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Pure Second-Order Logic

NICHOLAS DENYER

Abstract Pure second-order predicate calculus is a predicate calculus where
the only variables are predicate variables. In it, logical truth is decidable, and
semantic consequence is compact. Pure second-order functional calculus is
a functional calculus where the only variables are function variables. In it,
semantic consequence is not compact, and there is no complete proof pro-
cedure for logical truth.

The language of the pure second-order predicate calculus consists of those
formulas of the second-order predicate calculus whose only variables are pred-
icate variables. A statement of its semantics will help to elucidate my notational
conventions.

A model 9JJ is a pair <2),9ΐ>, where 2) is a domain of individuals, and 9ί is
a function such that:

1. for any name n, 9ί(«) E 35;
2. for any /r-adic function sign/, 9ΐ(/) is a λ:-adic operation on £);
3. for any £-adic predicate F, 9ί(F) c ©*.

Let an S be a function such that for each k-adic predicate variable φ9 S(φ) <Ξ
35*. Let 5<.s /φ> be just like S, save that S(s/φ) assigns s, a subset of ©*, to φ.
For each S, let S[ ] be such that:

1. for any name n, S[n] = 9ί(«);
2. for any function sign/, S[f(tu..., tk)} = SR(/)(S[*i], . . .,S[tk]);
3. for any predicate F, S[F] = 3U/7);
4. for any predicate variable φ, S[φ] = S(φ).

We say that in SEXΪ S satisfies:

1. an atomic formula ff l f..., tk iff < S [ ^ ] , . . . ,S[tk]> E S[f ]
2.1. -iA iff 5 does not satisfy A
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2.2. A & Biff S satisfies A and S satisfies B; and so on in the obvious way
for other truth-functional connectives;

3.1. 3φA iff for some s, S(s/φ) satisfies A;
3.2. VφA iff for any s, S(s/φ) satisfies A,

A is true in 9DΪ iff A is a closed formula satisfied in Wl by every S. And A is a
logical truth iff A is true in every Jft.

Theorem Logical truth for the pure second-order predicate calculus is
decidable.

Proof: For any A, 9ϊί = <S),9ί>, and S, we give the following definitions of
fflA = (®A

9W
A) and SA, the .4-condensations of TO and of S:

1. aE ^)A iff for some singular term t used in A, α = S|7]
2.1. if n is a proper name used in A, then dtA(n) = 3ί(tf);
2.2. if/ is a £-adic function sign, then VtA(f) = (^)A)k+ι Π 5R(/).
2.3. if Fis a £-adic predicate, then 9ΐ^(F) = (S^4)* Π 9ί(F).
3. if φ is a A:-adic predicate variable, then SA(φ) = (Sy4)* Π 5(0).

We can now give an inductive proof that S satisfies A in TO iff S"4 satisfies
4̂ in TO^4. In virtue of the definitions of TO'4 and SA

9 this obviously holds for
atomic A. As for the inductive step, it may be instructive to give some details for
two of the cases.

Case &. Suppose that B & C is satisfied in TO by 5. Then B too is satisfied in
TO by S. Hence B is satisfied in 2ft5 by SB. But since any terms that occur in B
occur also in B & C, 9Ji5 and S 5 are the ^-condensations not only of SEX? and S
but also of WlB&c and SB&C. Hence B is satisfied in 9ft*&c by SB&C. By similar
reasoning, so is C. Hence if B & C is satisfied in 3Dΐ by S, it is satisfied in WlB&c

by SB&C. To show the converse is now easy.

Case 3. Suppose that 3φB is satisfied in 2JΪ by S, and that φ is /:-adic. Then for
some ί , ί c j ) * and 5 is satisfied in 9K by S(s/φ). Then £ is satisfied in TlB by
S<s/φ>*. But mB = m3φB

9 and S^/φ)* = S<s/φ)3φB. So 5 is satisfied in 2tt3φ*
by S<5/φ>3^. So for some s\ namely 5 Π ( ® 3 ^ ) * , 5 is satisfied in m*φB by
S3φB(s'/φ). Therefore 3φB is satisfied in Wl*φB by S3</>β. Suppose now that iφB
is satisfied in WφB by S3φ*. Then for some s,s^ (S) 3^)* and 5 is satisfied in
^ΦB b y s^

B{s/φ). But 2tt3φi? = afl*. And SlφB(s/φ) = S(s/φ)3φB = S(s/φ)B.
So 5 is satisfied in mB by S{s/φ)B. So 5 is satisfied in 3D? by S(s/φ). Therefore
3φB is satisfied in TO by S.

The reader can now be left to complete the inductive proof and infer that if
A is false in a model, it is false in the A -condensation of that model. Now the
^-condensation of a model has a domain with no more individuals than there
are singular terms used in A. Thus by counting the finite number of singular
terms used in A, we can determine a finite set of finite models such that, if A
is false in any model at all, it is false in one of them. Thus given any formula,
we can institute a systematic search, and finitely far into our search we will reach
a stage at which we know that if we have not already found a model in which
the formula is false, the formula is true in all models. Logical truth for the pure
second-order predicate calculus is therefore decidable.
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Theorem If each finite subset ofy has a model, then y is a subset of some
maximal set Γ which has a model.

Proof: Expand the language of y by adding, for each k, as many new £-adic
predicates as there are finite sets of ordered λ:-tuples of singular terms in the lan-
guage of y. Let an n be an ordered &-tuple of singular terms; if m is the λ>tuple
of singular terms ax,..., ak9 and n is b\,..., bk, let m = n be the formula
ai = b\ &... & ak = b/c. For each finite set of ordered Ar-tuples of singular terms
used in the language of γ, take a distinct k-adic predicate, F9 from those that we
have just added to the language of 7. If that finite set of ordered ^-tuples is
empty, form for every n the formula ->Fn. If on the other hand that finite set
of ordered ^-tuples is {Πf,..., iij}, then form the formula Fiif &.. . & Fiij, and
for each m which is not in [ni9..., iij}, form the formula Fm => (m = Πi v . . . v
m = Wj). Let all the formulas we thus form from our new vocabulary be added
to 7 and call the result To.

Now assume that each finite subset of 7 has a model. It follows that the same
is true of To. For suppose some finite subset of To has no model. Then that sub-
set will have in turn a subset δ such that δ has no model and such that every
proper subset of δ does have a model. Suppose that one of our new predicates —
let it be F- i s used in δ. Let δF be those formulas in δ that use F; and let -*&5F

be the negation of the conjunction of the members of δF. Now -ι&δF will have
either the form -1 (-iFma &. . . & -*Fmz) or the form -1 [{Fiij &.. . & Fiij} &
{ ( F m a => ( m a = Πi v . . . v m a = i i j ) ) & . . . ) & [Fmz => ( m z = iij v . . . v m z =

Πj)}] or some form which results from this by omitting one or two of the sub-
formulas enclosed by { }. Whatever its precise form, -i&δ^is evidently contin-
gent. Yet δ - δF N ->&δF; and F is not used in δ - δF. Hence δ - δF can have no
model. But it does have a model. Hence δ cannot contain any of our new pred-
icates. Hence δ would have to be a subset of 7; which it cannot be, since each
finite subset of 7 has a model. Hence every finite subset of To has a model af-
ter all.

To may be expanded into Γ by the following procedure. Let the closed sen-
tences in the language of To be well-ordered as px ,p2, For each n > 0, let:

Tn= U ΓmU {/?„},
m<n

if for some finite subset P of Kjm<n Tm, P^Pnl otherwise, let:

Tn= U TmUl^Pn).
m<n

We now let:

Γ = (J Tm.
m>0

The reader can verify, by transfinite induction if need be, that Γ is maximal and
that each finite subset of it has a model.

Now consider the model SDΪ. For each singular term t used in Γ, let tf be the
equivalence class such that t\ = t'k iff ί, = ^ G Γ . Let 2) consist of those equiv-
alence classes. For each name n, let 9t(w) = n'\ for each function sign/, let
to = 9ί(/)(^ί,.. , t'k) iff /o = / ( * ! , . , tk) E Γ; and for each predicate F, let
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{t[,..., tr

k) G 9f(F) iff Ftu...,tkeT. Now a sentence is true in 2ft iff that sen-
tence E Γ. This can be shown by induction on the complexity of sentences. It ob-
viously holds for atomic sentences. And where we consider truth-functional
connectives, the reasoning for the inductive step is trivial. So let us consider the
existential quantifier, and show that if every formula with fewer quantifiers than
3φA is true in 2ft iff it belongs to Γ, then the same applies to 3φA itself. We will
assume that φ is &-adic.

Let I be the conjunction of every formula in Γ that is either an identity using
two terms that occur in 3φA, or the negation of such an identity. Now we have
so constructed Γ that, for each set./ of ordered ^-tuples of the terms that occur
in 3φA, there is at least one predicate Fj such that if n is an ordered λvtuple of
the terms that occur in 3φA, then Γ contains Fjn if for some m Ey, I N m = n,
and Γ contains τF)ii if for no m G y, 11= m = n. For each set j of ordered k-
tuples of the terms that occur in 3φA, choose one such predicate. Let Pj be the
conjunction of those sentences in Γ that use only that predicate and terms in 3φA
and are either atoms or the negations of atoms; and let Aj be the result of re-
placing with that predicate all free occurrences of φ in A, Let P be the conjunc-
tion of each P,; and let A be the disjunction of each Aj.

(I & P) => (3φA & A) is a logical truth. For if it were false in a model, it
would be false in the ̂ 4-condensation of that model. Now since A => 3φA is any
case a logical truth, (I & P) => (3φA «=> A) could be false only if I, P, and 3φA
were all true, while A was false. But if I and P were true in the A -condensation,
then each /r-adic property in the A -condensation would be the interpretation of
some predicate in P. So whatever property a sequence assigns to φ, if the se-
quence satisfies A, it will satisfy one of the disjuncts in A. So if in the A -con-
densation 3φA were true, A would be true too.

Now since (I & P) => (3φA <=> A) is a logical truth, it will both belong to Γ
and be true in 2ft. But I & P also belongs to Γ; and, since it contains fewer quan-
tifiers than 3φA, it is true in 2ft. Thus 3φA «=> A both belongs to Γ and is true
in 2ft. Suppose now that 3φA belongs to Γ. Then so does A; and so does some
disjunct of A. But, since it contains fewer quantifiers than 3φA, that disjunct
of A will be true in 2ft. Hence 3φA will also be true in 2ft. Suppose instead that
3φA is true in 2ft. Then A is true in 2ft; and so is some disjunct of A. But, since
it contains fewer quantifiers than 3φA9 that disjunct will belong to Γ. And 3φA
follows from each such disjunct. Hence 3φA will belong to Γ too.

The reasoning for universally quantified formulas is similar enough for the
reader to be left to complete the proof.

A formula is a formula of the pure second-order functional calculus if and
only if it is a formula of the second-order functional calculus and its only vari-
ables are function variables. Pure second-order functional calculus could not dif-
fer more from pure second-order predicate calculus, since:

Theorem In the pure second-order functional calculus, semantic consequence
is not compact, nor is logical truth decidable, nor is there even a complete proof
procedure for logical truth.

Proof: It is possible to simulate first-order quantification by quantifying func-
tion variables: for each individual variable t>, take a distinct monadic function
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variable/; replace all occurrences of w by V/, and of 3υ by 3/; then replace all
remaining occurrences of v by/(0). For any formula A, let A* be its translation
according to this scheme. Let C be the conjunction of the standard axioms for
succession, addition, and multiplication, together with this version of the second-
order induction axiom: V/(Vx/(x) =f(s(x))) => Vxf(x) =/(0). Now C* is true
in a model iff that model is isomorphic to the standard model of arithmetic. Thus
the infinite set of formulas {C*, n Ψ 0, n Φ s(0), n Φ s(s(0)),... } has no
model; but any finite subset of it has a model, formed from the standard model
of arithmetic by extending it to have the name n denote some number whose nu-
meral is not used in our finite subset. Semantic consequence is therefore not com-
pact. Moreover, A is true in the standard model of first-order arithmetic iff
(C ^ A)* is a logical truth of the pure second-order functional calculus. Thus
if we could have a decision procedure for logical truth in the pure second-order
functional calculus, we could also have a decision procedure for first-order arith-
metical truth, and likewise a complete proof procedure for the former would also
be a complete proof procedure for the latter. But there can be no complete proof
procedure, and a fortiori no decision procedure, for first-order arithmetical truth.
Hence there can be no such things for logical truth in the pure second-order func-
tional calculus either.
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