The Cardinality of Powersets in Finite Models of the Powerset Axiom

ALEXANDER ABIAN and WAEL A. AMIN

Abstract It is shown that in a finite model of the set-theoretical Powerset axiom a set s and its powerset $\mathcal{O}(s)$ have the same number of elements. Additional results are also derived.

Let (F, ϵ) be a finite model of the set-theoretical Powerset axiom, i.e., in (F, ϵ) every set has a powerset.

For instance, let us consider the finite model (M, ϵ) whose domain consists of the four sets a, b, c, d and where the ϵ -relation is defined by:

(1)
$$a = \{b\}, b = \{a\}, c = \{a, b, c\}, d = \{a, b, c, d\}.$$

It can be readily verified that (M, ϵ) is a model of the Powerset axiom. To this end, we have only to verify that every one of the sets a, b, c, d of the model (M, ϵ) has a powerset in (M, ϵ) . For instance, to show that the powerset $\mathcal{O}(c)$ of c exists in (M, ϵ) , we must show that all the subsets of c which exist in (M, ϵ) are collected by a set of (M, ϵ) . As (1) shows, $c = \{a, b, c\}$ and therefore, from the point of view of the standard ZF set theory, c has c subsets given by: (M, ϵ) , (C, ϵ)

We observe that in the standard ZF set theory if a set has n elements then it has 2^n subsets. This is due to the fact that besides the Powerset axiom, ZF has other axioms which imply the existence of 2^n subsets for a set with n elements. By contrast, here we are considering finite set theoretical models and only the Powerset axiom, and we prove that in such models a set with n elements has n subsets.

Indeed, as (1) shows, in the finite model (M, ϵ) we have:

(2)
$$\mathcal{P}(a) = b$$
, $\mathcal{P}(b) = a$, $\mathcal{P}(c) = c$, $\mathcal{P}(d) = d$

where, as expected, $\mathcal{O}(x)$ stands for the powerset of x, i.e., the set of all subsets (of course, which exist in (M, ϵ)) of x.

In Abian and LaMacchia [2] it is shown that in a finite model of the Powerset axiom the set-theoretical Extensionality axiom also holds. Thus, the notion of "equality" and the notations introduced in (1) and (2) are justified. Moreover, it is shown in [2] that in a finite model of the Powerset axiom, besides the axiom of Extensionality, the axioms of Union and Choice also hold.

Furthermore, in [2] it is shown that in a finite model (F, ϵ) of the Powerset axiom, for every set x and y,

(3)
$$x \subseteq y$$
 iff $\mathcal{O}(x) \subseteq \mathcal{O}(y)$

and thus

(4)
$$x = y$$
 iff $\mathcal{O}(x) = \mathcal{O}(y)$

and

(5) every set of (F, ϵ) is a powerset of a unique set of (F, ϵ) and hence there is no empty set in (F, ϵ) .

In what follows, for every set x and every positive integer n, we define the n-th powerset $\mathfrak{S}^n(x)$ of x, recursively, as follows:

(6)
$$\mathcal{O}^1(x) = \mathcal{O}(x)$$
 and $\mathcal{O}^{n+1}(x) = \mathcal{O}(\mathcal{O}^n(x))$ for $n \ge 1$.

Lemma 1 Let (F, ϵ) be a finite model of the Powerset axiom. For every set x in (F, ϵ) , there exists a smallest positive integer m such that

(7)
$$x = \mathcal{O}^m(x)$$
.

Proof: Since (F, ϵ) is a finite model, clearly for some positive integers n and k we have $\mathfrak{S}^n(x) = \mathfrak{S}^{n+k}(x)$. But then, in view of (4), we have $x = \mathfrak{S}^k(x)$. Denoting by m the smallest such k, we establish (7).

Lemma 2 Let (F, ϵ) be a finite model of the Powerset axiom. If s is a set in (F, ϵ) then there exists $s_1 \in s$ such that

(8)
$$s = \mathcal{O}(s_1)$$
 and such that $x \subseteq s_1$ for every $x \in s$.

Proof: By (5) we have $s = \mathcal{O}(s_1)$, for some unique set s_1 . Moreover, since $s_1 \in \mathcal{O}(s_1)$, we have $s_1 \in s$. Furthermore, for every $i = 1, \ldots, n$ if $s_i \in s$ then clearly $s_i \in \mathcal{O}(s_1)$ and therefore $s_i \subseteq s_1$, as required.

Next, we prove a key lemma.

Lemma 3 Let (F, ϵ) be a finite model of the Powerset axiom. Then for every set t and s of (F, ϵ) it is the case that

(9)
$$t \in s$$
 iff $\mathcal{O}(t) \in \mathcal{O}(s)$.

Proof: Let $t \in s$. But then by (8) there exists s_1 such that $s = \mathcal{O}(s_1)$ and $x \subseteq s_1$ for every $x \in s$. Consequently, $t \subseteq s_1$ which in turn by (3) implies $\mathcal{O}(t) \subseteq \mathcal{O}(s_1)$. Thus, $\mathcal{O}(t) \subseteq s$ and therefore $\mathcal{O}(t) \in \mathcal{O}(s)$. Hence we have proved:

(10) $t \in s$ implies $\mathcal{O}(t) \in \mathcal{O}(s)$.

However, from (10) it also follows that $\mathcal{O}(t) \in \mathcal{O}(s)$ implies $\mathcal{O}^2(t) \in \mathcal{O}^2(s)$, and therefore, by induction, we have:

(11) $\mathcal{P}(t) \in \mathcal{P}(s)$ implies $\mathcal{P}^k(t) \in \mathcal{P}^k(s)$ for every k > 0.

Next, let us observe that from (7) it follows that there exist positive integers m and n such that $t = \mathcal{O}^m(t)$ and $s = \mathcal{O}^n(s)$. Let v be the least common multiple of m and n. But then, obviously, we have:

(12)
$$t = \mathcal{O}^v(t)$$
 and $s = \mathcal{O}^v(s)$.

To prove the converse of (10), let $\mathcal{O}(t) \in \mathcal{O}(s)$. But then by (11) we have $\mathcal{O}^{v}(t) \in \mathcal{O}^{v}(s)$ which by (12) implies $t \in s$. Thus, the converse of (10) is established and the lemma is proved.

Based on Lemma 3, we prove the following theorem where |x| denotes the number of elements of a set x (of course, counting from outside, i.e., in a standard model of ZF in which (F, ϵ) resides). That is, if $x \in F$ then |x| = n if and only if in ZF the set x is equipollent to the natural number n.

Theorem 1 Let (F, ϵ) be a finite model of the Powerset axiom. Then in (F, ϵ) a set and its powerset have the same number of elements, i.e.,

(13)
$$|s| = |\mathcal{O}(s)|$$
 for every set s of (F, ϵ) .

Proof: Let s be a set with n elements, i.e., $s = \{s_1, \ldots, s_i, \ldots, s_n\}$. Then by Lemma 3 it must be the case that $\mathcal{O}(s) = \{\mathcal{O}(s_1), \ldots, \mathcal{O}(s_i), \ldots, \mathcal{O}(s_n)\}$. However, from (4) it follows that distinct sets have distinct powersets. Thus, $|s| = |\mathcal{O}(s)|$, as desired.

Based on the above, we derive some additional results.

Corollary 1 In (F, ϵ) for every set t and s we have

(14)
$$t \in s$$
 implies $|t| \leq |s|$.

Proof: From (9) it follows that $t \in s$ implies $\mathcal{O}(t) \subseteq s$ and therefore $|\mathcal{O}(t)| \le |s|$, which in turn by (13) implies $|t| \le |s|$, as desired.

Remark The following statements which are proved in Abian and Amin [1] can be also proved based on Theorem 1 and Corollary 1.

Let (F, ϵ) be a finite model of the Powerset axiom. Then:

- (a) Every element of a singleton of (F, ϵ) is itself a singleton.
- (b) In (F, ϵ) at least one element of every set is a singleton.
- (c) In (F, ϵ) there exists always a singleton.

Lemma 4 Let (F, ϵ) be a finite model of the Powerset axiom. For every set r and t of (F, ϵ) if r is a proper subset of $\mathcal{O}(t)$ then $t \notin r$.

Proof: Assume on the contrary that $t \in r$. But then, from (9) it follows that $\mathcal{O}(t) \subseteq r$ contradicting the fact that r is a proper subset of $\mathcal{O}(t)$. Thus, indeed, $t \notin r$.

Theorem 2 In (F, ϵ) let s be a set with n elements. Then s has at most one subset with n-1 elements.

Proof: Assume on the contrary that s has two distinct subsets r_1 and r_2 such that $|r_1| = |r_2| = n - 1$. By (5) we see that $s = \mathcal{O}(t)$ for some t and by (9) we see that $|s| = |\mathcal{O}(t)| = n$. On the other hand, by Lemma 4 we have $t \notin r_1$ and $t \notin r_2$ and since $|r_1| = |r_2| = n - 1$, we must have $r_1 = r_2$, contradicting the fact that r_1 and r_2 are distinct. Thus, Theorem 2 is proved.

Finally we have:

Theorem 3 In (F, ϵ) for every set s

(15) $s \in s$ iff $s = \mathcal{O}(s)$.

Proof: Let $s \in s$. But then by (9) we have $\mathcal{O}(s) \subseteq s$ and by (13) we have $|\mathcal{O}(s)| = |s|$. Thus, $s = \mathcal{O}(s)$. Conversely if $s = \mathcal{O}(s)$ then since $s \in \mathcal{O}(s)$ we see that $s \in s$. Hence, (15) is established.

REFERENCES

- [1] Abian, A. and W. A. Amin, "An equivalent of the axion of choice in finite models of the powerset axiom," *Notre Dame Journal of Formal Logic*, vol. 31 (1991), pp. 371-374.
- [2] Abian, A. and S. LaMacchia, "Some consequences of the axiom of powerset," *The Journal of Symbolic Logic*, vol. 30 (1965), pp. 293–294.

Department of Mathematics Iowa State University Ames. Iowa 50011 Department of Mathematics University of Jordan Amman, Jordan