Bounds in Weak Truth-Table Reducibility

KAROL HABART

Abstract

A necessary and sufficient condition on a recursive function is given so that arbitrary sets can be truth-table reduced via this function as the bound. A corresponding hierarchy of recursive functions is introduced and some partial results and an open problem are formulated.

Weak truth-table reducibility, often called bounded Turing reducibility, is defined as follows: $A \subseteq \omega$ is weak-truth-table reducible to $B \subseteq \omega\left(A \leq_{\text {wtt }} B\right)$ if there is a recursive function f and an algorithm which answers questions of the form " $n \in A$?" when supplied answers to any questions it asks of the form " $m \in B$?" for $m \leq f(n)$. The function f is called the bound of the reduction.

The hierarchy of subsets of ω induced by the relation $\leq_{\text {wtt }}$ was extensively studied in the past (cf. [1]). In this paper, however, a hierarchy of the bounds (i.e. of recursive functions) is considered. We denote by $S(f)$ the set of A such that there is a B such that $A \leq_{\text {wtt }} B$ via a reduction with bound f, and we write $f \ll g$ iff $S(f) \subseteq S(g)$. Of course, $\mathcal{R} \subseteq S(f) \subseteq 2^{\omega}$ for all recursive functions f. We give necessary and sufficient conditions on f for $S(f)=R$ and for $S(f)=$ 2^{ω}, i.e. for f being on the bottom and on the top of the hierarchy induced by \ll. We also give a necessary condition for $f \ll g$.

Our interest is focused to the bound of the wtt-reduction by the following phenomenon: A part of an (in general) nonrecursive set B can be given by a list. Having the set A Turing reduced to B, a part of A is given which corresponds to the list of a part of B, and which may be much larger than the list itself depending mainly on the bound of the reduction.

A motivation for the study of our hierarchy of bounds comes also from the theory of nets of automata. Consider a chain of automata numbered by natural numbers. Suppose each automaton is in one of the two states 0 and 1. Then the state of the whole net is uniquely determined by a set $B \subseteq \omega$ in an obvious way. Now let the automata work, and after some time all of them may stop and the net may come into a state determined by a set A. In a fairly devised net we would have $A \leq_{\text {wtt }} B$. The bound f of this reduction depends on how the
communication between the automata is devised. Thus the relation \ll is a generalization of the relation "less powerful" among the different kinds of communication between automata in a net.

We fix our notation first. We use ω^{ω} to denote the set of functions from ω to ω, \mathbb{R} denotes the recursive functions; $f\lceil A$ means the restriction of f to the domain $A ; f[A]$ denotes the image of A under $f, f^{-1}[A]=\{x: f(x) \in A\} ;|A|$ denotes the cardinality of $A, 2^{A}$ the power set of the set $A ; 2^{<\omega}$ denotes finite sequences of 0 's and 1 's; if σ is a finite string (i.e. ranging over $2^{<\omega}$) we use the length function $\operatorname{lh}(\sigma)=\mu x[x \notin \operatorname{dom} \sigma]=|\operatorname{dom} \sigma|$. For a finite set F let ind F denote the canonical index of F, i.e. if $F=\left\{y_{1}, \ldots, y_{n}\right\}, y_{1}<\cdots<y_{n}$, then ind $F=2^{y_{1}}+\cdots+2^{y_{n}}$; ind $\varnothing=0$. We write $F=D_{\text {ind } F}$.

We identify sets with their characteristic functions, the integer n with the set $\{0,1, \ldots, n-1\}$, and the integer 0 with the set \varnothing.

Let $\langle e\rangle^{B}$ denote the (possibly partial) recursive function with index e relative to the set B. For $\sigma \in 2^{<\omega}$ let us define $\sigma^{\prime} \in 2^{\omega}$ by $\sigma^{\prime}(x)=\sigma(x)(x<\operatorname{lh} \sigma)$ and $\sigma^{\prime}(x)=0(x \geq \operatorname{lh} \sigma)$ and define $\langle e\rangle^{\sigma}(x)=y$ iff $\langle e\rangle^{\sigma^{\prime}}(x)=y$ and only numbers z with $z<\operatorname{lh}(\sigma)$ are used in the computation. We define $\langle e, f\rangle^{A}$, the Turing oracle function with index e, oracle A, and bound f as follows:

$$
\langle e, f\rangle^{A}(x)=y \leftrightarrow\left(\exists \sigma \in 2^{<\omega}\right)\left[\sigma \subseteq A \wedge \operatorname{lh}(\sigma) \leq f(x)+1 \wedge\langle e\rangle^{\sigma}(x)=y\right] .
$$

Further let

$$
\mathcal{S}(f)=\left\{S \subseteq \omega:(\exists A \subseteq \omega)(\exists e \in \omega)\left[S=\langle e, f\rangle^{A}\right]\right\}
$$

i.e. $S(f)$ denotes the set of all subsets of ω which are weak truth-table reducible to an oracle via bound f.

Obviously

$$
2^{\omega} \supseteq S(f) \supseteq \mathbb{R}
$$

Put

$$
f \ll g \leftrightarrow S(f) \subseteq S(g)
$$

and call f maximal iff $S(f)=2^{\omega}$ and minimal iff $S(f)=\mathcal{R}$.
It is obvious that, e.g., $\lambda x(x)$ is maximal and $\lambda x(0)$ is minimal. A function f defined by

$$
\begin{aligned}
f(2 x) & =0 \\
f(2 x+1) & =2 x+1 \quad(x \in \omega)
\end{aligned}
$$

is not maximal, because for each $A \in S(f)$ the set $A \cap\{2 x: x \in \omega\}$ must be recursive; and it is not minimal, because for some $A \in S(f)$ the set $A \cap\{2 x+$ $1: x \in \omega\}$ need not to be recursive.

Theorem $1 \quad f$ is minimal iff f is bounded.

Proof: If f is bounded then the minimality of f follows immediately.
So assume f is not bounded. Obviously there is $e \in \omega$ so that for all $A \subseteq \omega$, $x \in \omega$

$$
\langle e, f\rangle^{A}(x)=A(f(x))
$$

Because f is unbounded there is a recursive subset $S \subseteq \omega$ so that $f[S]$ is recursive, infinite and f is one-one on S. Choosing A so that $f[S] \cap A$ is nonrecursive we get $S \cap\langle e, f\rangle^{A}$ nonrecursive whence $S(f) \nsubseteq \mathcal{R}$.

Lemma 1 If

$$
\begin{equation*}
\sup _{x \in \omega}\left(\left|f^{-1}[x]\right|-x\right)<\infty \tag{L1.1}
\end{equation*}
$$

then f is maximal.
Proof: Let $C-1$ be the supremum in (L1.1). We define a recursive function g by induction as follows:

$$
\begin{aligned}
g(0) & =C+f(0) \\
g(x+1) & =\max ((1+C+f(x+1)) \backslash g[x+1]) .
\end{aligned}
$$

In order to have g well-defined we need to show for every $x \in \omega$:

$$
(1+C+f(x)) \backslash g[x] \neq 0 .
$$

Assume $(1+C+f(x)) \backslash g[x]=0$ for some x and let it be the least such x. Then $g[x] \cap(1+C+f(x))=1+C+f(x)$. Choose y maximal with $g[x] \cap y=y$. Obviously $y \geq 1+C+f(x)$.

Claim For each $z \in x$ if $g(z)<y$ then $C+f(z)<y$.
Proof: Assume $g(z)<y$ and $C+f(z) \geq y$. Then obviously $z \neq 0$. Because $g(z)=\max ((1+C+f(z)) \backslash g[z])$ we have $y \in g[z]$ whence $y \in g[x]$, too. But then $g[x] \cap(1+y)=1+y$. This contradicts the choice of y.

Because for each $z \in x$ by definition $g(z) \notin g[z], g$ is injective on x and we have $\left|g^{-1}[y]\right|=y$, i.e. by our claim $g^{-1}[y] \subseteq f^{-1}[y-C]$ whence $\left|f^{-1}[y-C]\right| \geq y$, i.e. $\left|f^{-1}[y-C]\right|-(y-C) \geq C$. This contradicts the fact that $C-1$ is the supremum in (L1.1). Thus g is well-defined and injective. Moreover,

$$
\begin{equation*}
g(x) \leq f(x)+C \quad(x \in \omega) \tag{L1.2}
\end{equation*}
$$

is immediate.
Let $A \subseteq \omega$ be arbitrary. Choose $\sigma \in 2^{<\omega}$ so that $\operatorname{lh}(\sigma)=C$ and $\sigma(g(x))=1$ iff $g(x)<C$ and $x \in A$. Choose $B \subseteq \omega$ so that $g(x)-C \in B$ iff $g(x) \geq C$ and $x \in A$. This is all possible because of the injectivity of g.

Finally, choose $e \in \omega$ so that

$$
\langle e, f\rangle^{S}(x)= \begin{cases}\sigma(g(x)) & \text { if } g(x)<C \\ S(g(x)-C) & \text { if } g(x) \geq C\end{cases}
$$

This is possible because of (L1.2). Then obviously

$$
A=\langle e, f\rangle^{B} .
$$

Note: The construction of the recursive function g in the proof of Lemma 1 shows that (L1.1) implies the following: there is a one-one recursive function g and a constant C such that (L1.2) holds. This condition is even equivalent to (L1.1) and hence a condition on f for maximality.

In order to show the converse of Lemma 1, and thus to give a necessary and sufficient condition for maximality, we shall prove a more general result. We shall introduce a recursive functional θ which will be of much use later on. It will be defined by an auxiliary functional Φ. For recursive f the function Φf is defined by:

$$
\begin{aligned}
\Phi f(x, 0) & =0 \\
\Phi f(x, y+1) & =\min \left\{y+1, \Phi f(x, y)+\left|f^{-1}[\{y\}] \cap D_{x}\right|\right\} .
\end{aligned}
$$

The function Θf is then:

$$
\Theta f(x)=\Phi f\left(x, 1+\max f\left[D_{x}\right]\right) \quad(\max 0=0)
$$

The functional Θ was introduced to have a result like Lemma 6. Intuitively, for a finite set $D_{x} \Theta f(x)$ yields something like the cardinality of that part of the oracle B that will carry some information for A 「 D_{x} in addition to the index e when $A=\langle e, f\rangle^{B}$. We give some properties of θ in the following lemmas.
Lemma $2\left(\forall y>\max f\left[D_{x}\right]\right)[\Theta f(x)=\Phi f(x, y)]$.
Proof: Let $y>\max f\left[D_{x}\right]+1$. Then $f^{-1}[\{y-1\}] \cap D_{x}=0$ and so $\Phi f(x, y)=$ $\Phi f(x, y-1)$.

Lemma $3 \quad \Theta f(x) \leq\left|D_{x}\right|$.
Proof: One shows easily that

$$
\Phi f(x, y) \leq \sum_{z<y}\left|f^{-1}[\{z\}] \cap D_{x}\right|
$$

whence $\theta f(x) \leq\left|D_{x}\right|$.
Lemma 4 If $D_{x} \subseteq D_{y}$ then $\Theta f(x) \leq \Theta f(y)$.
Proof: Obviously $\Phi f(x, z)$ grows in z for fixed x. Now it suffices to show that if $D_{x} \subseteq D_{y}$ then $\Phi f(x, z) \leq \Phi f(y, z)$. This follows immediately by induction.
Lemma 5 If $D_{y}=D_{x} \cup\{z\}$ then $\Theta f(y)-\Theta f(x) \leq 1$ (i.e. for all x, y with $D_{x} \subseteq D_{y}$ we have $\left.\Theta f(y)-\Theta f(x) \leq\left|D_{y} \backslash D_{x}\right|\right)$.
Proof: Let $f(z)=u$. Then $\Phi f(x, v)=\Phi f(y, v)$ for $v \leq u$. Obviously $\Phi f(y, u+$ 1) $-\Phi f(x, u+1) \leq 1$ and then also $\Phi f(y, v)-\Phi f(x, v) \leq 1$ for $v>u$. By Lemma 2 we get then $\Theta f(y)-\Theta f(x) \leq 1$.
Lemma $6 \quad$ For every recursive f and each $e \in \omega$:

$$
\mid\left\{\langle e, f\rangle^{A}\left\lceil D_{x}: A \subseteq \omega\right\} \mid \leq 2^{\ominus f(x)}\right.
$$

Proof: Put $S=\left\{\langle e, f\rangle^{A}\left[D_{x}: A \subseteq \omega\right\}\right.$ and $S_{y}=\left\{\langle e, f\rangle^{A}\left[f^{-1}[y] \cap D_{x}: A \subseteq \omega\right\}\right.$. Obviously $S \subseteq 2^{\max D_{x}+1}$ and $S=S_{1+\max f\left[D_{x}\right]}$. Thus it suffices to show

$$
\begin{equation*}
\left|S_{y}\right| \leq 2^{\Phi f(x, y)} \tag{L6.1}
\end{equation*}
$$

We show this by induction on y. Obviously for $y=0$ (L6.1) is fulfilled. Now assume (L6.1) and consider $\left|S_{y+1}\right|$. For every $z \in f^{-1}[y+1] \cap D_{x}$ and $A \in 2^{\omega}$ we have

$$
\langle e, f\rangle^{A}(z)=\langle e, f\rangle^{A\lceil(y+1)}(z)
$$

Thus

$$
\begin{equation*}
\left|S_{y+1}\right| \leq \mid\left\{A \lceil (y + 1) : A \subseteq \omega \} \left|\leq\left|2^{y+1}\right|=2^{y+1} .\right.\right. \tag{L6.2}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
S_{y+1} & =\left\{\langle e, f\rangle^{A}\left\lceil\left(f^{-1}[y] \cap D_{x}\right) \cup\left(f^{-1}[\{y\}] \cap D_{x}\right): A \subseteq \omega\right\}\right. \\
& \subseteq\left\{\alpha \cup \beta: \alpha \in S_{y} \wedge \beta \in 2^{f^{-1}[\{y\}] \cap D_{x}}\right\}
\end{aligned}
$$

whence

$$
\left|S_{y+1}\right| \leq\left|S_{y}\right| \cdot 2^{\left|f^{-1}[\{y]] \cap D_{x}\right|}
$$

i.e. together with (L6.2) we get finally

$$
\left|S_{y+1}\right| \leq 2^{\Phi f(x, y+1)}
$$

Theorem 2 For every f,g:

$$
\begin{equation*}
f \ll g \rightarrow \sup _{x \in \omega}(\Theta f(x)-\Theta g(x))<\infty . \tag{T2.1}
\end{equation*}
$$

Proof: Assume that the supremum in (T2.1) is infinite.
Claim 1 One can construct a recursive sequence $\left(s_{n}\right)_{n=0}^{\infty}$ so that

$$
\begin{equation*}
\max D_{s_{n}}<\min D_{s_{m}} \quad(n<m) \tag{T2.2}
\end{equation*}
$$

and

$$
\begin{gather*}
\Theta f\left(s_{0}\right)>\theta g\left(s_{0}\right) \\
\Theta f\left(s_{n+1}\right)>\theta g\left(s_{n+1}\right)+\Theta f\left(s_{n}\right) . \tag{T2.3}
\end{gather*}
$$

Proof: The existence of a suitable s_{0} is obvious. Now let s_{0}, \ldots, s_{n} be found. Put $z=\max D_{s_{n}}$. Then there is a smallest u with $\Theta f(u)-\Theta g(u)>\Theta f\left(s_{n}\right)+$ $z+1$. Let s_{n+1} be the canonical index of $D_{u} \backslash(z+1)$. Then by Lemma 5 $\Theta f\left(s_{n+1}\right) \geq \Theta f(u)-(z+1)$ and by Lemma $4 \Theta g\left(s_{n+1}\right) \leq \Theta g(u)$ so that $\Theta f\left(s_{n+1}\right)-\Theta g\left(s_{n+1}\right) \geq \Theta f(u)-\Theta g(u)-(z+1)>\Theta f\left(s_{n}\right)$.

Now define a function h as follows:

$$
h(x)= \begin{cases}0 & \text { if } x \notin \bigcup_{n \in \omega} D_{s_{n}} \\ \min \left\{f(x),\left|x \cap f^{-1}[\{f(x)\}] \cap D_{s_{n}}\right|\right. \\ \left.+\Theta f\left(\operatorname{ind}\left(f^{-1}[f(x)] \cap D_{s_{n}}\right)\right)\right\} & \text { if } x \in D_{s_{n}} .\end{cases}
$$

Because we can compute ind $\left(f^{-1}[f(x)] \cap D_{s_{n}}\right)$ and because under (T2.2 and 2.3) one can decide whether $x \in \cup_{n \in \omega} D_{s_{n}}$ and if so then compute n so that $x \in D_{s_{n}}$, h must be a recursive function.

Claim 2 We have

$$
\begin{equation*}
h\left[f^{-1}[y] \cap D_{s_{n}}\right]=\Theta f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{s_{n}}\right)\right) . \tag{T2.4}
\end{equation*}
$$

Proof: For $y=0$ (T2.4) is obvious. Now assume (T2.4). We have

$$
f^{-1}[y+1] \cap D_{s_{n}}=\left(f^{-1}[y] \cap D_{s_{n}}\right) \cup\left(f^{-1}[\{y\}] \cap D_{s_{n}}\right) .
$$

If $f^{-1}[\{y\}] \cap D_{s_{n}}=0$ then obviously (T2.4) holds for $y+1$, too. So let $f^{-1}[\{y\}] \cap D_{s_{n}}=\left\{z_{0}, \ldots, z_{k}\right\}, z_{0}<\cdots<z_{k}$. By the definition of h we have

$$
h\left(z_{i}\right)=\min \left\{y, i+\Theta f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{s_{n}}\right)\right)\right\}
$$

i.e. together with the induction assumption

$$
\begin{align*}
h\left[f^{-1}[y+1] \cap D_{s_{n}}\right]= & \min \left\{y+1,\left|f^{-1}[\{y\}] \cap D_{s_{n}}\right|\right. \\
& \left.+\Theta f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{s_{n}}\right)\right)\right\} . \tag{T2.5}
\end{align*}
$$

Further it is obvious that for $(0 \leq u \leq y)$

$$
\Phi f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{s_{n}}\right), u\right)=\Phi f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{s_{n}}\right), u\right)
$$

so that we have

$$
\Theta f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{s_{n}}\right)\right)=\Phi f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{s_{n}}\right), y\right)
$$

and

$$
\Theta f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{s_{n}}\right)\right)=\Phi f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{s_{n}}\right), y+1\right)
$$

whence
$\Theta f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{S_{n}}\right)\right)=\min \left\{y+1, \Theta f\left(\operatorname{ind}\left(f^{-1}[y] \cap D_{S_{n}}\right)\right)\right.$

$$
\left.+\left|f^{-1}[\{y\}] \cap\left(f^{-1}[y+1] \cap D_{s_{n}}\right)\right|\right\}
$$

so that by (T2.5)

$$
h\left[f^{-1}[y+1] \cap D_{s_{n}}\right]=\Theta f\left(\operatorname{ind}\left(f^{-1}[y+1] \cap D_{s_{n}}\right)\right) .
$$

This completes the proof of Claim 2.
Because $D_{s_{n}}=D_{s_{n}} \cap f^{-1}\left[1+\max f\left[D_{s_{n}}\right]\right]$ we have by Claim 2:

$$
\begin{equation*}
h\left[D_{s_{n}}\right]=\Theta f\left(s_{n}\right) \tag{T2.6}
\end{equation*}
$$

Now let e be an index so that

$$
\langle e, f\rangle^{A}(x)= \begin{cases}1 & \text { if } h(x) \in A \\ 0 & \text { elsewhere }\end{cases}
$$

Then by (T2.6) for every $n \in \omega$ and $\rho \in 2^{<\omega}$ where $\operatorname{lh}(\rho)=r \leq \Theta f\left(s_{n}\right)$ we have:

$$
\begin{equation*}
\mid\left\{\langle e, f\rangle^{\sigma}\left|D_{s_{n}}: \sigma \in 2^{\Theta f\left(s_{n}\right)} \wedge \sigma\lceil r=\rho\}\right|=2^{\Theta f\left(s_{n}\right)-r} .\right. \tag{T2.7}
\end{equation*}
$$

Now we define a set $U=\bigcup_{n \in \omega} \sigma_{n}$ where $\sigma_{n} \in 2^{\ominus f\left(s_{n}\right)}$ is defined as follows:
Choose $\sigma_{0} \in 2^{\ominus f\left(s_{0}\right)}$ so that

$$
\langle e, f\rangle^{\sigma_{0}}\left\lceilD _ { s _ { 0 } } \notin \left\{\langle 0, g\rangle^{A}\left\lceil D_{s_{0}}: A \subseteq \omega\right\}\right.\right.
$$

This is possible because of (T2.7), Lemma 6, and (T2.3). Now assume σ_{n} is chosen. Then choose σ_{n+1} so that $\sigma_{n+1}\left\lceil\Theta f\left(s_{n}\right)=\sigma_{n}\right.$ and

$$
\langle e, f\rangle^{\sigma_{n+1}}\left\lceilD _ { s _ { n + 1 } } \notin \left\{\langle n+1, g\rangle^{A}\left\lceil D_{s_{n+1}}: A \subseteq \omega\right\}\right.\right.
$$

This is again possible because of (T2.7), Lemma 6, and (T2.3). ${ }^{1}$

We have now for every $n \in \omega$ and $A \subseteq \omega$:

$$
\langle e, f\rangle^{U}\left\lceil D_{s_{n}}=\langle e, f\rangle^{\sigma_{n}}\left\lceil D_{s_{n}} \neq\langle n, g\rangle^{a}\left\lceil D_{s_{n}},\right.\right.\right.
$$

i.e.

$$
\langle e, f\rangle^{U} \neq\langle n, g\rangle^{A}
$$

whence $f \ll g$. Contradiction.
Whether the converse of Theorem 2 holds or not is an open question. The author conjectures that condition (T2.1) is a necessary and sufficient condition for $f \ll g$ but he has managed to find neither a proof nor a counterexample yet.

Now we begin proving the converse of Lemma 1 using Theorem 2.
Lemma $7 \quad \Theta(\lambda z(z))(x)=\left|D_{x}\right|$.
Proof: Put $f=\lambda z(z)$. We shall show

$$
\begin{equation*}
\Phi f(x, y)=\left|f^{-1}[y] \cap D_{x}\right| . \tag{L7.1}
\end{equation*}
$$

Lemma 7 follows then immediately from (L7.1).
For $y=0$ (L7.1) is obvious. Now assume (L7.1) for some y. Now $\left|f^{-1}[\{y\}] \cap D_{x}\right| \leq 1$ and because $\Phi f(x, y) \leq y$ we have

$$
\Phi f(x, y)+\left|f^{-1}[\{y\}] \cap D_{x}\right| \leq y+1
$$

i.e.

$$
\Phi f(x, y+1)=\left|f^{-1}[y] \cap D_{x}\right|+\left|f^{-1}[\{y\}] \cap D_{x}\right|=\left|f^{-1}[y+1] \cap D_{x}\right|
$$

Lemma 8 If $f^{-1}[z]$ is finite then $\Theta f\left(\operatorname{ind} f^{-1}[z]\right) \leq z$.
Proof: Obviously $1+\max f\left[f^{-1}[z]\right] \leq z$ and because for all y

$$
\Phi f(x, y) \leq y
$$

Lemma 8 follows immediately.
Lemma $9 \quad \Theta(\lambda z(0))(x) \leq 1(x \in \omega)$.
Proof: Put $f=\lambda z(0)$. We shall show

$$
\begin{equation*}
\Phi f(x, y) \leq 1 \quad(x, y \in \omega) . \tag{L9.1}
\end{equation*}
$$

For $y=0$ and $y=1$ (L9.1) is immediate. Now assume (L9.1) for some $y \geq 1$. Then $f^{-1}[\{y\}]=0$, i.e.

$$
\Phi f(x, y+1)=\Phi f(x, y) \leq 1 .
$$

Lemma 10 If $\sup _{x \in \omega}(\Theta(\lambda z(z))(x)-\Theta f(x))<\infty$ then for all $x, f^{-1}[x]$ is finite.
Proof: Suppose that for some $x, f^{-1}[x]$ is infinite. Let y_{0}, y_{1}, \ldots enumerate $f^{-1}[x]$ and for each $k \geq 0$, let $x_{k}=\operatorname{ind}\left\{y_{0}, \ldots, y_{k}\right\}$. Then for all $k \geq 0$, $\Theta f\left(x_{k}\right)=\Phi f\left(x_{k}, 1+\max f\left[D_{x_{k}}\right]\right) \leq \Phi f\left(x_{k}, 1+x\right) \leq x+1$ while by Lemma 7 $\Theta(\lambda z(z))\left(x_{k}\right)=\left|D_{x_{k}}\right|=k+1$. Contradiction.

Theorem $3 \quad f$ is maximal iff

$$
\begin{equation*}
\sup _{x \in \omega}\left(\left|f^{-1}[x]\right|-x\right)<\infty . \tag{T3.1}
\end{equation*}
$$

Proof: According to Lemma 1 it suffices to show that if f is maximal then (T3.1) holds. If f is maximal then $f \gg \lambda z(z)$ and by Theorem 2

$$
\sup _{x \in \omega}(\Theta(\lambda z(z))(x)-\Theta f(x))<\infty,
$$

so by Lemma 10 we have in particular

$$
\sup _{x \in \omega}\left(\Theta(\lambda z(z))\left(\operatorname{ind} f^{-1}[x]\right)-\Theta f\left(\operatorname{ind} f^{-1}[x]\right)\right)<\infty
$$

whence (T3.1) follows immediately by Lemmas 7 and 8.
Theorem 3 yields several sufficient conditions for f not to be maximal.

Corollary 1

$$
\lim \sup \frac{f(x)}{x}<1
$$

then f is not maximal.
Proof: Let $\lim \sup [f(x) / x]<C<1$. Put $d=(1-C) / C$. Then $d>0$. Obviously, for some $M \geq 0$

$$
\left|f^{-1}[x]\right| \geq \frac{1}{C} \cdot x-M
$$

whence

$$
\sup _{x \in \omega}\left(\left|f^{-1}[x]\right|-x\right) \geq \sup _{x \in \omega} d \cdot x-\frac{M}{C}=\infty
$$

Corollary 2 If

$$
\lim _{x \rightarrow \infty} \frac{\max _{y \leq x} f(y)}{x}<1
$$

then f is not maximal.
Proof: Let $g(x)=\max _{y \leq x} f(y)$. Thus $g(x) \geq f(x)(x \in \omega)$ so that if f is maximal then g must be maximal, too. Corollary 2 follows then immediately by Corollary 1 .

Finally we present two lemmas which serve as examples where the converse of Theorem 2 holds. They are just the cases where f is maximal and minimal.

Lemma $11 \lambda z(z) \ll f$ if and only if

$$
\begin{equation*}
\sup _{x \in \omega}(\Theta(\lambda z(z))(x)-\Theta f(x))<\infty \tag{L11.1}
\end{equation*}
$$

Proof: By Theorem 2 it suffices to show that from (L11.1) the maximality of f follows. Now if (L11.1) then by Lemma 10 we have in particular

$$
\sup _{x \in \omega}\left(\Theta(\lambda z(z))\left(\operatorname{ind} f^{-1}[x]\right)-\Theta f\left(\operatorname{ind} f^{-1}[x]\right)\right)<\infty
$$

whence by Lemmas 7 and 8

$$
\sup _{x \in \omega}\left(\left|f^{-1}[x]\right|-x\right)<\infty
$$

so that by Lemma 1 the maximality of f follows.
Corollary 3 f is maximal iff

$$
\sup _{x \in \omega}|\Theta(\lambda z(z))(x)-\Theta f(x)|<\infty
$$

Lemma $12 \quad f \ll \lambda z(0)$ if and only if

$$
\begin{equation*}
\sup _{x \in \omega}(\Theta f(x)-\Theta(\lambda z(0))(x))<\infty \tag{L12.1}
\end{equation*}
$$

Proof: According to Theorem 2 we need only show that (L12.1) implies the minimality of f. Thus assume (L12.1). Then by Lemma $9 \theta f$ is bounded. Choose x so that $\Theta f(x)$ is maximal and assume that f is not bounded. Then there is $u \in \omega \backslash D_{x}$ with $f(u)>1+\max f\left[D_{x}\right]$. Let $D_{v}=D_{x} \cup\{u\}$. Because $\Phi f(a, b) \leq b$ we have $\Theta f(x)<f(u)$ and obviously $\Phi f(v, f(u)) \geq \Theta f(x)$. Then
$\Theta f(v)=\Phi f(v, f(u)+1)=\min \{f(u)+1, \Phi f(v, f(u))+1\} \geq \Theta f(x)+1$.
This contradicts the choice of x. Hence f is bounded, too, so that by Theorem $1 f$ must be minimal.

Corollary $4 \quad f$ is minimal iff

$$
\sup _{x \in \omega}|\Theta f(x)-\Theta(\lambda z(0))(x)|<\infty
$$

NOTE

1. Note that U is not recursively enumerable in general; though, by this construction, U is recursive in K (i.e. of degree 0^{\prime}).

REFERENCES

[1] Friedberg, R. and H. Rogers, Jr., "Reducibility and completeness for sets of integers," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 117-125.
[2] Rogers, H., Jr., Theory of recursive functions and effective computability, McGrawHill, London, 1967.
[3] Soare, R., Recursively enumerable sets and degrees, Springer Verlag, Berlin and Heidelberg, 1987.

