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Embedding Brouwer Algebras

in the ΛΛedvedev Lattice

ANDREA SORBI

Abstract We prove various results on embedding Brouwer algebras in the
Medvedev lattice. In particular, we characterize the finite Brouwer algebras
that are embeddable in the Medvedev lattice.

/ Introduction The following definition is fundamental throughout the
paper:

Definition 1.1 Let 2 = <L,V,Λ,0,1> be a distributive lattice with 0,1 and
let < be the partial ordering relation of 2. Then 2 is a Brouwer algebra if 2 can
be given a binary operation -> such that, for every a,b,c E L,

b<avc*=*a-+b<c.

(Notice that this is equivalent to saying that the set {c E L: b < a v c] has a least
element and this least element equals a-+b.)

Also, we say that a distributive lattice with 0,1 is a Heyting algebra if the dual
of 2 is a Brouwer algebra (for details on Heyting algebras see e.g. Balbes and
Dwinger [1]). Heyting algebras are often called pseudo-Boolean algebras (see e.g.
Rasiowa [10]). In the remainder of the paper, we will often use without further
comment the fact that every finite distributive lattice with 0,1 is a Brouwer al-
gebra (also, a Heyting algebra).

Now, let 9W be the Medvedev lattice (see Medvedev [7] and Rogers [11]). In
Sorbi [13] we show that Wl is not a Heyting algebra. On the other hand, it is
known ([7]; see also [11], Theorem 13.XXIV, for a proof) that Wl is a Brouwer
algebra. In this paper we show that as a Brouwer algebra 9ft is in fact a fairly
rich one, by proving various embedding results. In particular, we obtain a char-
acterization of the finite Brouwer algebras that are embeddable in 9JΪ, thus ex-
tending a similar embedding result proved in Skvortsova [12]. Among the
consequences of this result is also a proof (see Corollary 2.8 below) of the fact
that the set of identities of 9JΪ (in the sense of [11], §13.7, i.e. the propositional
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formulas which are valid in 9ft, as defined later in this section) coincides with the
set of theorems of the propositional logic obtained by adding the axiom scheme
-iα v -i -icx to the intuitionistic propositional calculus (this result was essentially
stated by Medvedev in [8], Theorem 2; a proof is contained in the aforemen-
tioned paper by Skvortsova [12]), contrary to the mistaken attribution to Med-
vedev, made in [11], of the coincidence of these identities with the theorems of
the intuitionistic propositional calculus.

Except for the few changes and additions listed below, our notations are the
same as in [11] (in particular §13.7), to which the reader is referred also for any
unexplained notations and terminology used in this paper. As is customary in
the literature, the operations of least upper bound and greatest lower bound in
a lattice—thus in 9ft as well—are denoted by the symbols v and Λ, respectively.
In this paper therefore, in reference to 3ft the symbols v and Λ are interchanged
with respect to the notation of [11], §13.7. Thus, given any degrees of difficulty
A and B, A v B denotes the least upper bound of A and B, and A r\B denotes
the greatest lower bound of A and B; given any functions / and g, by/v g we
denote the function h such that/(x) = h(2x) and g(x) = h(2x + 1), for every
x E ω (ω is the set of natural numbers); given x E ω and a function/, x * / de-
notes the function h such that h(0) = x and h(y + 1) = f(y), for all y; given
mass problems d and (B, we let d v (B = {/v g : / E α & g E (B) and α Λ (B =
{0*/:/E d] U {1 * g:gE (B); given a mass problem d andxEω, it is conve-
nient to let x * a = {x* fifed], thusflΛ(B = 0 * β U l * ( B . If/is a finite
set and {fy:i E /],{/:/ E /) are collections of mass problems and functions,
respectively, then the expressions V/e/ft/, Λ/e/βι>V/e/.// always refer to some
fixed listing of the elements of /: for instance, if / 0 , . . . , /„ is a listing of / then
V/G/ β/ = ( (dio v β/j) v ) v din). Of course, the degrees of difficulty of
the mass problems V/e/ Φ and Λ/e/ ®/> a s w e H a s the Turing degree of V/e/.//>
are independent of the choice of the listing of /.

The relation of reducibility between mass problems is denoted by <; conse-
quently, given mass problems d and (B, we have that d < (B if there exists a
recursive operator Ψ such that Ϋ ( ( B ) c β ; ( i = (β means that d < (B and (B <
d: [d] is the equivalence class of d under =, i.e., [d] is the degree of difficulty
of d. 0 denotes the least element of 3Dί and 1 denotes the greatest element of Wl.

Let (ωω)* be the set of partial functions from ω into ω; the operation v al-
ready defined on total functions can be extended in an obvious way to partial
functions; likewise, given / E ω and a partial function φ, the symbol / * φ has
the obvious meaning. Given any finite initial segment/ lh(/) denotes the length
of/ The set of finite initial segments will be denoted by Fis.

Let Pord be the category of partial orders; we shall be interested also in the
following subcategories of Pord: the category Dltt of distributive lattices; the cat-
egory Dlttoi of distributive lattices with 0 and 1; the category Brw of Brouwer
algebras. Given any category C, a C-embedding is a monomorphism of C (for
terminology, see MacLane [6]); the class of objects of C is denoted by ob(C).
Let Form denote the set of formulas of a standard propositional language with
denumerably many propositional letters and connectives V,Λ,-•,->. Given any
Brouwer algebra ? = <L,V,Λ,0,1>, a mapping V Form -• £ is a valuation if for
all a,β E Form, we have: V(avβ) = K(α)Λ V(β); F(αΛjS) = F(α)v V(β);
V(a -> β) = V(a) -> V(β); V( -<«) = V(a) -> 1: it may be appropriate to remark
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that in these equations the symbols V,Λ,-> denote, in the left side, propositional
connectives and, in the right side, Brouwer algebra operations; notice also the
correspondence of the connectives V,Λ with the operations Λ, v, respectively. A
formula a is valid in ? if, for every valuation V.Form -• £, V(a) = 0. Let
7%(2) = {a: a is valid in 2} and let Int denote the (set of theorems of the) in-
tuitionistic propositional calculus (see e.g. [10], §IX.l): it is well-known that
Intζ Th($).

2 Embedding Brouwer algebras in ίttl Since 93? is a Brouwer algebra, ac-
cording to Definition 1.1 the type of SDΐ can be enriched with a binary opera-
tion -> satisfying, for every degree of difficulty A, B, and C,

B<AvC**A^B<C.

We need the following

Definition 2.1 Given any function/, let (By = {g: g £τf] and Bf = [(By].

Lemma 2.2 (1) For every function /, Bf is both join-irreducible and meet-
irreducible; (2) for any two functions f and g,f<τg if and only if Bf < Bg.

Proof: (1) That Bf is meet-irreducible follows from Dyment, [4], Corollary 2.9,
since the mass problem (By satisfies: (Vx G ω)(Vg G (By) [x * g G (B/]. As to
show that Bf is join-irreducible, notice that the set of degrees of difficulty
{C: C< Bf] is a principal ideal generated by BfΛ [{/}] indeed, BfΛ [{/}] < Bf:
moreover, if C is a mass problem such that <B < (By, then C £ (B/? and thus there
exists gee such that g < Γ / ; hence e < {/} and therefore [β] < Bf Λ [{/}].

(2) Immediate, as / < Γ g if and only if (Bg c (By.

Lemma 2.3 Le/ {A} :j G /}, {Yυ: v E F) be finite collections of finite sub-
sets of{Bf:fe ωω}. ΓAέW VJCΛΛXJ) -* V y G F (Λr y ) = vfΛΪVt; G F &
(y/ G7)[Λr^Λ^y ]}.

Proof: Let {A} :y G /} and {1^: v G K) be as in the statement of the theorem;
then for every j G / and v G V there exist finite sets of functions {//: / G Ij} and
{guiueUv} such that Xj = [Bfj: / G /y} and Yv = [Bgv: wG(/ y). It is conve-
nient to assume that the sets /, /and /, (j G J),UV (v G F) are finite subsets
of ω.

Let X=VJGJ(ΛXJ), Y = VVGV(ΛYV), and Z = V{ΛYV: v e V& (Y/G7)
[ΛYV£ΛXJ]}.

Let also 9C = VyG/(Λ/<=/, (B//): thus X=[X]. Clearly y < X v Z; we want to
show that Z is the least element C such that Y < JΓ v C. To this end, it suffices
to show that, for every v G V,

(Y/ G /) [ΛYV φ Λ J^ ] => (VC) [ΛY, < ̂ Γv C => ΛF, < C].

So, let i GKbe such that (Vy G /) [AYV £ ΛXJ] and let G be a mass problem
such that /\ueuv ®g£ ̂  9C v C. The assumptions on v G Fallow us to conclude
that

(VyG/)(3/G/y)| Λ <Ά8v^(Άfj\.
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Hence,

(•) (Vy G /)(3# G Ij)(Vu G Uυ) [<ΆgS φ <Άfj].

Since, by distributivity, DC = Λ{ VyG/<%α)

 : £ Ξ Π/e///} (where Πye/// i s t h e

cartesian product), we conclude by (*) and Lemma 2.2(1) (as Bgv is join-
irreducible) that there exists £ G HJ^JIJ such that

L ye/ J

Choose such a ξ G IίjGjIj. Since Aueuv^g^ ^ 9C v β we also have that
/\u(=uv®>gΰ ^ (Vye/®4O )) v β. On the other hand, it is easy to see that
Aueuv<&gs = UU<EUV (u*άgv); therefore the mass problem (V/e./<%(y)) v Q is
reducible to the mass problem Uueuv (w * &#»).

Claim Let FO,FUD9Z be degrees of difficulty such that FOΛFI<DVZ and
D contains a mass problem 3D such that (V/G Fis)(Vfe 3D) [ / * / G 3D]. Then
there exist degrees of difficulty Z o, Zx such that Zo A ZX = Z and F7 < Z> v Z,
( ιe{0, lJ) .

Proof of Claim: (The claim also follows from [12], Lemma 6.) Let FQ,FUD,Z
be degrees of difficulty as in the statement of the claim; let To EF0, ΎiGFi,
3D G A Z G Z be mass problems and suppose that (V/G F/s) (V/G 3D) [/*/G 3D].
We will suppose that Z> Φ 1 (i.e. 3D ̂  0 ) , otherwise the claim is trivial. Let
Ψ be a recursive operator such that T o Λ T I < 3D v Z via Ψ. For every w G ω, let
Zu = {h G Z : ( a / e F/5) [Ϋ(/v A)(0) is defined & Ϋ ( / V A)(0) = u]}. Given
any set A, let even(>l) = {(2x9y): (2x,y) G A] and odd(^l) = {(2x + l,.y):
<2x + l,.y> € -4}. Given any finite single-valued set D, let D be the least finite
initial segment/(in the lexicographical ordering of Fis) such that D c graph ( / ) .
Finally, given any partial functions φ and ψ, let us say that φ and ψ are ΛO/ com-
patible if there is some / G ω on which φ and ̂  are both defined and φ(i) Φψ(i).
Let the r.e. set W define (through the corresponding enumeration operator, see
[11], §9.8) the recursive operator Ϋ and let [Ws:s G ω} be a finite recursive
approximation to W, such that Ws+λ — Ws is at most a singleton.

Subclaim 1 Z s Z o Λ Zi.

Proof of Subclaim 1: Certainly Z < Z o Λ ZU since each ZM is a subset of Z, and
thus Z < ZM.

Let us show the converse. Define

J F = {«x, j>,z> : [x = 0 & (35)(3w) [Dw single-valued & y G {0,1} &

«0,y>, w)GWs& odd(Dw) c [(2x + 1, j ) : (x,y) G Z)J &

(W < s)(V«iJ),k) G ^ 0 [/ = 0 & y G {0,1} &

Z)^ single-valued => odd(Z)^), odd(Z)w) not compatible]]] or

[x>0&Dz={(x-ly)}]}.

Clearly W is r.e.; also, it is not difficult to see that W defines a recursive
operator Ψ' such that, for every A G Z, Ψ'(A) = / * h for a suitable / G {0,1}.
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Such a number i exists since the mass problem 3D is nonempty and, thus, if
h G Z then, for some/G 3D, Ψ(/v Λ)(0) is defined; thus for some/G Fis,
Ϋ(/v Λ)(0) is defined and Ψ(/v Λ)(0) G (0,1). On the other hand, we have
that (Vx)(VφG ( ω ω)*)[x>0 =•*'(</>)(*) = φ(x - 1)]. Thus Zo Λ ZX < Z via
Ψ' as desired.

Subclaim 2 For every i e {0,1}, T, < 3D v Z, .

Proof of Subclaim 2: Let / G {0,1} be given. Define W" = {«x,y),z>:
(35)(3w)[«0,/>,w> G Ws & Dw single-valued & odd(I>w) c odd(Dz) &
(W < s)(V«y,/>,A:> G W() [j = 0 & Dk single-valued => o d d ( ^ , odd(Du)
not compatible^ & (3w) [«JC + l,y>,u) EW& Hj,k): (2j,k) G Du) QDWU
iU,k) :j > lh(Av) & <2(j - lhφ w )) ,*> eDz}& odd(Du) c odd(Dz)]]}.

Clearly, FT" is r.e.: it is not difficult to see that W" defines a recursive op-
erator Ψ" whose behavior can be informally described as follows: given a func-
tion h, if, say, h=fvg, then Ψ" selects some finite initial segment/such that
Ψ(/v g)(0) is defined and equals /', if such a/exists; then, for every x G ω,
Ϋ"(/v g)(x) = Ϋ((/*/) v g)(Λ: + 1); otherwise Ϋ"(/v g) is the empty func-
tion. Clearly, if/v g G 3 ) v Z , then Ϋ"(/v ^) G T/.

The proof of the claim is complete, taking Zo = [Zo], Z{ = [Zx].

Let us now return to the proof of Lemma 2.3. We observe that, by the Claim,
since the mass problem VyG/ ®fJ • satisfies the property of the mass problem
3D in the statement of the Claim, there exist mass problems βM(w G Uv), such
that C = AueuvVu, and, for every u e Uv, ($>gv < (V y e /% ( 7 ) ) v Qu. Since
each (Άgv belongs to a join-irreducible degree of difficulty (Lemma 2.1(1)), we
deduce that, for every u G £/„, (Άgv < Cw and, thus, Aueuv (&gz ^ 6, as desired.

Now, let W be the sublattice (with 0,1) of Wl generated by the set [Bf:
/ G ω ω } :

Corollary 2.4 W is a sub-Brouwer algebra of 3Dΐ.

Proof: Immediate by Lemma 2.3, as W is closed under the operation ->.

It is not difficult to see that the forgetful functors U: Dltt -> Pord and
U: Dlttoi -> Dltt have left adjoint functors, say F : Pord -> Dltt and LOi: Dltt -•
Dlttoi, respectively (see [6], Chapter IV, for the category theoretic terminology
employed here). Here are useful descriptions of F and LOi: given any partial or-
der ^ = <P, <p>, let Wr(P) be the free distributive lattice generated by the set
P: via identification of generators with the corresponding elements of P, each
element of Ψr(P) can be represented as V/e/(ΛS, ), for some nonempty finite
subsets Si <Ξ P, and some finite nonempty set /of indices (see Balbes [1], §V.3).
Then F(*β) is the lattice obtained by dividing Wr(P) modulo the equivalence re-
lation (indeed a lattice-theoretic congruence) generated by the preordering (i.e.,
reflexive and transitive) relation < on Ψr(P) defined by

V ( Λ S y ) < V ( Λ 7 } ) i f (Vi e V)(lj <Ξ J)(vt E Tj)(ls <Ξ Sv)[s <p t].
v(ΞV jGJ

As to Loi, given any 8 G oό(Dltt), simply let LOi (8) = 1 ® 8 ® 1, where 1 de-
notes the one-element partial order and © is ordinal sum, as in [1], II. 1 (see also
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[1], Theorem II.5.7). Let also FOi = LOi ° IF: Pord -> DlttOi. Clearly, for every
φ E ob(Pord), Foi ($) is a Brouwer algebra. Let © Γ be the partial order of Tur-
ing degrees: we have

Corollary 2.5 FOi (®r) is Brw-embeddable in 9ft.

Proof: Immediate by Corollary 2.4, as FOi (3)r) — 9ft': indeed, by Lemma 2.3,
the function which maps the generator [f]τ into Bf extends to an isomorphism
between FOi (2V) and 9ft': to show this, simply use the fact that, in the notation
of Lemma 2.3,

V (ΛYV) * V ( Λ * , ) ~ V ( Λ * / ) -* V ( A ^ ) = 0.
VGV jE:J jeJ VGV

We are now ready for the desired characterization of the finite Brouwer al-
gebras which are Brw-embeddable in 9ft. Let Brw' = {8 E oZ?(Brw): the least el-
ement of 8 is meet-irreducible and the greatest element of 8 is join-irreducible}.

Theorem 2.6 A finite Brouwer algebra 8 is Brw-embeddable in 9ft if and only
z / ? E Brw7.

Proof: The "only if" part follows from the observation that, in 9ft, 0 is meet-
irreducible and 1 is join-irreducible. Let 2 and 3 denote the two-chain and the
three-chain, respectively. Let Brw7 be the smallest class of Brouwer algebras
such that

(1) 2 E Brw7;
(2) if 8 E Brwy then 1 © 8 E Brw7;
(3) Brwy is closed under finite products.

Since a Brouwer algebra 8 is subdirectly irreducible if and only if 8 - 2 or 8 -
i ® 8', for some Brouwer algebra 8' (see e.g. [1], Theorem IX.4.5 or, rather, its
dual version, since we are dealing here with Brouwer algebras instead of Heyt-
ing algebras), it follows by the Birkhoff subdirect product theorem (see e.g.
Burris [2], Theorem 2.8.6) that every finite Brouwer algebra is Brw-embeddable
in some element of Brwy. Since 2 and 3 are clearly Brw-embeddable in 9ft, in or-
der to show the claim is then enough to show that, for every 8 E Brw/ 5 LOi (8)
is Brw-embeddable in 9ft (we use here the fact that every finite Brouwer algebra
in Brw' different from 2 and 3 has the form LOi (8), for some 8). To this end,
we first show that for every 8 E Brwj, there exists a finite partial order <β such
that Loi (8) is Brw-embeddable in FOi 0β). Indeed, LOi (2) - FOi (2). Moreover,
for every 8 E Brwy and every *β E ob (Pord), if LOi (8) is Brw-embeddable in
Foi(^3), then L O i ( l Θ 8) is clearly Brw-embeddable in F O i ( l ® *β). Let now
8o, ,8Λ E Brwy and %,... ,*βΛ E oZ>(Pord) be such that, for every / < n,
L 0 1 (8/) is Brw-embeddable in F m (%); for every / < n, let φ, = <P/,</>. Let φ
be the coproduct, in Pord, of the family 0β, :/ < n) (for instance, let <β =
<U/</7 \i] X %,^>> where (i,p) < (j>Q) if and only if i=j and/? </ q) with
coproduct injections Jj: Ĵ/ -> ̂ 3 and let 2 be the set of join-irreducible elements
of the cartesian product Π/<« F(^3Z). Henceforth, we shall identify generators of
W(%),... ,F(^ Λ ) and F ( ^ ) with the corresponding elements of %9...9φn and
<β, respectively. Let 0, denote the least element of F(*P,): it is not difficult to see
that ϊ = {(Po,... ,pn)'Pi E *β; and /?/ is join-irreducible in *β/ and there is at
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most one i < n such that /?, Φ Oj} notice also that % is a partial order with the
induced order. Let us define a function / : Z -> F(<β) as follows: given (pθ9...,
pn) E ϊ , if A = ΛXZ, for every / < n, where Xj <Ξ <β, , then let

J((Po,...,Pn)) = Λ (Λ/,(*,)).

(In defining /, we have used the fact that, for every / < «, the join-irreducible
elements of W(%) are exactly those elements having the form AX, for some
Z c ^ , as is easily seen using the characterization of the join-irreducible ele-
ments of Wr(Pj), for which see e.g. [1], Theorem V, 3.7. Also, /is independent
of the choices of the Ays.)

It is easily checked that / is a Pord-monomorphism, as each generator in
Ψ(%) and F($) is meet-irreducible. Now, in every finite distributive lattice, each
element is the join of a unique set of mutually incomparable join-irreducible el-
ements (see e.g. [1], Theorem IΠ.2.2); define H: LOi (Π/<Λ FOP,-)) -+ Foi OP) by

^0 ifx = 0

H(x) =« vJ(X) if x G Π FOP/) a n ( i * = v^> a n < i ^ consists of mutually
i-n incomparable join-irreducible elements

1 if JC= 1.

We claim that His a Brw-embedding. This is an easy consequence of the follow-
ing observations:

(a) H maps join-irreducible elements of JLoidl/^F^,)) into join-
irreducible elements of F 0 1 (<β), by definition of /;

(b) % is closed under the operation Λ of Π/<« F(<pz).

Now, clearly Hpreserves v; from (a) and the fact that /is a Pord-embedding it
follows that H is 1-1 and preserves the operation ->; indeed, if ? is any Brouwer
algebra, with partial ordering < L , and X,Y^2 consist of join-irreducible ele-
ments, then we have that vX < L vYif and only if (VA: E X)(3y G Y) [x <Ly]
and vX-+vY =v{y G Y: (Vx G X) [y φL x]}; from (a) and (b) it follows
that H preserves the operation Λ. Since ILOi(Π/<Λ?/) is Brw-embeddable in
fl-oi (Π/<Λ F(^P/)), by composition we get a Brw-embedding of LOi (Π/<« 8/) into
Foi(^).

To finish off the proof it is now enough to show that, for every finite par-
tial order <β, FOi (*β) is Brw-embeddable in 2ft. But every finite partial order <β
is Pord-embeddable in 3) r and the functor FOi takes Pord-monomorphisms into
Brw-monomorphisms (indeed, it clearly takes Pord-morphisms into DlttOr
morphisms by functoriality; moreover, if K: ^ -> φ 2 is a Pord-monomorphism,
then Foi (K) maps join-irreducible elements into join-irreducible elements, so we
can argue as we did for Hto conclude that FOi (K) is a Brw-embedding); hence,
for every finite partial order <β, FOi (<β) is Brw-embeddable in FOi (2V) and,
thus, by Corollary 2.5, in 2)ϊ.

Remark 2.7 Let 2W" = 2ft - {0}. It is easy to see that 3JΓ is still a Brouwer
algebra: indeed, if/ is any recursive function, then Bf is the least element of
2Jί~: call 0~ this least element. Now, given any finite partial order ^3, we have
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that FOi (̂ 3) is Brw-embeddable in 9K~: indeed, it suffices to use a Pord-embed-
ding /: <β -> J) Γ such that the least element of S)Γ is not in the range of /; then,
by composition, we get a Brw-embedding of FOi (*β) into 30Ϊ which avoids 0~. Fi-
nally, defineH~:Foι(<β) ->m~ by H~(x) = H(x) if xΦ 0 and//-(0) = 0"; so
IFoi Cβ) is Brw-embeddable in 9ft~ via //". Now, since 0~ is meet-irreducible (by
[4], Corollary 2.9), it follows that a finite Brouwer algebra is Brw-embeddable
in 9W" if and only if 8 E Brw'.

Corollary 2.8 ([8],[12]) 7% (9ft) is ίΛe intermediate logic obtained by adding
the axiom scheme -ια v -ι -iα to the intuitionistic propositional calculus.

Proof: Let Jan (after Jankov) be the logic obtained by adding the scheme
- l α v π π α t o the intuitionistic propositional calculus. It is shown in Jankov [5]

that Jan = Π {ΓΛ(LOi(8)): 8 is a finite Brouwer algebra). Thus, by Theorem 2.6
and the fact that if 8i is Brw-embeddable in 82 then Th($2) £ Th(2ι) (see for
instance [10]), it follows that Th(Wl) c Jan.

On the other hand, one trivially checks that Jan c Th (M), by showing that
for every a E Form, the formula -taw -ι ->α is valid in SEX?.

5 Γfte CΛse of the Muέnick lattice Theorem 2.6 shows further similarities,
besides those pointed out in [13], between the Medvedev lattice and the Muδnick
lattice, as is shown in Fact 3.3 below (a comparative study of these lattices is pre-
sented in [13]; see also [4] and Muδnick [9]). We proceed to give the main defi-
nitions.

Given mass problems α,(B c ω

ω , let G < w (B if (Vg E (B)(3/E &) [f<τg].
Let =w be the equivalence relation generated by <w and, given any mass prob-
lem &, let [d]w denote the equivalence class of & under =w: such equivalence
classes are partially ordered by: [Q]w <w [(ft]w if & ^w (B.

Definition 3.1 ([9]) Let Wlw = <{[β] w : « c ω

ω ) , <w>. a»w is in fact an ob-
ject of Dlttoi called the Muόnick lattice.

ϋftw has the following useful representation. Given any partial order $ =
(P, <p), let (see [3]) Ή(<β) be the object of Ό\ttoι given by:

(1) the elements of H(<β) are the subsets X Q P which are upward closed
under < p (i.e., pEX&p<pq^>qE: X);

(2) given X,Ye H(<β), let X< Yif YQ X; then U,Π correspond to Λ,V re-
spectively; 0 is the greatest element and P is the least element.

Lemma 3.2 SKW = H(Φ Γ ) .

Proo/: See [13].

It is known that for every partial order φ = <P, </7>, H(^) (hence H(©Γ)
and thus SUl̂  by Lemma 3.2) is a Brouwer algebra (under the operation -• given
by: for every I J G H(<β), X-+ Y = [x E P: (Vy E P) [x < p ^ => y £ X or
J E 7 ] ) ) .

Fact 3.3 ,4 /mte 8 E Brw is Brw-embeddable in mw if and only if 8 E Brw'.

P/Όθ/: The "only if" part follows from the fact that mw E Brwr. The converse
is an easy consequence, via Lemma 3.2, of the duality between partial orders and
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Heyting algebras (hence Brower algebras as well), given in [3]. Here is, however,
a more direct proof. As in Theorem 2.6, it is enough to show that, for every
2 E Brw/, Loi(2) is Brw-embeddable in 9ttw. Given any function/, let Bf =
[(B/]w. The following are easily shown:

(1) for every /, Bf is join-irreducible (by an argument similar to that of
Lemma 2.2(1));

(2) the mapping: [f]τ -> Bf is a Pord-monomorphism (as in Lemma
2.2(2)), that preserves (existing) infima.

Thus, let ? e Brw/ be given and let *β be the partial order of the join-irreducible
elements of S: by definition of Brw/? it is easy to see that ^ is a lower semilat-
tice. Let J:^ -> 35Γ be an inf-preserving embedding and, for every / ? G $ ,
choose fp e /(/?). Finally define /: LOi (2) -> Wlw by:

' θ if x = 0

j(x) = « V Bfi if A: G ? & Λ: = v/, where / c <β consists of mutually
/ e / incomparable elements

1 if JC = 1.

It is not difficult to see that /is a Brw-embedding, by arguments similar to those
employed for H in the proof of Theorem 2.6.

Corollary 3.4 Th(mw) = Jan.

Proof: See proof of Corollary 2.8, using Fact 3.3.

Remark 3.5 (1) Let 9tt~ = Wlw- {0w}, where ()„ is the least element of Tlw.
It is easily seen that Tlw is still a Brouwer algebra. One can show that a finite
Brouwer algebra ? is Brw-embeddable in 2)ϊ^ if and only if the greatest element
of 8 is join-irreducible; indeed, in the proof of Fact 3.3, define the embedding /:
fl-oi (8) ~* STOw starting from a Pord-embedding /: ^ -• ©r which preserves
the least element as well as infima: then / restricts to a Brw-embedding I~:

? Θ l -> a>fc
(2) Corollary 3.4 answers a question, raised in [9], aiming to characterize

772(2ftw) Of course, answering this question is nowadays trivial, because of the
work in [3] and [6], not available at the time of [9].
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