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Bounds in Weak Truth-Table Reducibility

KAROL HABART

Abstract A necessary and sufficient condition on a recursive function is
given so that arbitrary sets can be truth-table reduced via this function as the
bound. A corresponding hierarchy of recursive functions is introduced and
some partial results and an open problem are formulated.

Weak truth-table reducibility, often called bounded Turing reducibility, is de-
fined as follows: A <Ξ ω is weak-truth-table reducible to B Q ω (A < w t t B) if
there is a recursive function / and an algorithm which answers questions of
the form "« E AΊ" when supplied answers to any questions it asks of the form
"ra E BΊ" for m </(fl). The function/ is called the bound of the reduction.

The hierarchy of subsets of ω induced by the relation < w t t was extensively
studied in the past (cf. [1]). In this paper, however, a hierarchy of the bounds
(i.e. of recursive functions) is considered. We denote by S(/) the set of A such
that there is a B such that A < w t t B via a reduction with bound/, and we write
/ < g iff S(/) cS(g) , Of course, ( R c S ( / ) c 2 ω for all recursive functions/.
We give necessary and sufficient conditions o n / for S(/) = (R and for S(/) =
2ω, i.e. for / being on the bottom and on the top of the hierarchy induced by < .
We also give a necessary condition f o r / < g.

Our interest is focused to the bound of the wtt-reduction by the following
phenomenon: A part of an (in general) nonrecursive set B can be given by a list.
Having the set A Turing reduced to B, a part of A is given which corresponds
to the list of a part of B, and which may be much larger than the list itself—
depending mainly on the bound of the reduction.

A motivation for the study of our hierarchy of bounds comes also from the
theory of nets of automata. Consider a chain of automata numbered by natu-
ral numbers. Suppose each automaton is in one of the two states 0 and 1. Then
the state of the whole net is uniquely determined by a set B c ω in an obvious
way. Now let the automata work, and after some time all of them may stop and
the net may come into a state determined by a set A. In a fairly devised net
we would have A < w t t B. The bound/ of this reduction depends on how the
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communication between the automata is devised. Thus the relation < is a gen-
eralization of the relation "less powerful" among the different kinds of commu-
nication between automata in a net.

We fix our notation first. We use ωω to denote the set of functions from ω
to ω, (R denotes the recursive functions;/ f A means the restriction of/ to the
domain A;f[A] denotes the image of A under/, f~ι[A] = {x:f(x) GA}\ \A\
denotes the cardinality of A, 2A the power set of the set A; 2 < ω denotes finite
sequences of O's and Γs; if σ is a finite string (i.e. ranging over 2< ω) we use the
length function lh(σ) = μx[x £ dom σ] = |dom σ|. For a finite set Flet indF
denote the canonical index of F, i.e. if F = {y ί9... ,yn], y\ < < yn, then
indF = 2yi + + 2y»; ind 0 = 0. We write F = DinάF.

We identify sets with their characteristic functions, the integer n with the set
{0,1,... ,n - 1), and the integer 0 with the set 0 .

Let (e)B denote the (possibly partial) recursive function with index e rela-
tive to the set B. For σ G 2 < ω let us define σ' G 2ω by σ'(x) = σ(x) (x < lh σ)
and σ'(x) = 0 (x > lh σ) and define (e)σ(x) = y iff (e)σ'(x) = y and only num-
bers z with z < lh(σ) are used in the computation. We define {eJ)A, the Tur-
ing oracle function with index e, oracle A, and bound/ as follows:

<eJ}Ά(x) = y ++ (3σ G 2< ω) [σ c A Λ lh(σ) </(ΛΓ) + 1 Λ (e)σ(x) = y].

Further let

S(/) = ( 5 c ω : ( 3 ^ c ω)(3e Gω)[S = <eJ)Ά]}9

i.e. S(/) denotes the set of all subsets of ω which are weak truth-table reduci-
ble to an oracle via bound /.

Obviously

2 ω 3 §(/) 2 (R.

Put

/<^8(/)cS(ί)

and call/ maximal iff S(/) = 2ω and minimal iff S(/) = (R.
It is obvious that, e.g., \x(x) is maximal and λjt(O) is minimal. A function

/ defined by

f(2x) = 0

/(2x+ 1) =2x+ 1 (xGω)

is not maximal, because for each A G S(/) the set A Π {2x:x G ω) must be
recursive; and it is not minimal, because for some A G S(/) the set A Π {2x +
l:x G ω] need not to be recursive.

Theorem 1 / is minimal ifff is bounded.

Proof: If/ is bounded then the minimality of/ follows immediately.
So assume/ is not bounded. Obviously there is e G ω so that for all A Q ω,

x G ω

<eJ)Ά(x)=A(f(x)).
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Because/ is unbounded there is a recursive subset S <Ξ ω so that/[S] is recur-
sive, infinite and/ is one-one on S. Choosing A so that/[5] Π A is nonrecur-
sive we get S Π (e,f)A nonrecursive whence S(/) £ (R.

Lemma 1 If

(Ll.l) s u p d / " 1 ^ ] ! - x ) < < χ

then f is maximal.

Proof: Let C — 1 be the supremum in (Ll.l). We define a recursive function g
by induction as follows:

S(0)=C+/(0)

g(x + 1) =max((l + C + / ( x + l))\g[x + 1]).

In order to have g well-defined we need to show for every x E ω:

d + C+f(x))\g[x] ΦO.

Assume (1 + C 4- /(#)) \g M = 0 for some x and let it be the least such x. Then
g[x] Π (1 + C + /(*)) = 1 + C + / ( * ) . Choosey maximal with g[x]Πy=y.
Obviously y > 1 + C+f(x).

Claim For each zExifg(z)<y then C + f(z) < y.

Proof: Assume g(z) < y and C 4- /(z) > y. Then obviously z ^ 0. Because
g(z) =max((l + C + f(z))\g[z]) wehave^E^tz] whencey£g[x], too. But
then g[x] Γ\ (1 + y) = 1 + y. This contradicts the choice of y.

Because for each z G x b y definition g(z) ί ^[z], g is injective on Λ:
and we have I g " 1 ^ ] ! = y, i.e. by our claim g~λ[y] ^f~ι[y - C] whence
I / " 1 [y - C]\ >y, i.e. \f~x[y - C]\ - (y - C) > C. This contradicts the fact
that C — 1 is the supremum in (Ll.l). Thus g is well-defined and injective.
Moreover,

(LI.2) g(x)<f(x) + C (xeω)

is immediate.
Let A c co be arbitrary. Choose σ E 2 < ω so that lh(σ) = C and σ(g(x)) = 1

iff g(x) < C and JCG^I. Choose B g ω so that g(x) - C E 5 iff g(x) > C and
Λ: E A. This is all possible because of the injectivity of g.

Finally, choose e E ω so that

s (σ(g(x)) if g(x)<C

<ej)(x) γs(g{χ)_C) ]Sg(x)^C.

This is possible because of (LI.2). Then obviously

A = <eJ)B.

Note: The construction of the recursive function g in the proof of Lemma 1
shows that (Ll.l) implies the following: there is a one-one recursive function g
and a constant C such that (LI.2) holds. This condition is even equivalent to
(Ll.l) and hence a condition o n / for maximality.
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In order to show the converse of Lemma 1, and thus to give a necessary and
sufficient condition for maximality, we shall prove a more general result. We
shall introduce a recursive functional θ which will be of much use later on. It
will be defined by an auxiliary functional Φ. For recursive/ the function Φ/ is
defined by:

Φ/(x,0) = 0

Φf(x9y+l)=min{y+l9Φf(x9y) + \f~ιl{y}] ΠDX\}.

The function θ / is then:

θf(x) = Φ/(x, 1 + maxf[Dx]) (max 0 = 0).

The functional θ was introduced to have a result like Lemma 6. Intuitively, for
a finite set Dx θf(x) yields something like the cardinality of that part of the ora-
cle B that will carry some information for A \ Dx in addition to the index e
when A = (e,f)B. We give some properties of θ in the following lemmas.

Lemma 2 (Vy > maxf[Dx]) [θf(x) = Φf(x9y)].

Proof: Let y > maxf[Dx] + 1. Then f~ι[{y - 1}] Π Dx = 0 and so Φf(x,y) =
Φf(x,y-1).

Lemma 3 θf(x) < \DX\.

Proof: One shows easily that

φf(χ,y)^Σ\f~ιl{z}]nDx\

whence θf(x) < \DX\.

Lemma 4 IfDx c Dy then θf(x) < θf(y).

Proof: Obviously Φf(x,z) grows in z for fixed x. Now it suffices to show that
if Dx c Dy then Φf(x9z) ^ Φ/(y,z). This follows immediately by induction.

Lemma 5 If Dy = DXU {z} then θf(y) - θf(x) < 1 (i.e. for all x,y with
Dx c Dy we have θf(y) - θf(x) < \Dy\Dx\).

Proof: Let/(z) = u. Then Φf(x, v) = Φf(y, v) for υ<u. Obviously Φf(y, u +
1) - Φf(x9u + 1) < 1 and then also Φf(y9υ) - Φf(x9υ) < 1 for υ > u. By
Lemma 2 we get then θf(y) - θf(x) < 1.

Lemma 6 For every recursive f and each e E ω:

\{{eJ)Λ\Dx:A^ω}\ < 2Θ'<*>.

Proof: ¥ut S = {(eJ)A\Dx:A <^ω] and Sy={(eJ)Λ \f~ι[y] ΠDX:A Qω}.
Obviously S c 2maxDχ+ι and 5 = Sι+maκf[Dχ]. Thus it suffices to show

(L6.1) \Sy\ < 2 Φ / U - V ) .

We show this by induction on y. Obviously for y = 0 (L6.1) is fulfilled. Now as-
sume (L6.1) and consider |Sy+i|. For everyzE/~ 1[^+ 1] ΠDxandA e 2 ω we
have

<e9f>
A(z)=<e9f>

A^^1Hz).
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Thus

(L6.2) \Sy+ι\ < | M Γ ( . y + l ) : Λ ί = ω ) | < | 2 ' + 1 | = 2 ' + 1 .

On the other hand

Sy+! = ί<e,f>A\(f-ι[y] KDX) U (f-'liy}] ΠDx):Acω)

c {aUβ:aeSyAβe2f~'[[y]]ΠD-}

whence

| S J + 1 | < | S ^ | 2l/-'tW)n^l,

i.e. together with (L6.2) we get finally

| S y + 1 | < 2 Φ ^ ^ + 1 > .

Theorem 2 For every f, g:

(T2.1) / < * - > sup(θ/(x) - θg(x)) < oo.
λrGω

Proof: Assume that the supremum in (T2.1) is infinite.

Claim 1 One can construct a recursive sequence (sn)™=0 so that

(T2.2) maxDSn < minDSm (n < m)

and

θf(s0) > eg(s0)

(T2.3) Θ/(5Λ+1) > θg(sn+ι) + θf(sn).
Proof: The existence of a suitable s0 is obvious. Now let SQ, . . . ,sn be found.
Put z = maxDSn. Then there is a smallest w with θ/(w) - θg(u) > θf(sn) +
z + 1. Let £„+! be the canonical index of Du\ (z + 1). Then by Lemma 5
9/(^+1) > θf(u) - (z + 1) and by Lemma 4 θg(sn+i) < θ^(w) so that
θf(sn+ι) - θg(sn+1) > θf(u) - θg(u) - (z + 1) > Θ/(5Π).

Now define a function Λ as follows:

0 i f x ί U A n

Λ ( X ) = < minl/WjxΠ/^H/U)}] Π AJ

+ θ/ ί indί/- 1 ! /^) ] ΓiD5n))} ifxGDSn.

Because we can compute ind(f~ι[f(x)] Π DSn) and because under (T2.2 and
2.3) one can decide whether x E UneωDsn

 a n d if so then compute n so that
Λ: G DSn9 h must be a recursive function.

Claim 2 FFe Λαi e

(T2.4) Λ I / " 1 ^ ] nDSn] = θ/ί indί/- 1 !^] Π f l J ) .

PAΌO/: For y = 0 (T2.4) is obvious. Now assume (T2.4). We have

f~l[y + 1] Π £>Jπ = (f-χ[y] Π Z)5Λ) U (f~l[{y}] Π A J
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If f~ι[{y}] Π DSn = 0 then obviously (T2.4) holds for y + 1, too. So let

f~ι[{y}] Π 2 \ = Uo> >£*}> *o < * * < Zk- By the definition of h we have

h(Zi) = mxa{y,i + θf(ind(f-ι[y] ΠD5n))}9

i.e. together with the induction assumption

h[f~ι[y + 1] Π DSn] = min{j; + h\f-ι[{y}] Π DSn\
(T2.5)

+ θ/(ind(/-1[^]ΠAJ)}.

Further it is obvious that for (0 < u < y)

Φ/(ind(/"1[j+ 1] ΠDSn),u)=Φf(md(f-ι[y] ΠDSn),u)

so that we have

θf(md(f-ι[y] ΠDSn))=Φf(mά(f-ι[y+l] ΠDSn),y)

and

θ/(ind(/-1[j+ 1] ΠDSn))=Φf(md(f-ι[y+l] ΠDSn),y+l)

whence

θ/(ind(/-1[.y+ 1] nDSn))=mmly+ief(md(f-ι[y] ΠDSJ)

+ \f-ιl{y}]n(f'ι[y+l]ΠDSH)\)

so that by (T2.5)

h[f~ι[y+ l] n A J =θ/(ind(/- 1[^+ l] n ΰ j ) .

This completes the proof of Claim 2.

Because DSn = DSn Πf~ι[ί + maxf[DSn]] we have by Claim 2:

(T2.6) h[DSn] =θf(sn).

Now let e be an index so that

Γl iϊh(x)EA
<eJ)A{x)=\

1̂ 0 elsewhere.

Then by (T2.6) for every n G ω and p G 2 < ω where lh(p) = r < Θ/(5Λ) we have:

(T2.7) \{<eJ)σ\DSn: σ G 2ef{Sn) Λσ\r-=p}\= 2θfM~r.

Now we define a set (/ = U«Gω σΛ where σΛ G 2θf(Sn) is defined as follows:
Choose σ0 G 2 θ / ( 5 o ) so that

(ejy°\DS0£ i(0fg)A\DSo:A^ω}.

This is possible because of (T2.7), Lemma 6, and (T2.3). Now assume σn is cho-
sen. Then choose σn+ι so that σn+i \θf(sn) = σn and

( e , / ) ^ 1 \ D S n + ι £ l<n + l , g > ^ \ D S n + ι :AQω}.

This is again possible because of (T2.7), Lemma 6, and (T2.3).1
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We have now for every n E ω and A <Ξ ω:

(eJ)u\DSn = {eJY»\DSn Φ (n,g)a\DSn,

i.e.

<eJ}uΦ(n,g)A

whence f<fc g. Contradiction.

Whether the converse of Theorem 2 holds or not is an open question. The
author conjectures that condition (T2.1) is a necessary and sufficient condition
f o r / < g but he has managed to find neither a proof nor a counterexample yet.

Now we begin proving the converse of Lemma 1 using Theorem 2.

Lemma 7 θ(λz(z))(x) = \DX\.

Proof: P u t / = λz(z). We shall show

(L7.1) Φf(x,y) = \f-ι[y]ΠDx\.

Lemma 7 follows then immediately from (L7.1).
For y = 0 (L7.1) is obvious. Now assume (L7.1) for some y. Now

l/" 1 ^}] Π Dx\ < 1 and because Φf(x,y) <y we have

Φf(χ,y) + \f-ι[{y}]nDx\ < > > + l ,
i.e.

*f(χ*y+ υ = \f~ιly] riDx\ + \f~ι[[y}] nDx\ = \rι[y+ i] ΠDX\.

Lemma 8 Iff'1 [z] is finite then θf (ind/"1 [z]) < z.

Proof: Obviously 1 4- ma.xf[f~ι[z]] < z and because for ally

Φf(x,y)<y

Lemma 8 follows immediately.

Lemma 9 θ(λz(0))(x) < 1 (x G ω).

PAΌO/: P u t / = λz(0). We shall show

(L9.1) Φf(x,y)<l (x,yeω).

For y = 0 and J = 1 (L9.1) is immediate. Now assume (L9.1) for some y > 1.

Then/-1^}] =0, i.e.

Φ / U J + 1 ) = Φ / ( X J ) < 1 .

Lemma 10 // supx^ω(θ(λz(z))(x) - θf(x)) < <» then for αllx,f~ι[x] is
finite.

Proof: Suppose that for some x, f~ι[x] is infinite. Let yo,yι,... enumerate
/ - ^ J C ] and for each A: > 0, let xk = ind{yθ9 ...,yk}. Then for all k > 0,
θ/(x£) = Φ/ίxA:,! + max/[Z)^]) < Φf{xkΛ + Λ:) < x + 1 while by Lemma 7
θ(λz(z))(xA:) = I A J = A:+ 1. Contradiction.

Theorem 3 / is maximal iff

(T3.1) s u p d / - 1 ^ ] ! - * ) < o o .
ArGω
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Proof: According to Lemma 1 it suffices to show that if/ is maximal then (T3.1)
holds. If/ is maximal t h e n / » λz(z) and by Theorem 2

sup(θ(λz(z))(jr)-θ/<x))<oo,

so by Lemma 10 we have in particular

suv(θ(λz(z))(mdf-ι[x]) - θf(indf-ι[x])) < oo
xGω

whence (T3.1) follows immediately by Lemmas 7 and 8.

Theorem 3 yields several sufficient conditions for/ not to be maximal.

Corollary 1 //

lim sup " ^ < 1
x

then f is not maximal.

Proof: Let lim sup [/(*)/*:] < C < 1. Put d = (1 - C)/C. Then d > 0. Obvi-
ously, for some M > 0

| / - i [ χ ] | * I . j c - Λ f

whence

M
supd/^MI -x) > sup d-x- — = oo.
xGω xGω C

Corollary 2 //

max/(j>)
lim ^ < 1

then f is not maximal.

Proof: Let g{x) = max^^/ί^). Thus g(x) >/(ΛΓ)(X G ω) so that if/ is max-
imal then g must be maximal, too. Corollary 2 follows then immediately by Cor-
ollary 1.

Finally we present two lemmas which serve as examples where the converse
of Theorem 2 holds. They are just the cases where/ is maximal and minimal.

Lemma 11 λz(z) < / if and only if

(LI 1.1) sup(θ(λz(z))(x) - θf(x)) < oo.
xGω

Proof: By Theorem 2 it suffices to show that from (LI 1.1) the maximality of
/ follows. Now if (LI 1.1) then by Lemma 10 we have in particular

sup(θ(λz(z))(ind/-1[x]) - θf(indf-ι[x])) < oo
xGω
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whence by Lemmas 7 and 8

supfl/- 1 !*]! -x)<oo

so that by Lemma 1 the maximality of/ follows.

Corollary 3 f is maximal iff

sup|θ(λz(z))(x)-θ/(*)| <α>.
xGω

Lemma 12 / < λz(0) if and only if

(L12.1) sup(θ/(jc) - θ(λz(0))(*)) < oo.

Proof: According to Theorem 2 we need only show that (LI2.1) implies the
minimality of/. Thus assume (L12.1). Then by Lemma 9 θ / is bounded. Choose
x so that θf{x) is maximal and assume that / is not bounded. Then there is
wGω\Dx with/(w) > 1 + maxf[Dx]. LetDv = DxU {u}. Because Φf(α,b) < b
we have Qf(x) <f(u) and obviously Φf(v,f(u)) > θ/(x). Then

θ/(ι;) = Φ/(v,/(iι) + 1) = min{/(iι) + l,Φ/(t;,/(iι)) + 1} > Θ/(JC) + 1.

This contradicts the choice of x. Hence / is bounded, too, so that by Theo-
rem 1 / must be minimal.

Corollary 4 f is minimal iff

sup|θ/(*)-θ(λz(O))(*)| <<*>.
ΛrGω

NOTE

1. Note that ί/is not recursively enumerable in general; though, by this construction,
U is recursive in K (i.e. of degree 0').
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