Embedding Brouwer Algebras in the Medvedev Lattice

ANDREA SORBI

Abstract

We prove various results on embedding Brouwer algebras in the Medvedev lattice. In particular, we characterize the finite Brouwer algebras that are embeddable in the Medvedev lattice.

1 Introduction The following definition is fundamental throughout the paper:

Definition 1.1 Let $\mathbb{R}=\langle L, \vee, \wedge, 0,1\rangle$ be a distributive lattice with 0,1 and let \leq be the partial ordering relation of \mathbb{R}. Then \mathbb{R} is a Brouwer algebra if \mathbb{R} can be given a binary operation \rightarrow such that, for every $a, b, c \in L$,

$$
b \leq a \vee c \Leftrightarrow a \rightarrow b \leq c .
$$

(Notice that this is equivalent to saying that the set $\{c \in L: b \leq a \vee c\}$ has a least element and this least element equals $a \rightarrow b$.)

Also, we say that a distributive lattice with 0,1 is a Heyting algebra if the dual of \mathfrak{R} is a Brouwer algebra (for details on Heyting algebras see e.g. Balbes and Dwinger [1]). Heyting algebras are often called pseudo-Boolean algebras (see e.g. Rasiowa [10]). In the remainder of the paper, we will often use without further comment the fact that every finite distributive lattice with 0,1 is a Brouwer algebra (also, a Heyting algebra).

Now, let \mathfrak{M} be the Medvedev lattice (see Medvedev [7] and Rogers [11]). In Sorbi [13] we show that \mathfrak{M} is not a Heyting algebra. On the other hand, it is known ([7]; see also [11], Theorem 13.XXIV, for a proof) that \mathfrak{M} is a Brouwer algebra. In this paper we show that as a Brouwer algebra \mathfrak{M} is in fact a fairly rich one, by proving various embedding results. In particular, we obtain a characterization of the finite Brouwer algebras that are embeddable in \mathfrak{M}, thus extending a similar embedding result proved in Skvortsova [12]. Among the consequences of this result is also a proof (see Corollary 2.8 below) of the fact that the set of identities of \mathfrak{M} (in the sense of [11], $\S 13.7$, i.e. the propositional
formulas which are valid in \mathfrak{M}, as defined later in this section) coincides with the set of theorems of the propositional logic obtained by adding the axiom scheme $\neg \alpha \vee \neg \neg \alpha$ to the intuitionistic propositional calculus (this result was essentially stated by Medvedev in [8], Theorem 2; a proof is contained in the aforementioned paper by Skvortsova [12]), contrary to the mistaken attribution to Medvedev, made in [11], of the coincidence of these identities with the theorems of the intuitionistic propositional calculus.

Except for the few changes and additions listed below, our notations are the same as in [11] (in particular §13.7), to which the reader is referred also for any unexplained notations and terminology used in this paper. As is customary in the literature, the operations of least upper bound and greatest lower bound in a lattice - thus in \mathfrak{M} as well - are denoted by the symbols \vee and \wedge, respectively. In this paper therefore, in reference to \mathfrak{M} the symbols \vee and \wedge are interchanged with respect to the notation of [11], §13.7. Thus, given any degrees of difficulty A and $B, A \vee B$ denotes the least upper bound of A and B, and $A \wedge B$ denotes the greatest lower bound of A and B; given any functions f and g, by $f \vee g$ we denote the function h such that $f(x)=h(2 x)$ and $g(x)=h(2 x+1)$, for every $x \in \omega$ (ω is the set of natural numbers); given $x \in \omega$ and a function $f, x * f$ denotes the function h such that $h(0)=x$ and $h(y+1)=f(y)$, for all y; given mass problems \mathfrak{Q} and \mathbb{B}, we let $\mathbb{Q} \vee \mathbb{B}=\{f \vee g: f \in \mathbb{Q} \& g \in \mathbb{B}\}$ and $\mathfrak{Q} \wedge \mathcal{B}=$ $\{0 * f: f \in \mathbb{Q}\} \cup\{1 * g: g \in \mathbb{B}\}$; given a mass problem \mathbb{Q} and $x \in \omega$, it is convenient to let $x * Q=\{x * f: f \in \mathbb{Q}\}$, thus $\mathbb{Q} \wedge \mathcal{B}=0 * \mathbb{Q} \cup 1 * \mathscr{B}$. If I is a finite set and $\left\{Q_{i}: i \in I\right\},\left\{f_{i}: i \in I\right\}$ are collections of mass problems and functions, respectively, then the expressions $\bigvee_{i \in I} \mathbb{Q}_{i}, \wedge_{i \in I} \mathbb{Q}_{i}, \mathrm{~V}_{i \in I} f_{i}$ always refer to some fixed listing of the elements of I : for instance, if i_{0}, \ldots, i_{n} is a listing of I then $\left.\vee_{i \in I} Q_{i}=\left(\cdots\left(Q_{i_{0}} \vee Q_{i_{1}}\right) \vee \cdots\right) \vee Q_{i_{n}}\right)$. Of course, the degrees of difficulty of the mass problems $\bigvee_{i \in I} Q_{i}$ and $\wedge_{i \in I} Q_{i}$, as well as the Turing degree of $\bigvee_{i \in I} f_{i}$, are independent of the choice of the listing of I.

The relation of reducibility between mass problems is denoted by \leq; consequently, given mass problems Q and \overparen{B}, we have that $Q \leq \circledast$ if there exists a recursive operator Ψ such that $\Psi(\mathbb{B}) \subseteq \mathbb{Q} ; \mathbb{Q} \equiv \mathbb{B}$ means that $\mathbb{Q} \leq \mathbb{B}$ and $\mathbb{B} \leq$ $\mathbb{Q}:[\mathbb{Q}]$ is the equivalence class of \mathbb{Q} under \equiv, i.e., $[Q]$ is the degree of difficulty of \mathbb{Q}. 0 denotes the least element of \mathfrak{M} and $\mathbf{1}$ denotes the greatest element of \mathfrak{M}.

Let $\left({ }^{\omega} \omega\right)^{*}$ be the set of partial functions from ω into ω; the operation \vee already defined on total functions can be extended in an obvious way to partial functions; likewise, given $i \in \omega$ and a partial function ϕ, the symbol $i * \phi$ has the obvious meaning. Given any finite initial segment $\tilde{f}, \operatorname{lh}(\tilde{f})$ denotes the length of \tilde{f}. The set of finite initial segments will be denoted by Fis.

Let Pord be the category of partial orders; we shall be interested also in the following subcategories of Pord: the category Dltt of distributive lattices; the category Dltt $_{01}$ of distributive lattices with 0 and 1 ; the category Brw of Brouwer algebras. Given any category C, a C-embedding is a monomorphism of C (for terminology, see MacLane [6]); the class of objects of C is denoted by $o b(C)$. Let Form denote the set of formulas of a standard propositional language with denumerably many propositional letters and connectives $\vee, \wedge, \rightarrow, \neg$. Given any Brouwer algebra $\mathbb{R}=\langle L, \vee, \wedge, 0,1\rangle$, a mapping $V:$ Form $\rightarrow \mathbb{R}$ is a valuation if for all $\alpha, \beta \in$ Form, we have: $V(\alpha \vee \beta)=V(\alpha) \wedge V(\beta) ; V(\alpha \wedge \beta)=V(\alpha) \vee V(\beta)$; $V(\alpha \rightarrow \beta)=V(\alpha) \rightarrow V(\beta) ; V(\neg \alpha)=V(\alpha) \rightarrow 1$: it may be appropriate to remark
that in these equations the symbols v, \wedge, \rightarrow denote, in the left side, propositional connectives and, in the right side, Brouwer algebra operations; notice also the correspondence of the connectives \vee, \wedge with the operations \wedge, \vee, respectively. A formula α is valid in \mathbb{R} if, for every valuation V : Form $\rightarrow \mathbb{R}, V(\alpha)=0$. Let $T h(\mathfrak{R})=\{\alpha: \alpha$ is valid in $\mathfrak{Z}\}$ and let Int denote the (set of theorems of the) intuitionistic propositional calculus (see e.g. [10], §IX.1): it is well-known that $I n t \subseteq T h(\Omega)$.

2 Embedding Brouwer algebras in $\mathfrak{M} \quad$ Since \mathfrak{M} is a Brouwer algebra, according to Definition 1.1 the type of \mathfrak{M} can be enriched with a binary operation \rightarrow satisfying, for every degree of difficulty A, B, and C,

$$
B \leq A \vee C \Leftrightarrow A \rightarrow B \leq C .
$$

We need the following
Definition 2.1 Given any function f, let $\Theta_{f}=\left\{g: g \not \not_{T} f\right\}$ and $B_{f}=\left[\bigotimes_{f}\right]$.
Lemma 2.2 (1) For every function f, B_{f} is both join-irreducible and meetirreducible; (2) for any two functions f and $g, f \leq_{T} g$ if and only if $B_{f} \leq B_{g}$.
Proof: (1) That B_{f} is meet-irreducible follows from Dyment, [4], Corollary 2.9, since the mass problem \bigotimes_{f} satisfies: $(\forall x \in \omega)\left(\forall g \in \mathbb{B}_{f}\right)\left[x * g \in \mathbb{B}_{f}\right]$. As to show that B_{f} is join-irreducible, notice that the set of degrees of difficulty $\left\{C: C<B_{f}\right\}$ is a principal ideal generated by $B_{f} \wedge[\{f\}]$; indeed, $B_{f} \wedge[\{f\}]<B_{f}$: moreover, if \mathfrak{C} is a mass problem such that $\mathbb{C}<\mathscr{B}_{f}$, then $\mathfrak{C} \nsubseteq \mathscr{G}_{f}$, and thus there exists $g \in \mathbb{C}$ such that $g \leq_{T} f$; hence $\mathfrak{C} \leq\{f\}$ and therefore $[\mathcal{C}] \leq B_{f} \wedge[\{f\}]$.
(2) Immediate, as $f \leq_{T} g$ if and only if $\bigotimes_{g} \subseteq \bigotimes_{f}$.

Lemma 2.3 Let $\left\{X_{j}: j \in J\right\},\left\{Y_{v}: v \in V\right\}$ be finite collections of finite subsets of $\left\{B_{f}: f \in \omega^{\omega}\right\}$. Then $\bigvee_{j \in J}\left(\wedge X_{j}\right) \rightarrow \bigvee_{v \in V}\left(\wedge Y_{v}\right)=\vee\left\{\wedge Y_{v}: v \in V \&\right.$ $\left.(\forall j \in J)\left[\wedge Y_{v} \nsubseteq \wedge X_{j}\right]\right\}$.
Proof: Let $\left\{X_{j}: j \in J\right\}$ and $\left\{Y_{v}: v \in V\right\}$ be as in the statement of the theorem; then for every $j \in J$ and $v \in V$ there exist finite sets of functions $\left\{f_{i}^{j}: i \in I_{j}\right\}$ and $\left\{g_{u}^{v}: u \in U_{v}\right\}$ such that $X_{j}=\left\{B_{f_{t}^{j}}: i \in I_{j}\right\}$ and $Y_{v}=\left\{B_{g_{u}^{v}}: u \in U_{v}\right\}$. It is convenient to assume that the sets I, J and $I_{j}(j \in J), U_{v}(v \in V)$ are finite subsets of ω.

Let $X=\mathrm{V}_{j \in J}\left(\wedge X_{j}\right), Y=\vee_{v \in V}\left(\wedge Y_{v}\right)$, and $Z=\vee\left\{\wedge Y_{v}: v \in V \&(\forall j \in J)\right.$ $\left.\left[\wedge Y_{v} \nsubseteq \wedge X_{j}\right]\right\}$.
Let also $X=\bigvee_{j \in J}\left(\bigwedge_{i \in I_{j}} ®_{f_{i}^{j}}\right)$: thus $X=[\mathscr{X}]$. Clearly $Y \leq X \vee Z$; we want to show that Z is the least element C such that $Y \leq X \vee C$. To this end, it suffices to show that, for every $v \in V$,

$$
(\forall j \in J)\left[\wedge Y_{v} \nsubseteq \wedge X_{j}\right] \Rightarrow(\forall C)\left[\wedge Y_{v} \leq X \vee C \Rightarrow \wedge Y_{v} \leq C\right] .
$$

So, let $v \in V$ be such that $(\forall j \in J)\left[\wedge Y_{v} \nsubseteq \wedge X_{j}\right]$ and let \mathcal{C} be a mass problem such that $\wedge_{u \in U_{v}} \bigotimes_{g_{u}^{v}} \leq X \vee \mathcal{C}$. The assumptions on $v \in V$ allow us to conclude that

$$
(\forall j \in J)\left(\exists i \in I_{j}\right)\left[\bigwedge_{u \in U_{v}} \bigotimes_{g_{u}^{v}} \not \equiv \circlearrowleft_{f_{i}^{j}}\right] .
$$

Hence,
(*)

$$
(\forall j \in J)\left(\exists i \in I_{j}\right)\left(\forall u \in U_{v}\right)\left[\oiint_{g_{u}^{v}} \neq \oiint_{f_{i}^{j}}\right] .
$$

Since, by distributivity, $\mathfrak{X} \equiv \wedge\left\{\bigvee_{j \in J} \bigotimes_{f_{\xi(j)}^{j}}: \xi \in \Pi_{j \in J} I_{j}\right\}$ (where $\Pi_{j \in J} I_{j}$ is the cartesian product), we conclude by (*) and Lemma 2.2(1) (as $B_{g_{u}^{v}}$ is joinirreducible) that there exists $\xi \in \Pi_{j \in J} I_{j}$ such that

$$
\left(\forall u \in U_{v}\right)\left[\Im_{g_{u}^{v}} \neq \bigvee_{j \in J} \circledast_{f_{\xi(J)}^{\prime}}\right]
$$

Choose such a $\xi \in \Pi_{j \in J} I_{j}$. Since $\wedge_{u \in U_{v}} \mathbb{B}_{g_{u}^{v}} \leq X \vee \mathcal{C}$ we also have that $\wedge_{u \in U_{v}} \mathbb{B}_{g_{u}^{v}} \leq\left(\bigvee_{j \in J} \mathbb{G}_{f_{\xi(j)}^{j}}\right) \vee \mathfrak{C}$. On the other hand, it is easy to see that $\wedge_{u \in U_{v}} \bigotimes_{g_{u}^{u}} \equiv \bigcup_{u \in U_{v}}\left(u * \bigotimes_{g_{u}^{u}}\right)$; therefore the mass problem $\left(\bigvee_{j \in J} \mathbb{B}_{f_{\xi(j)}^{\prime}}\right) \vee \mathbb{C}$ is reducible to the mass problem $\bigcup_{u \in U_{v}}\left(u * \bigotimes_{g_{u}}\right)$.

Claim Let F_{0}, F_{1}, D, Z be degrees of difficulty such that $F_{0} \wedge F_{1} \leq D \vee Z$ and D contains a mass problem \mathfrak{D} such that $(\forall \tilde{f} \in F i s)(\forall f \in \mathscr{D})[\tilde{f} * f \in \mathscr{D}]$. Then there exist degrees of difficulty Z_{0}, Z_{1} such that $Z_{0} \wedge Z_{1}=Z$ and $F_{i} \leq D \vee Z_{i}$ ($i \in\{0,1\}$).

Proof of Claim: (The claim also follows from [12], Lemma 6.) Let F_{0}, F_{1}, D, Z be degrees of difficulty as in the statement of the claim; let $\mathcal{F}_{0} \in F_{0}, \mathcal{F}_{1} \in F_{1}$, $\mathscr{D} \in D, Z \in Z$ be mass problems and suppose that $(\forall \tilde{f} \in F i s)(\forall f \in \mathscr{D})[\tilde{f} * f \in \mathscr{D}]$. We will suppose that $D \neq 1$ (i.e. $D \neq \varnothing$), otherwise the claim is trivial. Let Ψ be a recursive operator such that $\mathcal{F}_{0} \wedge \mathcal{F}_{1} \leq \mathscr{D} \vee \mathcal{Z}$ via Ψ. For every $u \in \omega$, let $\mathcal{Z}_{u}=\{h \in \mathcal{Z}:(\exists \tilde{f} \in F i s)[\Psi(\tilde{f} \vee h)(0)$ is defined $\& \Psi(\tilde{f} \vee h)(0)=u]\}$. Given any set A, let even $(A)=\{(2 x, y):\langle 2 x, y\rangle \in A\}$ and odd $(A)=\{(2 x+1, y)$: $\langle 2 x+1, y\rangle \in A\}$. Given any finite single-valued set D, let \tilde{D} be the least finite initial segment \tilde{f} (in the lexicographical ordering of Fis) such that $D \subseteq \operatorname{graph}(\tilde{f})$. Finally, given any partial functions ϕ and ψ, let us say that ϕ and ψ are not compatible if there is some $i \in \omega$ on which ϕ and ψ are both defined and $\phi(i) \neq \psi(i)$. Let the r.e. set W define (through the corresponding enumeration operator, see [11], §9.8) the recursive operator Ψ and let $\left\{W^{s}: s \in \omega\right\}$ be a finite recursive approximation to W, such that $W^{s+1}-W^{s}$ is at most a singleton.
Subclaim $1 \quad Z \equiv \mathcal{Z}_{0} \wedge \mathcal{Z}_{1}$.
Proof of Subclaim 1: Certainly $\mathcal{Z} \leq \mathcal{Z}_{0} \wedge \mathcal{Z}_{1}$, since each \mathcal{Z}_{u} is a subset of \mathcal{Z}, and thus $\mathcal{Z} \leq \mathcal{Z}_{u}$.

Let us show the converse. Define

$$
\begin{aligned}
W^{\prime}= & \left\{\langle\langle x, y\rangle, z\rangle:\left[x=0 \&(\exists s)(\exists w)\left[D_{w} \text { single-valued } \& y \in\{0,1\} \&\right.\right.\right. \\
& \langle\langle 0, y\rangle, w\rangle \in W^{s} \& \operatorname{odd}\left(D_{w}\right) \subseteq\left\{(2 x+1, y):\langle x, y\rangle \in D_{z}\right\} \& \\
& (\forall t<s)\left(\forall\langle\langle i, j\rangle, k\rangle \in W^{t}\right)[i=0 \& j \in\{0,1\} \&
\end{aligned}
$$

D_{k} single-valued $\Rightarrow \operatorname{odd}\left(D_{k}\right), \operatorname{odd}\left(D_{w}\right)$ not compatible]]] or

$$
\left.\left[x>0 \& D_{z}=\{\langle x-1, y\rangle]\right]\right\}
$$

Clearly W^{\prime} is r.e.; also, it is not difficult to see that W^{\prime} defines a recursive operator Ψ^{\prime} such that, for every $h \in \mathcal{Z}, \Psi^{\prime}(h)=i * h$ for a suitable $i \in\{0,1\}$.

Such a number i exists since the mass problem \mathfrak{D} is nonempty and, thus, if $h \in \mathcal{Z}$ then, for some $f \in \mathscr{D}, \Psi(f \vee h)(0)$ is defined; thus for some $\tilde{f} \in F i s$, $\Psi(\tilde{f} \vee h)(0)$ is defined and $\Psi(\tilde{f} \vee h)(0) \in\{0,1\}$. On the other hand, we have that $(\forall x)\left(\forall \phi \in\left({ }^{\omega} \omega\right)^{*}\right)\left[x>0 \Rightarrow \Psi^{\prime}(\phi)(x)=\phi(x-1)\right]$. Thus $Z_{0} \wedge \mathcal{Z}_{1} \leq \mathbb{Z}$ via Ψ^{\prime} as desired.
Subclaim 2 For every $i \in\{0,1\}, \mathcal{F}_{i} \leq \mathfrak{D} \vee \mathcal{Z}_{i}$.
Proof of Subclaim 2: Let $i \in\{0,1\}$ be given. Define $W^{\prime \prime}=\{\langle\langle x, y\rangle, z\rangle$: $(\exists s)(\exists w)\left[\langle\langle 0, i\rangle, w\rangle \in W^{s} \& D_{w}\right.$ single-valued \& odd $\left(D_{w}\right) \subseteq \operatorname{odd}\left(D_{z}\right) \&$ $(\forall t<s)\left(\forall\langle\langle j, i\rangle, k\rangle \in W^{t}\right)\left[j=0 \& D_{k}\right.$ single-valued $\Rightarrow \operatorname{odd}\left(D_{k}, \operatorname{odd}\left(D_{u}\right)\right.$ not compatible $] \&(\exists u)\left[\langle\langle x+1, y\rangle, u\rangle \in W \&\left\{(j, k):\langle 2 j, k\rangle \in D_{u}\right\} \subseteq \widetilde{D}_{w} \cup\right.$ $\left.\left.\left.\left\{(j, k): j \geq \operatorname{lh}\left(\widetilde{D}_{w}\right) \&\left\langle 2\left(j-\operatorname{lh}\left(\widetilde{D}_{w}\right)\right), k\right\rangle \in D_{z}\right\} \& \operatorname{odd}\left(D_{u}\right) \subseteq \operatorname{odd}\left(D_{z}\right)\right]\right]\right\}$.

Clearly, $W^{\prime \prime}$ is r.e.: it is not difficult to see that $W^{\prime \prime}$ defines a recursive operator $\Psi^{\prime \prime}$ whose behavior can be informally described as follows: given a function h, if, say, $h=f \vee g$, then $\Psi^{\prime \prime}$ selects some finite initial segment \tilde{f} such that $\Psi(\tilde{f} \vee g)(0)$ is defined and equals i, if such a \tilde{f} exists; then, for every $x \in \omega$, $\Psi^{\prime \prime}(f \vee g)(x)=\Psi((\tilde{f} * f) \vee g)(x+1)$; otherwise $\Psi^{\prime \prime}(f \vee g)$ is the empty function. Clearly, if $f \vee g \in \mathscr{D} \vee \mathcal{Z}$, then $\Psi^{\prime \prime}(f \vee g) \in \mathcal{F}_{i}$.

The proof of the claim is complete, taking $Z_{0}=\left[Z_{0}\right], Z_{1}=\left[Z_{1}\right]$.
Let us now return to the proof of Lemma 2.3. We observe that, by the Claim, since the mass problem $\bigvee_{j \in J} \bigotimes_{f_{\xi(j)}^{j}}$ satisfies the property of the mass problem \mathscr{D} in the statement of the Claim, there exist mass problems $\mathbb{C}_{u}\left(u \in U_{v}\right)$, such that $\mathfrak{C} \equiv \wedge_{u \in U_{v}} \mathfrak{C}_{u}$, and, for every $u \in U_{v}, \mathbb{B}_{g_{u}^{v}} \leq\left(\bigvee_{j \in J} \mathbb{B}_{f_{\xi(j)}^{j}}\right) \vee \mathfrak{C}_{u}$. Since each $\circledast_{g_{u}^{v}}$ belongs to a join-irreducible degree of difficulty (Lemma 2.1(1)), we deduce that, for every $u \in U_{v}, \bigotimes_{g_{u}^{v}} \leq \mathcal{C}_{u}$ and, thus, $\wedge_{u \in U_{v}} \bigotimes_{g_{u}^{v}} \leq \mathfrak{C}$, as desired.

Now, let \mathfrak{M}^{\prime} be the sublattice (with 0,1) of \mathfrak{M} generated by the set $\left\{B_{f}\right.$: $\left.f \in \omega^{\omega}\right\}$:

Corollary 2.4 \mathfrak{M}^{\prime} is a sub-Brouwer algebra of \mathfrak{M}.
Proof: Immediate by Lemma 2.3, as \mathfrak{M}^{\prime} is closed under the operation \rightarrow.
It is not difficult to see that the forgetful functors $\mathbb{U}:$ Dltt \rightarrow Pord and $\mathbf{U}:$ Dltt $_{01} \rightarrow$ Dltt have left adjoint functors, say $\mathbb{F}:$ Pord \rightarrow Dltt and $\mathbb{L}_{01}:$ Dltt \rightarrow Ditt $_{01}$, respectively (see [6], Chapter IV, for the category theoretic terminology employed here). Here are useful descriptions of \mathbb{F} and \mathbb{L}_{01} : given any partial order $\mathfrak{B}=\left\langle P, \leq_{p}\right\rangle$, let $\mathbb{F} r(P)$ be the free distributive lattice generated by the set P : via identification of generators with the corresponding elements of P, each element of $\mathbb{F r}(P)$ can be represented as $\bigvee_{i \in I}\left(\wedge S_{i}\right)$, for some nonempty finite subsets $S_{i} \subseteq P$, and some finite nonempty set I of indices (see Balbes [1], §V.3). Then $\mathbb{F}(\mathfrak{P})$ is the lattice obtained by dividing $\mathbb{F r}(P)$ modulo the equivalence relation (indeed a lattice-theoretic congruence) generated by the preordering (i.e., reflexive and transitive) relation \leq on $\mathbb{F r}(P)$ defined by

$$
\bigvee_{v \in V}\left(\wedge S_{v}\right) \leq \bigvee_{j \in J}\left(\wedge T_{j}\right) \text { if }(\forall v \in V)(\exists j \in J)\left(\forall t \in T_{j}\right)\left(\exists s \in S_{v}\right)\left[s \leq_{p} t\right]
$$

As to \mathbb{L}_{01}, given any $\mathbb{R} \in o b(\mathbf{D l t t})$, simply let $\mathbb{L}_{01}(\mathbb{R})=1 \oplus \mathbb{R} \oplus 1$, where 1 denotes the one-element partial order and \oplus is ordinal sum, as in [1], II. 1 (see also
[1], Theorem II.5.7). Let also $\mathbb{F}_{01}=\mathbb{L}_{01} \circ \mathbb{F}:$ Pord \rightarrow Dltt $_{01}$. Clearly, for every $\mathfrak{P} \in o b\left(\right.$ Pord), $\mathbb{F}_{01}(\mathfrak{B})$ is a Brouwer algebra. Let \mathfrak{D}_{T} be the partial order of Turing degrees: we have

Corollary 2.5 $\quad \mathbb{F}_{01}\left(\mathfrak{D}_{T}\right)$ is Brw-embeddable in \mathfrak{M}.
Proof: Immediate by Corollary 2.4, as $\mathbb{F}_{01}\left(\mathfrak{D}_{T}\right) \simeq \mathfrak{M}^{\prime}$: indeed, by Lemma 2.3, the function which maps the generator $[f]_{T}$ into B_{f} extends to an isomorphism between $\mathbb{F}_{01}\left(\mathfrak{D}_{T}\right)$ and \mathfrak{M}^{\prime} : to show this, simply use the fact that, in the notation of Lemma 2.3,

$$
\bigvee_{v \in V}\left(\wedge Y_{v}\right) \leq \bigvee_{j \in J}\left(\wedge X_{j}\right) \Leftrightarrow \bigvee_{j \in J}\left(\wedge X_{j}\right) \rightarrow \bigvee_{v \in V}\left(\wedge Y_{v}\right)=0
$$

We are now ready for the desired characterization of the finite Brouwer algebras which are Brw-embeddable in \mathfrak{M}. Let $\mathbf{B r w}^{\prime}=\{\mathbb{R} \in o b(\mathbf{B r w})$: the least element of Ω is meet-irreducible and the greatest element of Ω is join-irreducible\}.

Theorem 2.6 A finite Brouwer algebra $\mathbb{\imath}$ is Brw-embeddable in \mathfrak{M} if and only if $\mathfrak{R} \in \mathbf{B r w}^{\prime}$.

Proof: The "only if" part follows from the observation that, in $\mathfrak{M}, \mathbf{0}$ is meetirreducible and $\mathbf{1}$ is join-irreducible. Let 2 and 3 denote the two-chain and the three-chain, respectively. Let $\mathbf{B r w}_{J}$ be the smallest class of Brouwer algebras such that
(1) $\underset{\sim}{2} \in \mathrm{Brw}_{J}$;
(2) if $\mathbb{R} \in \mathbf{B r w}_{J}$ then $\underset{\sim}{1} \oplus R \in \mathbf{B r w}_{J}$;
(3) Brw_{J} is closed under finite products.

Since a Brouwer algebra \mathbb{R} is subdirectly irreducible if and only if $\mathbb{\sim} \simeq \underset{\sim}{2}$ or $\mathbb{R} \simeq$ $1 \oplus \mathfrak{Z}^{\prime}$, for some Brouwer algebra \mathfrak{Z}^{\prime} (see e.g. [1], Theorem IX.4.5 or, rather, its dual version, since we are dealing here with Brouwer algebras instead of Heyting algebras), it follows by the Birkhoff subdirect product theorem (see e.g. Burris [2], Theorem 2.8.6) that every finite Brouwer algebra is Brw-embeddable in some element of Brw ${ }_{J}$. Since $\underset{\sim}{2}$ and $\underset{\sim}{3}$ are clearly Brw-embeddable in \mathfrak{M}, in order to show the claim is then enough to show that, for every $\mathfrak{R} \in \mathbf{B r w}_{J}, \mathbb{L}_{01}(\mathfrak{Z})$ is Brw-embeddable in \mathfrak{M} (we use here the fact that every finite Brouwer algebra in Brw' different from $\underset{\sim}{2}$ and $\underset{\sim}{3}$ has the form $\mathbb{L}_{01}(\mathfrak{Z})$, for some $\left.\mathfrak{Z}\right)$. To this end, we first show that for every $\mathfrak{R} \in \operatorname{Brw}_{J}$, there exists a finite partial order \mathfrak{B} such that $\mathbb{L}_{01}(\mathfrak{R})$ is Brw-embeddable in $\mathbb{F}_{01}(\mathfrak{P})$. Indeed, $\mathbb{L}_{01}(\underset{\sim}{2}) \simeq \mathbb{F}_{01}(\underset{\sim}{2})$. Moreover, for every $\mathfrak{R} \in \operatorname{Brw}_{J}$ and every $\mathfrak{B} \in o b$ (Pord), if $\mathbb{L}_{01}(\mathfrak{R})$ is Brw-embeddable in $\mathbb{F}_{01}(\mathfrak{B})$, then $\mathbb{L}_{01}(\underset{\sim}{1} \oplus \mathfrak{R})$ is clearly Brw-embeddable in $\mathbb{F}_{01}(1 \oplus \mathfrak{B})$. Let now $\mathfrak{R}_{0}, \ldots, \mathfrak{R}_{n} \in \mathbf{B r w}_{J}$ and $\mathfrak{B}_{0}, \ldots, \mathfrak{B}_{n} \in o b$ (Pord) be such that, for every $i \leq n$, $\mathbb{L}_{01}\left(\mathfrak{R}_{i}\right)$ is Brw-embeddable in $\mathbb{F}_{01}\left(\mathfrak{P}_{i}\right)$; for every $i \leq n$, let $\mathfrak{P}_{i}=\left\langle P_{i}, \leq\right\rangle$. Let \mathfrak{B} be the coproduct, in Pord, of the family $\left\langle\mathfrak{P}_{i}: i \leq n\right\rangle$ (for instance, let $\mathfrak{B}=$ $\left\langle\bigcup_{i \leq n}\{i\} \times \mathfrak{P}_{i}, \leq\right\rangle$, where $(i, p) \leq(j, q)$ if and only if $i=j$ and $p \leq_{i} q$) with coproduct injections $J_{i}: \mathfrak{F}_{i} \rightarrow \mathfrak{B}$ and let \mathfrak{T} be the set of join-irreducible elements of the cartesian product $\Pi_{i \leq n} \mathbb{F}\left(\mathfrak{P}_{i}\right)$. Henceforth, we shall identify generators of $\mathbb{F}\left(\mathfrak{P}_{0}\right), \ldots, \mathbb{F}\left(\mathfrak{B}_{n}\right)$ and $\mathbb{F}(\mathfrak{P})$ with the corresponding elements of $\mathfrak{B}_{0}, \ldots, \mathfrak{B}_{n}$ and \mathfrak{B}, respectively. Let 0_{i} denote the least element of $\mathbb{F}\left(\mathfrak{P}_{t}\right)$: it is not difficult to see that $\mathfrak{T}=\left\{\left(p_{0}, \ldots, p_{n}\right): p_{i} \in \mathfrak{B}_{i}\right.$ and p_{i} is join-irreducible in \mathfrak{P}_{i} and there is at
most one $i \leq n$ such that $\left.p_{i} \neq 0_{i}\right\}$; notice also that \mathfrak{T} is a partial order with the induced order. Let us define a function $J: \mathfrak{T} \rightarrow \mathbb{F}(\mathfrak{P})$ as follows: given $\left(p_{0}, \ldots\right.$, $\left.p_{n}\right) \in \mathfrak{T}$, if $p_{i}=\wedge X_{i}$, for every $i \leq n$, where $X_{i} \subseteq \mathfrak{F}_{i}$, then let

$$
J\left(\left(p_{0}, \ldots, p_{n}\right)\right)=\bigwedge_{i \leq n}\left(\wedge J_{i}\left(X_{i}\right)\right)
$$

(In defining J, we have used the fact that, for every $i \leq n$, the join-irreducible elements of $\mathbb{F}\left(\mathfrak{P}_{i}\right)$ are exactly those elements having the form $\wedge X$, for some $X \subseteq \mathfrak{P}_{i}$, as is easily seen using the characterization of the join-irreducible elements of $\mathbb{F r}\left(P_{i}\right)$, for which see e.g. [1], Theorem V, 3.7. Also, J is independent of the choices of the X_{i} 's.)

It is easily checked that J is a Pord-monomorphism, as each generator in $\mathbb{F}\left(\mathfrak{P}_{i}\right)$ and $\mathbb{F}(\mathfrak{P})$ is meet-irreducible. Now, in every finite distributive lattice, each element is the join of a unique set of mutually incomparable join-irreducible elements (see e.g. [1], Theorem III.2.2); define $H: \mathbb{L}_{01}\left(\Pi_{i \leq n} \mathbb{F}\left(\mathfrak{P}_{i}\right)\right) \rightarrow \mathbb{F}_{01}(\mathfrak{P})$ by
$H(x)= \begin{cases}0 & \text { if } x=0 \\ \vee J(X) & \text { if } x \in \prod_{i \leq n} \mathbb{F}\left(\mathfrak{P}_{i}\right) \text { and } x=\vee X, \text { and } X \text { consists of mutually } \\ \text { incomparable join-irreducible elements } \\ 1 & \text { if } x=1 .\end{cases}$
We claim that H is a Brw-embedding. This is an easy consequence of the following observations:
(a) H maps join-irreducible elements of $\mathbb{L}_{01}\left(\Pi_{i \leq n} \mathbb{F}\left(\mathfrak{ß}_{i}\right)\right)$ into joinirreducible elements of $\mathbb{F}_{01}(\mathfrak{P})$, by definition of J;
(b) \mathfrak{I} is closed under the operation \wedge of $\Pi_{i \leq n} \mathbb{F}\left(\mathfrak{P}_{i}\right)$.

Now, clearly H preserves v; from (a) and the fact that J is a Pord-embedding it follows that H is $1-1$ and preserves the operation \rightarrow; indeed, if Ω is any Brouwer algebra, with partial ordering \leq_{L}, and $X, Y \subseteq \&$ consist of join-irreducible elements, then we have that $\vee X \leq_{L} \vee Y$ if and only if $(\forall x \in X)(\exists y \in Y)\left[x \leq_{L} y\right]$ and $\vee X \rightarrow \vee Y=\vee\left\{y \in Y:(\forall x \in X)\left[y \not \ddagger_{L} x\right]\right\}$; from (a) and (b) it follows that H preserves the operation \wedge. Since $\mathbb{L}_{01}\left(\Pi_{i \leq n} \Re_{i}\right)$ is Brw-embeddable in $\mathbb{L}_{01}\left(\Pi_{i \leq n} \mathbb{F}\left(\Re_{i}\right)\right)$, by composition we get a Brw-embedding of $\mathbb{L}_{01}\left(\Pi_{i \leq n} \mathfrak{R}_{i}\right)$ into $\mathbb{F}_{01}(\mathfrak{P})$.

To finish off the proof it is now enough to show that, for every finite partial order \mathfrak{P}, $\mathbb{F}_{01}(\mathfrak{P})$ is Brw-embeddable in \mathfrak{M}. But every finite partial order \mathfrak{B} is Pord-embeddable in \mathfrak{D}_{T} and the functor \mathbb{F}_{01} takes Pord-monomorphisms into Brw-monomorphisms (indeed, it clearly takes Pord-morphisms into Dltt 0_{01-} morphisms by functoriality; moreover, if $K: \mathfrak{P}_{1} \rightarrow \mathfrak{P}_{2}$ is a Pord-monomorphism, then $\mathbb{F}_{01}(K)$ maps join-irreducible elements into join-irreducible elements, so we can argue as we did for H to conclude that $\mathbb{F}_{01}(K)$ is a Brw-embedding); hence, for every finite partial order $\mathfrak{B}, \mathbb{F}_{01}(\mathfrak{B})$ is Brw-embeddable in $\mathbb{F}_{01}\left(\mathfrak{D}_{T}\right)$ and, thus, by Corollary 2.5 , in \mathfrak{M}.

Remark 2.7 Let $\mathfrak{M}^{-}=\mathfrak{M}-\{0\}$. It is easy to see that \mathfrak{M}^{-}is still a Brouwer algebra: indeed, if f is any recursive function, then B_{f} is the least element of \mathfrak{M}^{-}: call 0^{-}this least element. Now, given any finite partial order \mathfrak{B}, we have
that $\mathbb{F}_{01}(\mathfrak{P})$ is Brw-embeddable in \mathfrak{M}^{-}: indeed, it suffices to use a Pord-embedding $I: \mathfrak{B} \rightarrow \mathfrak{D}_{T}$ such that the least element of \mathfrak{D}_{T} is not in the range of I; then, by composition, we get a Brw-embedding of $\mathbb{F}_{01}(\mathfrak{P})$ into \mathfrak{M} which avoids 0^{-}. Finally, define $H^{-}: \mathbb{F}_{01}(\mathfrak{B}) \rightarrow \mathfrak{M}^{-}$by $H^{-}(x)=H(x)$ if $x \neq 0$ and $H^{-}(0)=0^{-}$; so $\mathbb{F}_{01}(\mathfrak{P})$ is Brw-embeddable in \mathfrak{M}^{-}via H^{-}. Now, since 0^{-}is meet-irreducible (by [4], Corollary 2.9), it follows that a finite Brouwer algebra is Brw-embeddable in \mathfrak{M}^{-}if and only if $\mathbb{R} \in$ Brw' $^{\prime}$.

Corollary $2.8([8],[12]) \quad T h(\mathfrak{M})$ is the intermediate logic obtained by adding the axiom scheme $\neg \alpha \vee \neg \neg \alpha$ to the intuitionistic propositional calculus.
Proof: Let Jan (after Jankov) be the logic obtained by adding the scheme $\neg \alpha \vee \neg \neg \alpha$ to the intuitionistic propositional calculus. It is shown in Jankov [5] that $\operatorname{Jan}=\cap\left\{T h\left(\mathbb{L}_{01}(\ell)\right): \Omega\right.$ is a finite Brouwer algebra $\}$. Thus, by Theorem 2.6 and the fact that if ℓ_{1} is Brw-embeddable in ℓ_{2} then $\operatorname{Th}\left(\ell_{2}\right) \subseteq \operatorname{Th}\left(\ell_{1}\right)$ (see for instance [10]), it follows that $\operatorname{Th}(\mathfrak{M}) \subseteq \operatorname{Jan}$.

On the other hand, one trivially checks that $\operatorname{Jan} \subseteq \operatorname{Th}(M)$, by showing that for every $\alpha \in$ Form, the formula $\neg \alpha \vee \neg \neg \alpha$ is valid in \mathfrak{M}.

3 The case of the Mučnick lattice Theorem 2.6 shows further similarities, besides those pointed out in [13], between the Medvedev lattice and the Mučnick lattice, as is shown in Fact 3.3 below (a comparative study of these lattices is presented in [13]; see also [4] and Mučnick [9]). We proceed to give the main definitions.

Given mass problems $Q, ß \subseteq{ }^{\omega} \omega$, let $Q \leq_{w} ®$ if $(\forall g \in ß)(\exists f \in \mathbb{Q})\left[f \leq_{T} g\right]$. Let \equiv_{w} be the equivalence relation generated by \leq_{w} and, given any mass problem \mathbb{Q}, let $[\mathcal{Q}]_{w}$ denote the equivalence class of \mathbb{Q} under \equiv_{w} : such equivalence classes are partially ordered by: $[\mathcal{Q}]_{w} \leq_{w}[\mathcal{B}]_{w}$ if $Q \leq_{w} \mathcal{B}$.
Definition 3.1 ([9]) Let $\mathfrak{M}_{w}=\left\langle\left\{[\mathbb{Q}]_{w}: \mathbb{Q} \subseteq{ }^{\omega} \omega\right\}, \leq_{w}\right\rangle . \mathfrak{M}_{w}$ is in fact an object of Dltt ${ }_{01}$ called the Mučnick lattice.
\mathfrak{M}_{w} has the following useful representation. Given any partial order $\mathfrak{B}=$ $\left\langle P, \leq_{p}\right\rangle$, let (see [3]) $\mathbb{H}(\mathfrak{P})$ be the object of Dltt $_{01}$ given by:
(1) the elements of $\mathbb{H}(\mathfrak{B})$ are the subsets $X \subseteq P$ which are upward closed under \leq_{p} (i.e., $p \in X \& p \leq_{p} q \Rightarrow q \in X$);
(2) given $X, Y \in \mathbb{H}(\mathfrak{B})$, let $X \leq Y$ if $Y \subseteq X$; then \cup, \cap correspond to \wedge, v respectively; \varnothing is the greatest element and P is the least element.

Lemma 3.2 $\mathfrak{M}_{w} \simeq \mathbb{H}\left(\mathfrak{D}_{T}\right)$.
Proof: See [13].
It is known that for every partial order $\mathfrak{B}=\left\langle P, \leq_{p}\right\rangle, \mathbb{H}(\mathfrak{B})$ (hence $\mathbb{H}\left(\mathfrak{D}_{T}\right)$ and thus \mathfrak{M}_{w} by Lemma 3.2) is a Brouwer algebra (under the operation \rightarrow given by: for every $X, Y \in \mathbb{H}(\mathfrak{P}), X \rightarrow Y=\left\{x \in P:(\forall y \in P)\left[x \leq_{p} y \Rightarrow y \notin X\right.\right.$ or $y \in Y]\}$).

Fact 3.3 A finite $\Omega \in$ Brw is Brw-embeddable in \mathfrak{M}_{w} if and only if $\Omega \in$ Brw'.
Proof: The "only if" part follows from the fact that $\mathfrak{M}_{w} \in$ Brw'. The converse is an easy consequence, via Lemma 3.2, of the duality between partial orders and

Heyting algebras (hence Brower algebras as well), given in [3]. Here is, however, a more direct proof. As in Theorem 2.6, it is enough to show that, for every $\mathfrak{R} \in \operatorname{Brw}_{J}, \mathbb{L}_{01}(\mathfrak{Z})$ is Brw-embeddable in \mathfrak{M}_{w}. Given any function f, let $B_{f}^{w}=$ $\left[\mathscr{B}_{f}\right]_{w}$. The following are easily shown:
(1) for every f, B_{f}^{w} is join-irreducible (by an argument similar to that of Lemma 2.2(1));
(2) the mapping: $[f]_{T} \rightarrow B_{f}^{w}$ is a Pord-monomorphism (as in Lemma 2.2(2)), that preserves (existing) infima.

Thus, let $\ell \in \mathbf{B r w}_{J}$ be given and let $\mathfrak{\beta}$ be the partial order of the join-irreducible elements of \mathfrak{R} : by definition of Brw_{J}, it is easy to see that \mathfrak{B} is a lower semilattice. Let $J: \mathfrak{B} \rightarrow \mathfrak{D}_{T}$ be an inf-preserving embedding and, for every $p \in \mathfrak{B}$, choose $f_{p} \in J(p)$. Finally define $I: \mathbb{L}_{01}(\mathfrak{Z}) \rightarrow \mathfrak{M}_{w}$ by:

$$
I(x)= \begin{cases}0 & \text { if } x=0 \\ \bigvee_{i \in I} B_{f_{i}}^{w} & \text { if } x \in \Omega \& x=v I, \text { where } I \subseteq \mathfrak{B} \text { consists of mutually } \\ 1 & \text { if } x=1 .\end{cases}
$$

It is not difficult to see that I is a Brw-embedding, by arguments similar to those employed for H in the proof of Theorem 2.6.
Corollary 3.4 $\operatorname{Th}\left(\mathfrak{M}_{w}\right)=$ Jan.
Proof: See proof of Corollary 2.8, using Fact 3.3.
Remark 3.5 (1) Let $\mathfrak{M}_{w}^{-}=\mathfrak{M}_{w}-\left\{\mathbf{0}_{w}\right\}$, where $\mathbf{0}_{w}$ is the least element of \mathfrak{M}_{w}. It is easily seen that \mathfrak{M}_{w}^{-}is still a Brouwer algebra. One can show that a finite Brouwer algebra Ω is Brw-embeddable in \mathfrak{M}_{w}^{-}if and only if the greatest element of ℓ is join-irreducible; indeed, in the proof of Fact 3.3, define the embedding I : $\mathbb{L}_{01}(\mathfrak{Z}) \rightarrow \mathfrak{M}_{w}$ starting from a Pord-embedding $J: \mathfrak{B} \rightarrow \mathfrak{D}_{T}$ which preserves the least element as well as infima: then I restricts to a Brw-embedding I^{-}: $\mathfrak{R} \oplus \underset{\sim}{1} \rightarrow \mathfrak{M}_{w}^{-}$.
(2) Corollary 3.4 answers a question, raised in [9], aiming to characterize Th $\left(\mathfrak{M}_{w}\right)$. Of course, answering this question is nowadays trivial, because of the work in [3] and [6], not available at the time of [9].

REFERENCES

[1] Balbes, R. and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri, 1974.
[2] Burris, S. and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York, 1980.
[3] De Jongh, D. H. J. and A. S. Troelstra, "On the connection of partially ordered sets with some pseudo-Boolean algebras," Indagationes Mathematicae, vol. 28 (1966), pp. 317-329.
[4] Dyment, E.Z., "Certain properties of the Medvedev lattice," Mat. Sb. (N. S.), vol. 101 (143), (1976), pp. 360-379.
[5] Jankov, V. A., "The calculus of the weak law of excluded middle," Mathematics of USRR Izvestija, vol. 2 (1968), pp. 997-1104.
[6] MacLane, S., Categories for the Working Mathematician, Springer Verlag, New York (1971).
[7] Medvedev, Ju. T., "Degrees of difficulty of the mass problems," Soviet Mathematics Doklady, vol. 104 (1955), pp. 501-504.
[8] Medvedev, Ju. T., "Finite problems," Soviet Mathematics Doklady, 142, 1962, pp. 1015-1018.
[9] Mučnick, A. A., "On strong and weak reducibility of algorithmic problems," Sibirskǐ̌ Matematičeskǐ̆ Žurnal, vol. 4 (1963), pp. 1328-1341.
[10] Rasiowa, W. and R. Sikorski, The Mathematics of Metamathematics, Panstowe Wydawnictwo Naukowe, Warszawa (1963).
[11] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).
[12] Skvortsova, E. Z., "Faithful interpretation of the intuitionistic propositional calculus by an initial segment of the Medvedev lattice," Sibirskǐ Matematičeskil Žurnal, vol. 29 (1988), pp. 171-178.
[13] Sorbi, A., "Some remarks on the algebraic structure of the Medvedev lattice," The Journal of Symbolic Logic, vol. 55 (1990), pp. 831-853.
[14] Sorbi, A., The fine structure of the Medvedev lattice and the partial degrees, Ph.D. dissertation, CUNY, New York, 1987.

Dipartimento di Matematica

Universita di Siena
via del Capitano 15
53100 Siena, Italy

