cub with the ordinals of cofinality λ . (Here \tilde{g} is a name for $\cup G$.)

Define $L(aa^{\lambda})$ (i.e., the λ -interpretation of L(aa)) by letting $A \models aa^{\lambda}s\psi(s)$ iff $\{s \in P_{\lambda} = (A): A \models \psi[s]\} \in D_{\lambda}(A)$. Note that the axioms and rules for L(aa) given in [2] are sound for $L(aa^{\lambda})$. So any sentence universally valid for $L(aa^{\omega})$ is also universally valid for $L(aa^{\lambda})$. We will show: if $\lambda = \lambda^{<\lambda}$ then the validities of $L(aa^{\lambda})$ are the same as the validities of $L(aa^{\omega})$. In view of the preceding remark it will suffice to show: if a sentence ψ has a model in the ω -interpretation then it also has one in the λ -interpretation.

One might wonder why we restrict ourselves to one cofinality; i.e., why not use the cub filter on λ^+ rather than restricting to the ordinals of cofinality λ ?

1.2 Example Let $L(a^{\lambda})$ denote the logic defined by $A \models a^{\lambda}s\psi(s)$ iff $\{s \in P_{\lambda}+(A): A \models \psi[s]\}$ contains a cub. Let ψ express: L is a λ^+ -like dense linear order $a^{\lambda}s$ (sup s exists); for all a and b cf $\{x: x < a\} = cf\{x: x < b\}$. (Use a ternary function to express the last clause.) Then ψ has a model iff $\lambda = \omega$.

1.3 Theorem Suppose λ is an uncountable regular cardinal and $\lambda^{<\lambda} = \lambda$. (1) A sentence $\psi \in L(aa)$ has a model in the λ -interpretation iff it has a model in the ω -interpretation.

(2) $L(aa^{\lambda})$ is (λ, ω) -compact, i.e., any finitely consistent set of sentences of cardinality λ has a model.

Proof: (1) The proof is similar to that of Chang's two-cardinal theorem ([3], Theorem 7.7, p. 438). We begin by studying the structure $\langle H(\kappa), \in \rangle$ where κ is some fixed cardinal $>2^{\omega_1}$. By way of explaining our interest in it, note that for any sentence $\psi \in L(aa^{\omega})$ (we assume $L(aa) \in H(\kappa)$) ψ has a model iff $\langle H(\kappa), \in \rangle \models "\psi$ has a model". Enrich the language by adding a binary naming relation R (as in Chang's two-cardinal theorem) and for each formula $\psi(\bar{x}) \in$ L(aa) a relation $R_{\psi}(\bar{x})$ defined so that $\langle H(\kappa), \in \rangle \models \forall \bar{x} (R_{\psi}(\bar{x}) \leftrightarrow \psi(\bar{x}))$. For the moment all models will be (first-order) elementarily equivalent to $\langle H(\kappa), \in \rangle$ in the expanded language. To simplify notation we will write for $\psi \in L(aa)$ " $A \models \psi[\bar{a}]$ " instead of " $A \models R_{\psi}[\bar{a}\}$ ". Also we systematically confuse $b \in A$ with $\{x: A \models x \in b\}$.

1.4 Lemma

(1) Suppose $A = \bigcup_{i \in \alpha} A_i$ (an elementary chain) where: $\alpha < \lambda^+$; each A_i is saturated; for all i, $\omega^{A_i} = \omega^{A_0}$; and for all i, $|A_i| = \lambda$. Then there is a saturated model B > A such that $|B| = \lambda$ and $\omega^B = \omega^{A_0}$.

(2) Suppose A is saturated, $\bar{a} \in A$, $A \models stat \ s \ \psi(s, \bar{a})$ and $|A| = \lambda$. Then A can be extended to a saturated model B such that: $|B| = \lambda$; $A \in B$; $B \models \psi[A, \bar{a}]$; and for $\bar{b} \in A$ and $\theta \in L(aa)$ if $B \models \theta[A, \bar{b}]$ then $A \models stat \ s \ \theta(s, \bar{b})$.

Proof (of Lemma): (1) This is just the key step in the proof of Chang's two-cardinal theorem.

(2) Fix an enumeration {a_α: α < λ} of A which we will treat as a set of variables. Let X = {x_α: α < λ} be a set of variables. We will define an increasing sequence p_α(α < λ) of complete types over the empty set and an increasing sequence A_α(α < λ) of subsets of A of cardinality <λ so that: (a) for all α the variables of p_α are X_α ∪ A_α where X_α = {x_β: β < α} and {a_β: β < α} ⊆ A_α; (b) for all α, Th(A)_{A_α} ⊆ p_α; (c) for all α and y ∈ A ∪ X, (y ∈ x₀) ∈ p_α iff there is a ∈ A_α so that (a = y) ∈ p_α; (d) ψ(x₀, ā) ∈ p₁; and (e) for all θ ∈ L(aa) ∀x̄((θ(x₀, x̄) ∧ x̄ ∈ x₀) → stat s θ(s, x̄)) ∈ p₁. A consequence of (e) is: (f) ∀x(x ∈ ω → x ∈ x₀) ∈ p, since (H(κ), ε) ⊨ aas ∀x (x ∈ ω → s(x)).

We will define an equivalence relation on $A \cup X$ by $y \equiv z$ iff $(y = z) \in \bigcup_{\alpha < \lambda} p_{\alpha}$. Then we let $B = A \cup X/\equiv$ where the relations are defined in the obvious way. Some care must be taken to ensure *B* is a saturated model. Since this is a matter of routine enumeration we will just describe how the iteration is done.

Let A_0 be the domain of a countable elementary submodel of A which includes the constants of ψ and a_0 . Let $p_0 = Th(A)_{A_0}$.

Claim $p'_1 = p_0 \cup \{\psi(x_0, \bar{a})\} \cup \{a \in x_0 : a \in A_0\} \cup \{\forall \bar{x}(\theta(x_0, \bar{x}) \land \bar{x} \in x_0) \rightarrow stat \ s \ \theta(s, \bar{x})) : \theta \in L(aa)\}$ is consistent.

Proof (of claim): By diagonal intersection for all $\theta \in L(aa)$ ($H(\kappa)$, \in) \models aa s

 $\forall \bar{x}(s(\bar{x}) \rightarrow (aa \ t \ \theta(t, \bar{x}) \rightarrow \theta(s, \bar{x}))).$ Also $(H(\kappa), \in) \models aas \exists y \ \forall z(s(z) \leftrightarrow z \in y).$ Since A is elementarily equivalent to $(H(\kappa), \in)$, p'_1 is finitely satisfiable in A.

Let p_1 be any complete extension of p'_1 . Suppose $p_{\alpha}(\alpha > 1)$ has been chosen and $q_{\alpha}(x_{\alpha})$ is some type over $X_{\alpha} \cup A_{\alpha}$ containing p_{α} . (The q_{α} should be chosen so that B will turn out to be a saturated model.) Note that $p'_{\alpha+1} = q_{\alpha} \cup$ $Th(A)_{A_{\alpha}\cup\{a_{\alpha}\}}\cup\{a_{\alpha}\in x_{0}\}$ is consistent. In fact any finite subset already occurs in q_{α} , where the variables are replaced by elements of A_0 . If $(x_{\alpha} \notin x_0) \in q_{\alpha}$, then let $A_{\alpha+1} = A_{\alpha} \cup \{a_{\alpha}\}$ and $p_{\alpha+1}$ be any complete (consistent) extension of $p'_{\alpha+1}$. Suppose $(x_{\alpha} \in x_0) \in q_{\alpha}$. Let p''_{α} be a complete extension of p'_{α} . Since A is saturated, p''_{α} is realized in A where the elements of $A_{\alpha} \cup \{a_{\alpha}\}$ are interpreted as themselves. Choose $a \in A$ so that x_{α} is interpreted as a in such a realization. Let $p_{\alpha+1}$ be a complete extension of $p''_{\alpha} \cup \{x_{\alpha} = a\}$ and let $A_{\alpha+1} = A_{\alpha} \cup A_{\alpha+1}$ $\{a_{\alpha}, a\}$. At limit ordinals take unions.

1.5 Lemma There is a model B so that for all $\psi(\bar{x}) \in L(aa)$ and $\bar{b} \in B$, B satisfies $\psi[\bar{b}]$ in the λ -interpretation (denoted $B \models {}^{\lambda}\psi[\bar{b}]$) iff $B \models R_{\psi}[\bar{b}]$.

Proof: We use the same strategy as in [2]. Partition $\{\alpha: \alpha < \lambda^+ \text{ and } cf(\alpha) = \alpha \}$ λ into λ^+ disjoint stationary subsets $S_{\psi[s,\bar{b}]}(\psi(s,\bar{x}) \in L(aa) \text{ and } \bar{b} \in \lambda^+)$. Choose a continuous elementary chain $A_{\alpha}(\alpha < \lambda^{+})$ of models so that: the underlying set of each A_{α} is some ordinal $\langle \lambda^+$; for all α , $\omega^{A_0} = \omega^{A_{\alpha}}$; for all α , $A_{\alpha+1}$ is saturated of cardinality λ ; if $cf(\alpha) = \lambda$, $\bar{a} \in A_{\alpha}$, $\psi(s, \bar{x}) \in L(aa)$ and $A_{\alpha} \models aas \psi(s, \bar{a})$, then $A_{\alpha+1} \models \psi[A_{\alpha}, \bar{a}]$; $(A_{\alpha} \in A_{\alpha+1})$; and if $\alpha \in S_{\psi[s,\bar{b}]}$ and $A_{\alpha} \models stat \, s \, \psi[s, \bar{b}]$ then $A_{\alpha+1} \models \psi[A_{\alpha}, \bar{b}]$. Lemma 1.4 is exactly what is needed to show such a chain exists. Let $B = \bigcup_{\alpha < \lambda} A_{\alpha}$. Next we show that if $cf(\alpha) = \lambda$ then $A_{\alpha} \in B$. By the construction $A_{\alpha} \in A_{\alpha+1}$ and $A_{\alpha+1} \models |A_{\alpha}| = \omega$ (since $A_{\alpha} \models$ "aa $s(|s| = \omega)$ "). So there is $f \in A_{\alpha+1}$ such that $A_{\alpha+1} \models$ "f is an onto function from ω to A_{α} ". Since $\omega^{B} = \omega^{A_{0}}$, $A_{\alpha}^{A_{\alpha+1}} = A_{\alpha}^{B}$. An easy induction on the con-

struction of formulas shows B is the desired model.

To finish the proof we drop our convention about the use of "model". In $(H(\kappa), \in)$ there is a connection between internal and external satisfaction: namely $(H(\kappa), \in) \models "M \models aas \psi(s)"$ iff $(H(\kappa), \in) \models aas "M \models \psi(s \cap M]"$. Now we turn our attention to B (of Lemma 1.5). Suppose $B \models "M$ is a structure". (Recall that we confuse M with $\{x: B \models x \in M\}$ equipped with the obvious functions and relations.)

For all $\psi(\bar{s}, \bar{x}) \in L(aa)$, $\bar{A} \in B$ and $\bar{m} \in M$, $M \models^{\lambda} \psi[\bar{A \cap M}, \bar{m}]$ iff Claim $B \models "M \models \psi[\overline{A \cap M}, \overline{m}]".$

Proof: The proof is by induction on the construction of formulas. The only interesting case occurs when ψ is $aat \psi(t, \bar{s}, \bar{x})$. Suppose $B \models "M \models aat \psi[t, \bar{s}, \bar{x})$ $\overline{A \cap M}, \overline{m}$]". By Lemma 1.5 $B \models^{\lambda} aat$ " $M \models \psi[t \cap M, \overline{A \cap M}, \overline{m}]$ ". Also $B \models^{\lambda}$ aat $\exists x \forall z \ (x \in z \leftrightarrow t(x))$. So there is $F \in D_{\lambda}(B)$ such that for all $C \in F$, $C \in B$ and $B \models^{\lambda} "M \models \psi[C \cap M, \overline{A \cap M}, \overline{m}]$ ". By the induction hypothesis $M \models^{\lambda} \psi[C \cap M, \overline{A \cap M}, \overline{m}]$. Hence $M \models^{\lambda} aat \psi[t, \overline{A \cap M}, \overline{m}]$. The other direction is much the same.

Finally, to prove that if $\psi \in L(aa)$ has a model in the ω -interpretation then it has a model in the λ -interpretation, note that: ψ has a model in the ω - interpretation iff for some $M \in A_0$, $A_0 \models "M \models \psi$ " iff $M^B \models^{\lambda} \psi$. (The notation is from the proof of Lemma 1.5.) As has already been noted the other direction follows from [2].

(2) Suppose λ is uncountable, $T \subseteq L(aa)$, T is finitely consistent, and $|T| = \lambda$. We can assume $T \subseteq A_0$ (from the proof of Lemma 1.5). Add a constant M to the language. Since $Th(H(\kappa), \in) \cup \{ "M \models \psi ": \psi \in T \}$ is consistent, this theory has a saturated model C of cardinality λ . The reduct of C to the language of $(H(\kappa), \in)$ is isomorphic to A_0 . Hence there is some $M \in A_0$ so that for all $\psi \in T$, $A_0 \models "M \models \psi"$. Hence $M^B \models^{\lambda} T$.

1.6 Corollary Suppose λ is regular and $\lambda^{<\lambda} = \lambda$. Then $L(aa^{\lambda})$ satisfies $LS(\lambda^+)$; i.e., any consistent sentence has a model of cardinality at most λ^+ .

2 Determinant Δ -pairs Say L(Q)-sentences ψ_1 and ψ_2 form a Δ -pair for finitely determinate structures if either every finitely determinate structure in the common language can be expanded to a model for exactly one of ψ_1 or ψ_2 or every finitely determinate structure in the common language can be expanded to a finitely determinate model of exactly one of ψ_1 or ψ_2 . In this section we will show it is consistent that if L(Q)-sentences ψ_1 and ψ_2 form a Δ -pair for finitely determinate structures then there is an L(aa)-sentence in the common language such that every finitely determinate model of ψ_1 satisfies θ and no finitely determinate model of ψ_2 satisfies θ). Call such a θ a determinate interpolant between ψ_1 and $\neg \psi_2$.

Given a pair of L(Q)-sentences ψ_1 and $\neg \psi_2$ with no determinate interpolant we will define three notions of forcing. All these will turn out to be the same as adding ω_1 Cohen reals. We will use this fact to show that if we add ω_1 Cohen reals then ψ_1 and ψ_2 are not a Δ -pair for finitely determinate structures. Because of the completeness theorem for L(aa) "having no determinate interpolant" is an absolute property. So we'll have to show that after adding ω_1 Cohen reals if ψ_1 and $\psi_2 \in L(Q)$ are a Δ -pair for finitely determinant structures then ψ_1 and $\neg \psi_2$ have a determinate interpolant.

To begin, fix L_1 , L_2 and $L_0 = L_1 \cap L_2$ and sentences $\psi_1 \in L_1(Q)$, $\psi_2 \in L_2(Q)$. Assume no $\theta \in L_0(aa)$ is a determinate interpolant between ψ_1 and $\neg \psi_2$. So if we let $\Sigma = \{\theta \in L_0(aa): DET_1 \cup \{\psi_1\} \vdash \theta\}$ then $\Sigma \cup DET_2 \cup \{\psi_2\}$ is consistent. Here DET_l denotes the determinancy scheme for $L_l(aa)$:

 $aas_1 \dots aas_n \psi(s_1, \dots, s_n) \vee aas, \dots, aas_n \neg \psi(s_2, \dots, s_n)$

where $\psi(s_1, \ldots, s_n)$ is an $L_l(aa)$ -formula. Recall a model is finitely determinate if it satisfies *DET*.

Just as in the proof of Craig's interpolation theorem from Robinson's consistency theorem we can prove:

2.1 Lemma There are complete consistent theories $T_l \in L_l(aa)$ $(l \le 2)$ such that $T_0 \subseteq T_1, T_2; \psi_l \in T_l$ (l = 1, 2); and $DET_l \subseteq T_l(aa)$ $(l \le 2)$.

To avoid degenerate cases we will assume every model of T_0 has a definable subset which is both uncountable and co-uncountable. (If not, add unary

predicates U, V, and W. Replace T_l by the theory expressing: "U and V partition the model into disjoint subsets"; each axiom of T_l relativized to U; and "W is an uncountable co-uncountable subset of V".)

Expand the languages L_l by adding unary predicates $\{U_i: i \in \eta\}$. Here η is the order type of the rationals. Let T'_i be the deductive closure of $T_l \cup \{\psi(U_{i_1}, \ldots, U_{i_n}) \leftrightarrow aas_1 \ldots aas_n \psi(s_1, \ldots, s_n): \psi \in L_l(aa) \text{ and } i_1 < \ldots < i_n \in \eta\}.$

2.2 Lemma Each T'_{l} is complete and consistent. Further $T'_{0} \subseteq T'_{1}$, T'_{2} .

Proof: Clearly each T'_i is consistent since any model of T_i can be expanded to a model of any finite subset of T'_i . Consider any sentence $\psi(U_{i_1}, \ldots, U_{i_n}) \in$ $L'_i(aa)$ (where all the new predicates are displayed). Since T_i is complete and contains DET_i , either $aas_1 \ldots aas_n \psi(s_1, \ldots, s_n) \in T_i$ or $aas_1 \ldots aas_n$ $\neg \psi(s_1, \ldots, s_n) \in T_i$. So either $\psi(U_{i_1}, \ldots, U_{i_n}) \in T'_i$ or $\neg \psi(U_{i_1}, \ldots, U_{i_n}) \in T'_i$. Similarly $T'_0 \subset T'_1$, T'_2 .

Having constructed $T'_{l}(l \le 2)$ we now consider only the first-order part and construct new theories $S_{l}(l \le 2)$. Choose λ so that every countable (firstorder) theory has a saturated model of cardinality λ . (As usual an absoluteness argument can be found to eliminate the need for assuming such a λ exists.) For $l \le 2$, let $(A_{l}, U_{l}^{l})_{i \in \eta}$ be a saturated model of T'_{l} of cardinality λ . For $i \in \eta$ and $l \le 2$, let $V_{i}^{l} = \bigcup_{j < i} U_{j}^{l}$. Note: if $i < j \in \eta$ then $U_{i}^{l} \subsetneq U_{j}^{l}$. Also each U_{i}^{l} is closed under the operations of A_{l} . Let B_{l} be the two-sorted model $B_{l} = (A_{l} \cap (\bigcup V_{i}^{l}),$ $\{V_{i}^{l}: i \in \eta\}, \epsilon$). We will use x, y, z to denote variables of the first sort; s, t, uto denote variables of the second sort; and E to denote the membership relation. Let S_{l} be the theory of B_{l} and K_{l} the language of S_{l} .

2.3 Lemma

(1) For all $l \leq 2$ and $i \in \eta$, $V_i^l = \bigcup_{j \leq i} V_j^l$ and $V_j^l \neq V_i^l$ (i < j).

(2) $S_0 \subset S_1, S_2$

(3) For any formula $\psi(x_1, \ldots, x_m, s_1, \ldots, s_n, t_1, \ldots, t_k) \in K_l$, the following formula is in S_l :

$$\forall \bar{x} \forall \bar{s} \forall \bar{t} \forall \bar{u}((\land (x_j E t_1 \land x_j E u_1) \land (s_1 \subset \ldots \subset s_n \subset t_1 \ldots \subset t_k) \land (s_1 \subset \ldots \subset s_n \subset u_1 \subset \ldots \subset u_k)) \rightarrow (\psi(\bar{x}, \bar{s}, \bar{t}) \leftrightarrow \psi(\bar{x}, \bar{s}, \bar{u}))) .$$

Proof: (1) Clear.

(2) Since $(A^l, U_i^l)_{i \in \eta} \upharpoonright L_0'$ is saturated of cardinality λ and elementarily equivalent to $(A^0, U_i^0)_{i \in \eta'} (A^l, U_i^l)_{i \in \eta} \upharpoonright L_0' \cong (A^0, U_i^0)$. Any such isomorphism induces an isomorphism of $B_l \upharpoonright K_0$ with B_0 .

(3) Fix $l \le 2$. (To simplify notation we drop the *l*.) Consider $i_1 < \ldots < i_n < j_1 < \ldots < j_k$, $i_n < j'_1 < \ldots < j'_k$ and $a_1, \ldots, a_m \in V_{j_1}$, V_{j_1} . Choose $i_n < i_{n+1} < j_1, j'_1$ so that $a_1, \ldots, a_m \in V_{i_{n+1}}$. Choose σ an automorphism of η fixing all $i \le i_{n+1}$ so that $\sigma(j_r) = j'_r$ $(1 \le r \le k)$. Since $T \supset DET$, $(A, \bar{a}, U_i)_{i \in \eta} \equiv (A, \bar{a}, U_{\sigma(i)})_{i \in \eta}$. By saturation $(A, \bar{a}, U_i)_{i \in \eta} \cong (A, \bar{a}, U_{\sigma(i)})_{i \in \eta}$. So there is an automorphism of *B* fixing $a_1, \ldots, a_m, V_{i_1}, \ldots, V_{i_n}$ such that for $1 \le r \le k$ the image of V_{j_r} is $V_{j'_r}$.

Choose $\kappa > 2^{\omega}$. Let $N \prec (H(\kappa), \in)$ so that N is countable and $S_l \in N(l \leq 2)$. Let $M(\nu)$ denote $\omega \cdot (1 + \nu)$. For $l \leq 2$ the conditions of Q_l are the $p[\alpha_1, \ldots, \beta_{\ell}]$

 α_m , M(0), $M(\nu_1)$,..., $M(\nu_n)$] such that: α_i , $\nu_j < \omega_1$; $p(\bar{x}, \bar{s})$ is a complete S_l -type; $p \in N$; $\alpha_i \neq \alpha_j$ iff $x_i \neq x_j \in p$; $a_i \in M(\nu_i)(M(0))$ iff $x_i E s_j \in p$; and if $\alpha_i \in M(\nu + 1) \setminus M(\nu)$ then for some $j, j' \nu = \nu_j$ and $\nu + 1 = \nu_{j'}$. Order Q by containment.

2.4 Lemma

(1) For all $l \le 2$ and $\alpha < \omega_1$, $\{q: \alpha \in dom q\}$ is dense in \mathbf{Q}_l . (For $q = p[\alpha_1, \ldots, \alpha_m, M(0), M(\nu_1), \ldots, M(\nu_n)]$ dom $q = \{\alpha_1, \ldots, \alpha_m, M(0), M(\nu_1), \ldots, M(\nu_n)\}$. We ignore the fact that $M(\nu)$ is also an ordinal.) (2) For all $l \le 2$ and $v \le \omega_1$ ($q: M(v) \subseteq dom q$) is dense in \mathbf{Q} .

(2) For all $l \leq 2$ and $\nu < \omega_1$, $\{q: M(\nu) \in dom \ q\}$ is dense in Q_l .

Proof: This is straightforward. The only things to note are that $\forall s \forall t \exists u(s \subset t \rightarrow s \subset u \subset t) \in S_0$ and for all $n \forall s \forall t \exists^{>n} x(s \subset t \rightarrow (xEt \land (\neg x Es))) \in S_0$.

2.5 Lemma For all $l \le 2$, forcing with Q_l is the same as adding ω_1 Cohen reals.

Proof: This is much like the proof of Lemma 1.5 in [10]. For limit ordinals $\lambda < \omega_1$, let P_{λ} denote $\{q: \alpha \in dom \ q \text{ implies } \alpha \in M(\lambda) \text{ and } M(\nu) \in dom \ q \text{ implies } \nu < \lambda\}$. Since we only allow countably many types, P_{λ} is countable. (This is the reason for the choice of N.) At limit stages we take unions. So to finish the proof it suffices to show for all limit λ : if $q \in Q_l$ there is $q' \in P_{\lambda}$ so that for all $r \in P_{\lambda}$ extending q', r and q are compatible. (The hypothesis on S_0 guarantees the appropriate posets are nontrivial.)

Suppose q is $p[\bar{\alpha}, \bar{\beta}, M(0), M(v_1), \dots, M(v_n), M(\tau_1), \dots, M(\tau_k)]$ where $\alpha_j \in M(\lambda), v_j < \lambda, \beta_j \notin M(\lambda)$ and $\tau_j \ge \lambda$. Let $q' = p'\{\bar{\alpha}, M(0), M(v_1), \dots, M(v_n)\}$ (where $p'(\bar{x}, \bar{s})$ is the obvious restriction of $p(\bar{x}, \bar{y}, \bar{s}, \bar{t})$). Let $p_1(\bar{x}, \bar{z}, \bar{s}, \bar{u}) \in N$ be any complete type extending p'. Suppose $r = p_1[\bar{\alpha}, \bar{\gamma}, M(0), M(v_1), \dots, M(v_n), M(\sigma_1), \dots, M(\sigma_m)]$. For any $\psi(\bar{x}, \bar{y}, s, \bar{t}) \in p, \forall \bar{t} \exists \bar{y}$ ($(\wedge(s_i \subset t_j)) \rightarrow \psi(\bar{x}, \bar{y}, \bar{s}, \bar{t})) \in p'$. Hence $\exists \bar{t} \exists \bar{y}((\wedge(s_i \subset t_j)) \wedge (\wedge(u_i \subset t_j))) \wedge \psi(\bar{x}, \bar{y}, \bar{s}, \bar{t})) \in p_1$. So $r \cup q$ can be extended to a condition.

For l = 1, 2 and $q \in \mathbf{Q}_l$, let $q \upharpoonright \mathbf{Q}_0$ denote $\{\psi[\bar{\alpha}, M(0), M(\nu_1), \dots, M(\nu_n)] \in q: \psi(\bar{x}, \bar{s}) \in K_0\}$. Also for $G \subseteq \mathbf{Q}_l$, let $G \upharpoonright \mathbf{Q}_0 = \{q \upharpoonright \mathbf{Q}_0: q \in G\}$.

2.6 Lemma Suppose l = 1, 2. If G is Q_l -generic, then $G \upharpoonright Q_0$ is Q_0 -generic. Also for all $q \in Q_0$ there is $q' \in Q_l$ so that $q' \upharpoonright Q_0 = q$.

Proof: This lemma is true since $S_0 \subseteq S_i$. Here we use the ability to quantify over variables of both sorts.

Suppose now G_l is Q_l -generic $(l \le 2)$. Let $(A_l, M(\nu), \in)_{\nu < \omega_1}$ be the K_l -structure with universe ω_1 whose diagram is determined by G_l (i.e., $A_l \models R[\alpha_1, \ldots, \alpha_m]$ iff there is some $q \in G_l$ such that $R[\alpha_1, \ldots, \alpha_m] \in q$). We now inductively associate with each $L_l(aa)$ -formula ψ a K_l -formula ψ^* . If ψ is atomic then ψ^* is ψ . (We confuse s(x) and xEs.) Also $(\neg \psi)^*$ is $\neg (\psi^*)$, $(\psi \land \theta)^*$ is $\psi^* \land \theta^*$, and $(\exists x\theta)^*$ is $\exists x\theta^*$. Suppose ψ is $aas\theta$ and the free variables of ψ are $x_1, \ldots, x_n, s_1, \ldots, s_m$. Let ψ^* be $\forall s((\land (x_iEs) \land \land (s_i \subset s)) \rightarrow \theta^*)$.

2.7 Lemma Let A_l and G_l be as above $(l \le 2)$. Fix $\alpha_1, \ldots, \alpha_m, M(\nu_1), \ldots, M(\nu_n)$ and $\psi(x_1, \ldots, x_m, s_1, \ldots, s_n) \in L_l(aa)$. $A_l \models \psi[\alpha_1, \ldots, \alpha_m, M(\nu_1), \ldots, \alpha_m, M(\nu_n), \ldots, M(\nu_n)]$

 $M(\nu_n)$ iff for some $q \in G_l$, $\psi^*[\alpha_1, \ldots, \alpha_m, M(\nu_1), \ldots, M(\nu_n)] \in q$. Further $A_l \models DET_l$.

Proof: The proof is by induction on the construction of formulas. The only difficulties occur when dealing with the quantifiers. To handle the existential case it suffices to show: if $\exists x \psi[x, \bar{\alpha}, M(0), M(v_1), \ldots, M(v_n)] \in q$, then for some β and $r \supseteq q \psi[\beta, \bar{\alpha}, M(0), M(v_1), \ldots, M(v_n)] \in r$. (This implies the relevant density property.) We may assume q is $p[\bar{\alpha}, M(0), M(v_1), \ldots, M(v_n)]$. Further, since p is a complete type we may assume ψ includes " $x \neq \alpha_i$ " for all i and ψ either includes " $x E M(v_i)$ " or " $\neg x E M(v_i)$ ". There are various possibilities. We will only do one representative case. Assume $0 < v_1 < \ldots < v_n, v_1$ is a limit ordinal and ψ includes $x E(M(v_1) \setminus M(0))$.

By 2.3.1 we can assume $\psi[x, \bar{\alpha}, M(0), M(\nu_1), \ldots, M(\nu_n)]$ includes $\exists s(M(0) \subset s \subset M(\nu_1) \land x Es)$. So $p(\bar{y}, \bar{t})$ can be expanded to a type (in N) $r(x, \bar{y}, \bar{t}, s)$ which includes $\psi(x, \bar{y}, \bar{t}), t_0 \subset s \subset t_1$, and x Es. Choose $\beta \in M(1) \setminus M(0)$. So $r[\beta, \bar{\alpha}, M(0), M(\nu_1), \ldots, M(\nu_n), M(1)]$ is the required condition.

Consider a formula $aa s \theta[\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n), s]$. Consider any condition $q = p[\alpha_1, ..., \alpha_m, M(0), M(\nu_1), ..., M(\nu_n)]$. By Lemma 2.3(3) either $\forall s((\land \alpha_i Es) \land \land (M(\nu_i) \subset s)) \rightarrow \theta^*(\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n), s)) \in q$ or $\forall s((\land (\alpha_i ES) \land \land (M(\nu_i) \subset s)) \rightarrow \neg \theta^*(\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n), s)) \in q$. In the first case for all large enough τ and $r \supseteq q$ if $M(\tau) \in dom r$ then $\theta^*(\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n), M(\tau)) \in r$. So if $q \in G_l$ then $A_l \models$ $aa s \theta[\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n)]$. In the other case $A_l \models aa s \neg \theta[\alpha_1, ..., \alpha_m, M(\nu_1), ..., M(\nu_n)]$. This completes the proof as well as showing $A_l \models$ DET_l .

2.8 Lemma For any $L_l(Q)$ -sentence $\psi \in T_l$, $A \models \psi$. In particular for l = 1, 2, $A_l \models \psi_l$.

Proof: View ψ as an L(aa)-sentence; i.e., $Qx\theta$ is replaced by $aas aat \exists x(t(x) \land \neg s(x) \land \theta)$. It is not hard to see that if $\psi \in T_l$ then $\psi^* \in S_l$.

Remark: We have a way to construct finitely determinate models of any consistent L(Q) sentence which also works for L^{POS} . The reader might wonder if these methods apply to L(aa)-sentences consistent with *Det*. To see that they fail suppose T contains the sentence expressing "< is an ω_1 -like order". Then S will contain a sentence expressing "for all $s \sup s$ does not exist". Here S and T play the roles of S_l and T_l above.

2.9 Theorem It is consistent, assuming the consistency of ZF, that if ψ_1 , $\psi_2 \in L(Q)$ form a Δ -pair for finitely determinate structures then ψ_1 and $\neg \psi_2$ have a determinate interpolant.

Proof: Let P be the poset for adding ω_1 Cohen reals. Assume H is P-generic and that ψ_1 and ψ_2 form a Δ -pair for finitely determinate structures in V[H]. Suppose $\psi_1 \in L_1(Q)$ and $\neg \psi_2 \in L_2(Q)$ have no determinate interpolant in $L_0(aa)$, where $L_1 \cap L_2 = L_0$. Let Q_0 , Q_1 and $Q_2 (\in V)$ be as above. By Lemma 2.5 there is $G \in V[H]$ so that G is Q_0 -generic and V[G] = V[H]. Let \tilde{A}_l be the canonical name for A_l (where A_l is as in Lemmas 2.7 and 2.8). Since ψ_1 and ψ_2 form a determinate Δ -pair and $1 \parallel Q_0$ " \tilde{A}_0 is finitely determinate" ($\tilde{A}_0)_G$ can be

expanded to a model of ψ_1 or a model of ψ_2 (which, depending on how ψ_1 and ψ_2 form a determinate Δ -pair, we may be able to assume is finitely determinate.) For definiteness assume $(\tilde{A}_0)_G$ can be expanded to a model of ψ_1 which is finitely determinate.

Choose $p \in G$ so that $p \models ``\tilde{A}_0$ can be expanded to a model of ψ_1 ''. Choose $q \in Q_2$ so that $q \upharpoonright Q_0 = p$. Choose $G_2 Q_2$ -generic so that $V[G_2] = V[H]$ and $q \in G_2$. (The existence of such G_2 is implied by the homogeneity of P.) Let $G_0 = G_2 \upharpoonright Q_2$. Note that $(\tilde{A}_2)_{G_2} \upharpoonright L_0 = (\tilde{A}_0)_{G_0}$. Also $p \in G_0$. So $V[H] \models$ $``(\tilde{A}_0)_{G_0}$ can be expanded to a finitely determinate model of ψ_2 '' (namely $(\tilde{A}_2)_{G_2})$. Since $p \in G_0$, $V[G_0] \models ``(\tilde{A}_0)_{G_0}$ can be expanded to a finitely determinate model of ψ_1 ''. But $\omega_1^V = \omega_1^{V[G_0]} = \omega_1^{V[H]}$. So any finitely determinate model of ψ_1 with universe ω_1 in $V[G_0]$ remains a finitely determinate model of ψ_1 in V[H]. So $V(H] \models ``(\tilde{A}_0)_{G_0}$ can be expanded to a finitely determinate model of ψ_1 and to a finitely determinate model of ψ_2 ''.

Remark: Under $MA + \neg CH$ there are sentences $\psi_1, \psi_2 \in L(Q)$ forming a Δ -pair with no determinate interpolant between ψ_2 and $\neg \psi_2$. Indeed the usual example where ψ_1 says "*T* is a special Aronzajn tree" and ψ_2 says "*T* is not an ω_1 -tree or *T* has a branch of length ω_1 " suffices ([8], Theorem 1.3).

In this section we will define what it means for 3 Congruence closed logics a logic to be congruence closed. Being congruence closed like being closed under relativization is a natural requirement to place on a logic. However L(Q) is not congruence closed. We will see that the congruence closure of a logic is easily constructed and preserves many of the good properties of the logic. We first review what we mean by a logic. (We follow [9].) For simplicity assume no language has function symbols. To a class K of structures of a fixed similarity type, closed under isomorphism, is associated a quantifier Q^{K} . To illustrate, suppose K is a class of structures closed under isomorphism with a binary relation R and a constant symbol c. A typical formula $\chi(\overline{w}, y)$ beginning with Q^{K} is $Q^{K}x$, $\langle x_{0}, x_{1} \rangle$ ($\psi(x, \overline{w}), \phi(x_{0}, x_{1}, \overline{w}), y$), where $\psi(x, \overline{w}), \phi(x_{0}, x_{1}, \overline{w})$ are formulas whose free variables include x and x_0 , x_1 , respectively. For all structures, $A, A \models \chi[\bar{a}, b]$ iff $(\psi(x, \bar{a})^A: \phi^A(x_0, x_1, \bar{a}), b) \in K$. A logic \mathcal{L} is obtained by adding to $L_{\omega\omega}$ some quantifiers $Q^{K}(K \in \mathcal{K})$ and giving $\mathfrak{L} = L(Q^{K})$: $K \in \mathcal{K}$) the obvious syntax and semantics.

A logic is congruence closed if for any formula $\phi(x_1, x_2, \bar{y})$ and $\psi(\bar{y})$ there is a formula ψ^* such that: for all A and $\bar{a} \in A$, $A \models \psi^*[\bar{a}]$ iff $\phi(x_1, x_2, \bar{a})^A$ is a congruence relation with respect to the relations used in ψ and $A \neq \downarrow \psi[\bar{a}/\equiv]$. Here \equiv denotes the equivalence relation $\phi(x_1, x_2, \bar{a})$. A Δ -closed logic is obviously congruence closed. The congruence closure of a logic is easily described. For K a class of structures closed under isomorphism, let K^* be the class of structures $\langle A, \equiv \rangle$ such that \equiv is a congruence relation on A and $A/\equiv \in K$. For convenience assume \equiv is the first relation in the similarity type of $\langle A, \equiv \rangle$. Given a logic $\pounds = L(Q^K: K \in \mathcal{K})$ let $\pounds^* = L(Q^{K^*}: K \in \mathcal{K})$.

3.1 Proposition \mathcal{L}^* is the smallest congruence closed logic extending \mathcal{L} .

Proof: First note: $\mathcal{L} \subseteq \mathcal{L}^*$ (i.e., interpretable); e.g., $Q^K x$, $\langle x_0, x_1 \rangle$ ($\phi(x, \overline{w})$, $\psi(x_0, x_1, \overline{w})$) is equivalent to $Q^{K^*} x$, $\langle x_0, x_0 \rangle$, $\langle x_1, x_2 \rangle$ ($\phi(x, \overline{w}), x_0 = x_0, \psi(x_1, \overline{w})$)

 x_2, \overline{w}). Also if \mathcal{L}' is any congruence closed logic extending \mathcal{L} , then $\mathcal{L}^* \subset \mathcal{L}'$. It remains to show \mathcal{L}^* is congruence closed. But this is a simple induction.

3.2 Proposition Suppose \mathcal{L} is a logic and \mathcal{L}^* its congruence closure. (1) If \mathcal{L} is obtained by adding κ quantifiers to $L_{\omega\omega}$ then so is \mathcal{L}^* . (Note: κ may be finite.)

(2) If \mathcal{L} is axiomatizable, so is \mathcal{L}^* .

(3) If \mathcal{L} has the Tarski property, so does \mathcal{L}^* .

(4) If \mathcal{L} is (κ, λ) -compact, so is \mathcal{L}^* .

Proof: (1) is a consequence of the construction of \mathcal{L}^* . For (2), see 2.24 in [9]. (3) is an induction on formulas in \mathcal{L}^* . (4) follows since $\mathcal{L}^* \subseteq \Delta(\mathcal{L})$ ([9], 2.13).

3.3 Example The congruence closure of L(Q) is $L(Q^E)$ where $Q^E x$, $\langle x_0, x_1 \rangle$ $(\phi(x, \bar{y}), \psi(x_0, x_1, \bar{y}))$ expresses " $\psi(x_0, x_1, \bar{y})$ is an equivalence relation on $\phi(x, \bar{y})$ and $\psi(x_0, x_1, \bar{y})$ has at least \aleph_1 equivalence classes". This quantifier is due to Feferman [4]. He introduced this quantifier in order to extend L(Q)to get a logic strong enough to handle Keisler's [6] counterexample to Δ interpolation in L(Q). To see how Q^E fits in with the discussion above, let K be the class of structures (with no relations or constants) of structures of cardinality at least \aleph_1 . Then L(Q) is $L(Q^K)$ and Q^E is Q^{K^*} .

Recall Keisler's example. Let A_0 be a model with an equivalence relation with \aleph_0 uncountable equivalence classes. Let A_1 be a model with an equivalence relation with \aleph_1 uncountable equivalence classes. Then A_0 and A_1 are L(Q)equivalent but not $L(Q^E)$ -equivalent. So Keisler's example shows L(Q) is not congruence closed. Note that A_0 and A_1 are ω -homogeneous models of an ω categorical theory. (By A being ω -homogeneous we mean if \bar{a} and \bar{b} are finite sequences satisfying the same type then there is an automorphism of A taking \bar{a} to \bar{b} .)

The following proposition is useful for showing models are equivalent in the Beth closure of a logic.

3.4 Lemma Suppose A, B are ω -homogeneous models of an ω -categorical theory and A is \mathfrak{L} -equivalent to B. Then A is $Beth(\mathfrak{L})$ -equivalent to B. (Beth(\mathfrak{L}) is the Beth closure of \mathfrak{L} .)

Proof: We first give a description of $Beth(\mathfrak{L})$ (cf. [9], p. 168). Suppose $\psi(P, R_1, \ldots, R_n)$ is a Beth definition in \mathfrak{L} ; i.e., $\forall R_1 \ldots R_n \exists \mathbb{I}^{\leq 1} P \psi(P, R_1, \ldots, R_n)$ is valid. (Here all the relations of $\psi(P, R_1, \ldots, R_n)$ are displayed.)

Let K_{ψ} be the class of models of the form $(A, R_1, \ldots, R_n, \bar{a})$ such that there is a $P \in A^m$ so that $(A, P, R_1, \ldots, R_n) \models \psi(P, R_1, \ldots, R_n)$ and $\bar{a} \in P$. Let $\mathcal{L}_1 = (Q^{K_{\psi}}: \psi$ a Beth definition in \mathcal{L}). Clearly $\mathcal{L}_1 \subseteq Beth(\mathcal{L})$. Also any Beth definition in \mathcal{L} is equivalent to an explicit \mathcal{L}_1 -definition. For example, if $\psi(P, R)$ is a Beth definition where P is unary and R is binary then the following formula is valid $P(y) \land \psi(P, R) \leftrightarrow Q^{K_{\psi}x}, \langle x_1, x_2 \rangle$ $(x = x, R(x_1, x_2), y)$. For $n < \omega$ analogously define \mathcal{L}_{n+1} from \mathcal{L}_n . So $Beth(\mathcal{L}) = \bigcup \mathcal{L}_n$.

To prove the lemma it suffices to show A is \mathcal{L}_1 -equivalent to B. In fact we will show for any formula $\psi(\bar{x}) \in \mathcal{L}_1$ there is a formula $\psi^*(x) \in L_{\omega\omega}$ such that $A, B \models \psi^*(\bar{x}) \leftrightarrow \psi(\bar{x})$. First note that the definable relations on A are contained

in the relations invariant under Aut(A). Since A is ω -homogeneous and ω categorical, the relations invariant under Aut(A) are exactly the $L_{\omega\omega}$ -definable relations. So for any $\psi(\bar{x}) \in \mathcal{L}$ there is $\psi^*(\bar{x}) \in L_{\omega\omega}$ such that $A \models \psi(\bar{x}) \leftrightarrow$ $\psi^*(\bar{x})$. Since A is \mathcal{L} -equivalent to B, $B \models \psi(\bar{x}) \leftrightarrow \psi^*(\bar{x})$. We now show an appropriate ψ^* exists by induction on $\psi \in \mathcal{L}_1$. The only interesting case occurs when $\psi(x_0, \ldots, x_n, x_{n+1}, \ldots, x_k)$ is of the form

$$Q^{K_{\phi}}z, \langle \bar{z}_0 \rangle, \ldots, \langle \bar{z}_m \rangle \ (\rho(z, \bar{x}), \theta_0(\bar{z}_0, x), \ldots, \theta_m(\bar{z}_m, \bar{x}), x_0, \ldots, x_n)$$

where ϕ is a Beth definition in \mathcal{L} of an *n*-ary relation. By the inductive hypothesis we can assume ρ , $\theta_0, \ldots, \theta_m \in L_{\omega\omega}$.

Consider any $a_1, \ldots, a_k \in A$. Assume there is $R \subseteq A^n$ so that $(\rho(z, \bar{a})^A; R, \theta_0(\bar{z}_0, \bar{a})^A, \ldots, \theta_m(\bar{z}_m, \bar{a})^A) \models \phi$. Since ϕ is a Beth definition, R is invariant under $Aut_{\bar{a}}(A)$. So there is a formula $\chi(\bar{y}, \bar{x}) \in L_{\omega\omega}$ such that $R = \chi(\bar{y}, \bar{a})^A$. This formula depends only on the type $p(\bar{x})$ which \bar{a} satisfies. Let χ_p denote the formula χ . Since A is ω -categorical, we can take p to be a formula of $L_{\omega\omega}$. Also as A is \mathcal{L} -equivalent to B, if $B \models p[\bar{b}]$ then $(\rho(z, \bar{b})^B, \chi_p(\bar{y}, \bar{b})^B, \theta_0(\bar{z}_0, \bar{b})^B, \ldots, \theta_m(\bar{z}_m, \bar{b})^B) \models \phi$. Let I be the (finite) set of types p such that $X_p(\bar{y}, \bar{x})$ exists.

Now assume no such $R \subseteq A^n$ exists. This is a property of the type p which \bar{a} realizes. This is expressible in \mathcal{L} by saying " $p(\bar{x})$ implies no formula (there are only finitely many nonequivalent ones) $\chi(\bar{y}, \bar{x})$ defines such an R". Since B is also ω -homogeneous, for all $\bar{b} \in B$ such that $B \models p[\bar{b}]$ there is no such R.

So
$$A, B \models \psi(\bar{x}) \leftrightarrow \left(\left(\bigvee_{p \in I} p(\bar{x}) \right) \land \bigwedge_{p \in I} (p(\bar{x}) \to \chi_p(x_1, \dots, x_n, \bar{x})) \right)$$

3.5 Theorem

(1) Beth (L(Q)) is not congruence closed.

(2) Beth $(L(Q^{cf}))$ is not congruence closed. $(Q^{cf} \text{ is } Q^K \text{ where } K \text{ is the class of linear orders of cofinality } \omega.)$

Proof: (1) Apply 3.4 to Keisler's example.

(2) Let A_1 be $(\eta, <)$ and A_2 be any ω -homogeneous dense linear order of cofinality ω_1 (e.g., $\eta \cdot \omega_1$). Define < on $A_l \times 2$ (l = 0, 1) by (a, i) < (a', j) iff a < a'. Then $A_1 \times 2$ is $L(Q^{cf})$ -equivalent to $A_2 \times 2$. (The point is that in $A_l \times 2$ there is no definable infinite set with a definable linear order – even using parameters.)

3.6 Proposition Suppose \mathcal{L} is a congruence closed logic. Then Beth (\mathcal{L}) and w.Beth (\mathcal{L}) are congruence closed. (w.Beth (\mathcal{L}) is the weak Beth closure of \mathcal{L} ; i.e., we demand explicit definitions for any relation P such that $\exists^{=1}P\Psi(P, R_0, \ldots, R_m)$ is valid.)

Proof: We only give the proof for Beth (\mathfrak{L}) . It suffices to show \mathfrak{L}_1 is congruence closed. Suppose $\psi(P, R_0, \ldots, R_m)$ is a Beth definition of P in \mathfrak{L} . Let $K = K_{\psi}$. By 3.1 it is enough to show Q^{K^*} is a quantifier in \mathfrak{L}_1 . Since \mathfrak{L} is congruence closed there is a formula $\psi^*(P, E, R_0, \ldots, R_m)$ such that for all A, $(A, E^A, P^A, R_0^A, \ldots, R_n^A) \models \psi^*$ iff E^A is a congruence relation and $(A/E^A, P^A/E^A, R_0^A/E^A, \ldots, R_M^A/E^A) \models \psi$. Clearly, $\psi^*(P, E, R_0, \ldots, R_m)$ is a Beth definition of P.

REFERENCES

- [1] Barwise, K. J., "Axioms for abstract model theory," Annals of Mathematical Logic, vol. 7 (1974), pp. 221-265.
- [2] Barwise, K. J., M. Kaufmann, and M. Makkai, "Stationary logic," Annals of Mathematical Logic, vol. 13 (1978), pp. 171-224.
- [3] Chang, C. C. and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
- [4] Feferman, S., "Two notes on abstract model theory II," Fundamenta Mathematicae, vol. 89 (1975), pp. 111–130.
- [5] Jech, T. J., "Some combinatorial problems concerning uncountable cardinals," Annals of Mathematical Logic, vol. 5 (1973), pp. 165-198.
- [6] Keisler, J., "Logic with the added quantifier 'there exists uncountably many'," Annals of Mathematical Logic, vol. 1 (1970), pp. 1–94.
- [7] Kueker, D. W., "Löwenheim-Skolem and interpolation theorems in infinitary languages," *Bulletin of the American Mathematical Society*, vol. 78 (1972), pp. 211–215.
- [8] Makowski, J. A. and S. Shelah, "The theorems of Beth and Craig in abstract model theory II. Compact logics," Archiv für Mathematische Logik und Grundlagenforschung, vol. 21 (1981), pp. 1–23.
- [9] Makowsky, J. A., S. Shelah, and J. Stavi, "Δ-Logics and generalized quantifiers," Annals of Mathematical Logic, vol. 10 (1976), pp. 155-192.
- [10] Mekler, A. H. and S. Shelah, "Stationary logic and its friends-1," Notre Dame Journal of Formal Logic, vol. 26, no. 2 (1985), pp. 129-138.

A. Mekler Simon Fraser University Burnaby, British Columbia Canada V5A 1S6 S. Shelah The Hebrew University Jerusulem, Israel