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The Cardinality of Powersets in Finite Models
of the Powerset Axiom

ALEXANDER ABIAN and WAEL A. AMIN

Abstract It is shown that in a finite model of the set-theoretical Powerset
axiom a set s and its powerset ®(s) have the same number of elements. Ad-
ditional results are also derived.

Let (Fe) be a finite model of the set-theoretical Powerset axiom, i.e., in
(F,e) every set has a powerset.

For instance, let us consider the finite model (M, e) whose domain consists
of the four sets a, b, c,d and where the e-relation is defined by:

1) a={b}, b= {a}, c={ab,c}, d={ab,cdj}.

It can be readily verified that (M, e) is a model of the Powerset axiom. To
this end, we have only to verify that every one of the sets a, b, ¢, d of the model
(M, ¢) has a powerset in (M, e). For instance, to show that the powerset ®(c)
of c exists in (M, e), we must show that all the subsets of ¢ which exist in (M, ¢)
are collected by a set of (M, e). As (1) shows, ¢ = {a, b,c} and therefore, from
the point of view of the standard ZF set theory, ¢ has 23 = 8 subsets given by:
a, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. On the other hand, as (1)
shows, of these 8 subsets of ¢ only 3, namely {a}, {b}, {a,b,c} are present in
the model (M, e€). Again, as (1) shows, these 3 sets are respectively b,a,c and are
collected in the model (M, ¢) by the set ¢. Thus, we conclude that c is the power-
set of ¢ in the model (M, e¢).

We observe that in the standard ZF set theory if a set has n elements then it
has 2” subsets. This is due to the fact that besides the Powerset axiom, ZF has
other axioms which imply the existence of 2” subsets for a set with n elements.
By contrast, here we are considering finite set theoretical models and only the
Powerset axiom, and we prove that in such models a set with n elements has n
subsets.
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Indeed, as (1) shows, in the finite model (M, e) we have:
2) ®(a)=0b, ®(b) =a, ®(c) =c, ®d)=d

where, as expected, ®(x) stands for the powerset of x, i.e., the set of all sub-
sets (of course, which exist in (M, ¢)) of x.

In Abian and LaMacchia [2] it is shown that in a finite model of the Powerset
axiom the set-theoretical Extensionality axiom also holds. Thus, the notion of
“equality” and the notations introduced in (1) and (2) are justified. Moreover,
it is shown in [2] that in a finite model of the Powerset axiom, besides the ax-
iom of Extensionality, the axioms of Union and Choice also hold.

Furthermore, in [2] it is shown that in a finite model (F,e) of the Powerset
axiom, for every set x and y,

(3) xcy iff ®(x) € ®(y)
and thus

@ x=y iff ®(x)=0C(y)
and

(5) every set of (F,¢) is a powerset of a unique set of (F,e) and hence there is
no empty set in (Fe).

In what follows, for every set x and every positive integer n, we define the
n-th powerset ®"(x) of x, recursively, as follows:

6) ®PYx)=C®(x) and @"!(x) = ®(P"(x)) forn=1.

Lemma 1 Let (F,¢) be a finite model of the Powerset axiom. For every set
x in (F,e), there exists a smallest positive integer m such that

7)) x=0"(x).
Proof: Since (F,e) is a finite model, clearly for some positive integers n and k

we have ®"(x) = ®"**(x). But then, in view of (4), we have x = ®*(x). Denot-
ing by m the smallest such &, we establish (7).

Lemma 2 Let (F,¢) be a finite model of the Powerset axiom. If s is a set in
(F,¢€) then there exists s; € s such that

®) s=@(s) and such that x < s; forevery x € s.

Proof: By (5) we have s = ®(s,), for some unique set s;. Moreover, since s; €

® (s1), we have s; € 5. Furthermore, for every i =1,...,nif s; € s then clearly
s; € ®(s;) and therefore s; < 5, as required.

Next, we prove a key lemma.
Lemma 3 Let (F,¢) be a finite model of the Powerset axiom. Then for ev-
ery set t and s of (F,e) it is the case that
9) te€s iff®(t) € ®(s).
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Proof: Let t € s. But then by (8) there exists s; such that s = ®(s;) and x S s,
for every x € 5. Consequently, ¢ € s; which in turn by (3) implies ®(¢) € ®(s;).
Thus, ®(¢) < s and therefore ®(¢) € ®(s). Hence we have proved:

(10) ¢ € simplies ®(¢) € ®(s).

However, from (10) it also follows that ®(¢) € ®(s) implies ®2(¢) € ®2(s),
and therefore, by induction, we have:

(11) ®(t) € ®(s) implies ®*(¢) € ®*(s) for every k > 0.

Next, let us observe that from (7) it follows that there exist positive integers
m and n such that ¢t = ®™(¢) and s = ®"(s). Let v be the least common multi-
ple of m and n. But then, obviously, we have:

(12) ¢t=®%(¢) and s=@Ys).

To prove the converse of (10), let ®(¢) € ®(s). But then by (11) we have
®Y(t) € ®(s) which by (12) implies ¢ € s. Thus, the converse of (10) is estab-
lished and the lemma is proved.

Based on Lemma 3, we prove the following theorem where | x| denotes the
number of elements of a set x (of course, counting from outside, i.e., in a stan-
dard model of ZF in which (F ¢) resides). That is, if x € Fthen |x| = nif and
only if in ZF the set x is equipollent to the natural number #.

Theorem 1 Let (E¢) be a finite model of the Powerset axiom. Then in (F,¢)
a set and its powerset have the same number of elements, i.e.,
(13) |s| = |®(s)| for every set s of (F;e).

Proof: Let s be a set with n elements, i.e., s = {s{,...,S;,...,5,}. Then by
Lemma 3 it must be the case that ®(s) = {®(s}),...,®(s;),...,®(s,)}. How-
ever, from (4) it follows that distinct sets have distinct powersets. Thus, |s| =
|®(s)|, as desired.

Based on the above, we derive some additional results.

Corollary 1 In (F¢) for every set t and s we have

(14) tes implies |t|=<|s|.

Proof: From (9) it follows that ¢ € s implies ®(¢) < s and therefore |®(¢)| <
|s|, which in turn by (13) implies |#| < |s|, as desired.

Remark The following statements which are proved in Abian and Amin [1]
can be also proved based on Theorem 1 and Corollary 1.
Let (F;¢) be a finite model of the Powerset axiom. Then:

(a) Every element of a singleton of (F¢) is itself a singleton.
(b) In (Fe) at least one element of every set is a singleton.
(c) In (Fe) there exists always a singleton.

Lemma 4 Let (F¢) be a finite model of the Powerset axiom. For every set
rand t of (Fe) if r is a proper subset of ®(t) then t & r.



CARDINALITY OF POWERSETS 293

Proof: Assume on the contrary that ¢ € r. But then, from (9) it follows that
®(t) < r contradicting the fact that r is a proper subset of ®(¢). Thus, indeed,
tér.

Theorem 2 In (F¢) let s be a set with n elements. Then s has at most one sub-
set with n — 1 elements.

Proof: Assume on the contrary that s has two distinct subsets r; and r, such
that |ry| = |r2] = n — 1. By (5) we see that s = ®(¢) for some ¢ and by (9) we
see that |s| = |®(¢)| = n. On the other hand, by Lemma 4 we have ¢ & r, and
t & r, and since |ry| = |r,| = n — 1, we must have r; = r,, contradicting the fact
that r; and r, are distinct. Thus, Theorem 2 is proved.

Finally we have:
Theorem 3 In (F,¢) for every set s
(15) ses iffs=®(s).

Proof: Let s € s. But then by (9) we have ®(s) € s and by (13) we have
|®(s)] = |s|. Thus, s = ®(s). Conversely if s = ®(s) then since s € ®(s) we see
that s € s. Hence, (15) is established.
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