On Type Definable Subgroups of a Stable Group

L. NEWELSKI

Abstract We investigate the way in which the minimal type-definable subgroup of a stable group G containing a set A originates. We give a series of applications on type-definable subgroups of a stable group G.

1 Introduction It is not known how to construct a stable group "ab ovo". The stability of a given group structure is deduced usually from some stronger properties, for example the group's being abelian-by-finite, or definable in some stable structure. So at least one could wonder what type-definable subgroups of a stable group G are possible to obtain. We address this problem here. In a way, our results generalize Zilber's ideas (cf. Zilber [12]) on generating subgroups by indecomposable subsets of an ω-stable group G.

Throughout, we work with a stable group $G = (G, \cdot, e)$, which is sufficiently saturated (i.e., G is a monster model). L is the language of G. Given a type-definable subset A of G we know that there is \bar{A}, the minimal type-definable subgroup of G containing A (cf. Poizat [9]). We investigate here the relationship between A and \bar{A}. For simplicity, usually we consider A which is type-definable almost over \emptyset. A finite set Δ of formulas of L is invariant under translation if it consists of formulas of the form $\varphi(u \cdot x \cdot v; \bar{y})$ (u, v, \bar{y} are parameter variables here). Except in Section 2, Δ with possible subscripts will denote a finite set of formulas invariant under translation. One of the basic concepts of stable group theory is that of generic type, due to Poizat ([9]; see also Hrushovski [4]). Recall that if H is a type-definable subgroup of G then a strong 1-type r of elements of H is generic (for H) iff for every Δ, $R_\Delta(r) = R_\Delta(H)$, where R_Δ is the Morley Δ-rank (see Wagon [11]). Notice that as Δ is invariant under translation, R_Δ also is invariant under translation, meaning that for each definable subset X of G and $a \in G$, $R_\Delta(X) = R_\Delta(a \cdot X) = R_\Delta(X \cdot a)$. (This is the idea of "stratified order" from [9]; cf. also [4].) Let Mlt_Δ denote the Morley Δ-multiplicity. $R_\Delta(a/A)$ abbreviates $R_\Delta(\text{tp}(a/A))$. Let $\check{R}(p)$ denote $(R_\Delta(p) : \Delta \subseteq L$ is finite and invariant.

Received August 29, 1989; revised December 5, 1990
under translation). \(R(p) \leq R(q) \) means that for every \(\Delta \), \(R_\Delta(p) \leq R_\Delta(q) \). Let \(\text{gen}(H) \) denote the set of generic types of \(H \). \(H^0 \) is the connected component of \(H \). We give a description of \(\text{gen}(A) \) in topological terms, and prove some corollaries. We formulate also some open problems. Recall the following remark from [4], which can be taken as a definition of generic type.

1.1 Remark Assume \(H \) is a type-definable subgroup of \(G \). Then \(r \), a strong 1-type of elements of \(H \), is generic for \(H \) iff for every \(b \in H \) and a satisfying \(r\upharpoonright b \), \(a \cdot b \downarrow b \).

In our notation we usually follow Baldwin [1] and Wagon [11]. For background on stable groups see [9], [4], and Hrushovski [5]. By [11] we have

1.2 gives a rank equivalent for the forking relation. However this equivalent has one drawback. Condition \(R_\Delta(a/X) = R_\Delta(a) \) may involve formulas not in \(\Delta \), as it may happen that \(R_\Delta(tp_a(a)) > R_\Delta(a) \). In 1.3 we give another characterization of forking. Let \(R'_\Delta(p) = R_\Delta(p|\Delta) \) and \(\hat{R}'(p) = \langle R'_\Delta(p) : \Delta \subseteq L \rangle \). \(r \) in \(R'_\Delta \) stands for “restricted”.

1.3 Lemma Assume \(A \subseteq B \). If \(\hat{R}'(a/B) = \hat{R}'(a/A) \) then \(a \downarrow B(A) \). Moreover, if for some model \(M \subseteq A \), \(a \downarrow A(M) \), then \(a \downarrow B(A) \) implies \(\hat{R}'(a/B) = \hat{R}'(a/A) \).

Proof: The first part follows by [11], Section III. By Lachlan [7], if \(p \in S(M) \) then \(\text{Mlt}_\Delta(p|\Delta) = 1 \). This implies the “moreover” part.

2 A theorem For simplicity we work here with sets type-definable almost over the empty set of parameters, however all the proofs generalize immediately to the case of arbitrary set of parameters. “Type-definable” will always mean in this section “type-definable almost over \(\emptyset \)”. Let \(S \) be the set of strong 1-types over \(\emptyset \), with the standard topology \(\tau \). Notice that there is an obvious correspondence between closed subsets of \(S \) and type-definable subsets of \(G \). By the open mapping theorem, the mapping \(p \rightarrow \hat{p} = p|G \) is a homeomorphic embedding of \(S \) into \(S(G) \). We equip \(S \) with the following strong topology \(\tau' \). Let \((I, \leq) \) be a directed set (i.e., \(\leq \) is a partial order on \(I \) and for all \(a, b \in I \) there is \(c \in I \) with \(c \geq a, b \)) and \(\hat{p} = \langle p_i, i \in I \rangle \) be a net of types from \(S \). We say that \(\hat{p} \) is strongly convergent to \(q \in S \) (or: \(q \) is a strong limit of \(\hat{p} \)) if for every \(\Delta \) there is \(i \in I \) such that for every \(j \in I, j \geq i \) implies \(\hat{p}_j|\Delta = \hat{q}|\Delta \). In particular, a strong limit of \(\hat{p} \) is a limit of \(\hat{p} \) in the usual sense. To distinguish between \(\tau \) and \(\tau' \), all topological notions regarding \(\tau' \) will be called strong. Notice that if \(q \) is a strong limit of \(\hat{p} \) then \(\hat{R}'(\hat{q}) \) is a pointwise limit of \(\hat{R}'(\hat{p}_i), i \in I \). For \(p \in S \) let \(R'_\Delta(p) = R'_\Delta(\hat{p}) \) and let \(\hat{R}'(p) = \langle R'_\Delta(p) : \Delta \subseteq L \rangle \).

We define binary operation \(* \) and unary operation \(-1 \) on \(S \) as follows. For \(p, q \in S \), \(p * q = \text{stp}(x \cdot y) \) and \(p^{-1} = \text{stp}(x^{-1}) \), where \(x, y \) are independent realizations of \(p \) and \(q \), respectively. Clearly this definition does not depend on a particular choice of \(x \) and \(y \). Similarly we define \(* \) on \(S(G) \). Notice that \(q = p * r \) iff \(\hat{q} = \hat{p} * \hat{r} \). Differing somewhat from the common notation, we let \(p^n \) denote \(p * \ldots * p \) (\(n \) times), and \(p^{-n} = p^{-1} * \ldots * p^{-1} \) (\(n \) times). If \(P \) is a set
of types then let $P(A)$ denote the set of elements of A realizing some type from P. For $P \subseteq S$ let $\langle P \rangle$ be the minimal type-definable subgroup of G containing $P(G)$. Clearly $\langle P \rangle$ is type-definable almost over \emptyset anyway. If $P = \{p_1, \ldots, p_n\}$, then we write $\langle p_1, \ldots, p_n \rangle$ instead of $\langle P \rangle$. Theorem 2.3 below explains how $\langle P \rangle$ is formed. Let $\text{cl}(P)$ denote the topological closure of P, and let $*P$ denote the closure of P under $*$. Let gen(P) be the set of $r \in \text{cl}(*P)$ such that there is no $q \in \text{cl}(*P)$ with $R_\Delta(r) \leq R_\Delta(q)$, with some of the inequalities strict. As in [4] we have

2.1 Fact If $P \subseteq S$ is nonempty then gen(P) is nonempty, too. Moreover, gen(P) is a closed subset of S.

Following [4], for $p \in S$ and $x \in G$ let $^xp = r * p$, where $r = \text{stp}(x)$. For $P \subseteq S$ let $^xP = \{^xp : p \in P\}$.

2.2 Lemma
(a) $*$ is associative and continuous coordinate-wise.
(b) If $P \subseteq S$ is closed, then for every $x \in G$, xP is closed, too.
(c) $R_\Delta(p * q) \geq R_\Delta(p), R_\Delta(q)$.
(d) $R_\Delta(p * q) \geq R_\Delta(p), R_\Delta(q)$.

Proof: (a) That $*$ is continuous coordinate-wise follows by the open mapping theorem from Lascar and Poizat [8]. (b) follows from (a) and the fact that S is compact. (c) and (d) are easy.

2.3 Theorem Assume P is a nonempty subset of S. Then $\langle P \rangle = \{x \in G : \text{gen}(P) = \text{gen}(P)\}$. Also, gen$(P)$ is the set of generic types of $\langle P \rangle$.

The rest of this section is devoted to the proof of this theorem. So we fix a $P \subseteq S$. If $p, q \in S$ satisfy $p(G), q(G) \subseteq \langle P \rangle$, then also $p * q(G) \subseteq \langle P \rangle$. Also, if $Q \subseteq S$ and $Q(G) \subseteq \langle P \rangle$ then $\text{cl}(Q(G)) \subseteq \langle P \rangle$. Hence the set $\text{cl}(*P)$ is our first approximation of $\langle P \rangle$: we know that $\text{cl}(*P)(G) \subseteq \langle P \rangle$. It is surprising to find out that this is quite a good approximation: by 2.3 all generics of $\langle P \rangle$ belong to $\text{cl}(*P)$, hence 2.3 implies in fact $\langle P \rangle = \text{cl}(*P)(G) \cdot \text{cl}(*P)(G)$ (X, Y is the complex product of $X, Y \subseteq G$). First notice that iteration of cl and $*$ does not increase $\text{cl}(*P)$ anymore.

2.4 Fact $\text{cl}(*P) = \text{cl}(*P)$.

Proof: Let $p, q \in \text{cl}(*P)$. It suffices to prove that within any open U containing $p * q$, there is r from $*P$. By 2.2, if q' is close enough to q then $p * q'$ belongs to U, and for fixed q', if p' is close enough to p then $p' * q'$ belongs to U. We can choose p' and q' from $*P$, so we are done.

Let $\mu = |L|$, and let $\Delta_\alpha, \alpha < \mu$, be an enumeration of finite sets of formulas in L invariant under translation. We define by induction on $\alpha \leq \mu$ closed subsets P_α of $\text{cl}(*P)$ as follows. $P_0 = \text{cl}(*P)$, $P_\delta = \bigcap_{\alpha < \delta} P_\alpha$ for limit δ. $P_{\alpha + 1}$ is the set of $p \in P_\alpha$ such that $R_\Delta(p) = R_\Delta(P_\alpha(G))$. Notice that if we start with $P = S$, then this procedure leads to $P_\mu = \text{gen}(G)$ (cf. the introduction to [4]), whence P_μ does not depend on the particular choice of Δ_α's in this case. We will see that this is always true, i.e. that $P_\mu = \text{gen}(\langle P \rangle)$, and so does not depend on the choice of Δ_α's.
Let $n_\alpha = R_{\Delta_\alpha}(P_\alpha(G))$ and $k_\alpha = \text{Mlt}_{\Delta_\alpha}(P_\mu(G))$. Let $\varphi_{\alpha,i}(x), i < k_\alpha$, be disjoint formulas almost over \emptyset of Δ_α-rank n_α and Δ_α-multiplicity 1 with $P_\mu(G) \subseteq \bigcup_i \varphi_{\alpha,i}(G)$. Define $\varphi_{\alpha,i,a}(x)$ as $\varphi_{\alpha,i}(a \cdot x)$. Let $X = \{ a \in G : aP_\mu = P_\mu \}$.

2.5 Claim \(X = \bigcap_{\alpha < \mu} \{ a \in G : \text{for each } i < k_\alpha, R_{\Delta_\alpha}(\varphi_{\alpha,i,a}(G) \cap P_\mu(G)) = n_\alpha \} \). In particular, \(X = \{ a \in G : aP_\mu \subseteq P_\mu \}, \) i.e. \(aP_\mu \subseteq P_\mu \) implies \(aP_\mu = P_\mu \).

Proof: Notice that if \(aP_\mu \subseteq P_\mu \) then for each \(\alpha \) and \(i, R_{\Delta_\alpha}(\varphi_{\alpha,i,a}(G) \cap P_\mu(G)) = n_\alpha \), hence \(a \in X \), and we are done.

Notice that \(\text{"} R_{\Delta_\alpha}(\varphi_{\alpha,i,a}(G) \cap P_\mu(G)) = n_\alpha \text{"} \) is a definable almost over \(\emptyset \) property of \(a \). Indeed, \(R_{\Delta_\alpha}(\varphi_{\alpha,i,a}(G) \cap P_\mu(G)) = n_\alpha \) iff for some (unique) \(j \), \(R_{\Delta_\alpha}(\varphi_{\alpha,j,a}(G)) = n_\alpha \), the latter property of \(a \) being definable over the parameters of \(\varphi_{\alpha,j}, j < k_\alpha \). Also, \(X \) is closed under taking inverses. In particular we get that \(X \) is a type-definable almost over \(\emptyset \) subgroup of \(G \). The next lemma concludes the proof of 2.3.

2.6 Lemma \(P(G) \subseteq X \), also \(P_\mu \) is the set of generic types of \(X \). In particular, \(X = \langle P \rangle \), \(P_\mu \) does not depend on the choice of \(\Delta_\alpha \)'s, \(n_\alpha = R_{\Delta_\alpha}(\text{cl}(\star P))(G) \) and \(P_\mu = \text{gen}(P) \).

Proof: If \(p \in P \) and \(q \in P_\mu \) then we have \(p \cdot q \in \text{cl}(\star P) = P_\emptyset \). By induction on \(\alpha < \mu \), by 2.2(c) we see that \(R_{\Delta_\alpha}(p \cdot q) = n_\alpha \), i.e. \(p \cdot q \in P_\mu \). This shows that \(P(G) \subseteq X \). \(X \) is type-definable, hence also \(\langle P \rangle \subseteq X \), and in particular \(P_\mu(G) \subseteq X \). If \(r \) is a generic type of \(X \) then we have \(r \cdot P_\mu = P_\mu \), hence by 2.2(c) and our definition of generic type, \(n_\alpha = R_{\Delta_\alpha}(X) = R_{\Delta_\alpha}(r) \), and each type from \(P_\mu \) is generic for \(X \). We need to show yet that every generic of \(X \) belongs to \(P_\mu \) (this will imply \(X \subseteq \langle P \rangle \), and finish the proof). Let \(r \in \text{gen}(X) \) and \(p \in P_\mu \). Let \(q = r \cdot p \). So \(q \in P_\mu \). Let \(a, b \) be independent realizations of \(r, p \) respectively and \(c = a \cdot b \). By 1.2, looking at the \(\Delta_\alpha \)-ranks of \(\text{tp}(c/b) \), we get \(b \downarrow c \), hence \(a = c \cdot b^{-1} \) satisfies \(q \cdot p^{-1} \), i.e. \(r = q \cdot p^{-1} \). We have \(P_\mu \cdot P_\mu = P_\mu \), hence \(P_\mu \cdot p \subseteq P_\mu \). Similarly as in 2.5 we get \(P_\mu \cdot p = P_\mu \), i.e. there is \(r' \in P_\mu \) with \(r' \cdot p = q \). Again we get \(r' = q \cdot p^{-1} \), hence \(r = r' \) and \(r \in P_\mu \). This proves the lemma.

3 Applications and corollaries Let \(T \) be a stable theory. Hrushovski proved in [5] that if \(p \) is a strong type and \(\cdot \) is a definable partial binary operation with some natural properties, defined for independent pairs of elements realizing \(p \), then (in \(\mathbb{C}^{eq} \)) there is a type-definable connected group \((G, \cdot) \) and a definable embedding \(f : p (\mathbb{C}) \rightarrow G \) preserving \(\cdot \), such that \(f(p) \) is the generic type of \(G \).

In other words: a definite place plus less definite binary operation on it yields a definable group. Here we prove an analogous result: a definite group operation on a less definite place also yields a definable group, namely,

3.2 Theorem Assume \(T \) is stable, \(A \subseteq \mathbb{C} \) and \(\cdot \) is a definable binary operation such that \((\Lambda, \cdot) \) is a group. Then (in \(\mathbb{C}^{eq} \)) there is a definable group \(H = (H, \cdot) \) and a definable group monomorphism \(h : A \rightarrow H \).

Proof: The proof is an adaptation of the proof of Hrushovski's result from [5], modulo Section 2. Hence we give a sketch only. Wlog \(A \) is contained in the set of constants of the language of \(T \). As in Section 2, \(S \) denotes the set of strong \(1 \)-types over \(\emptyset \). For \(a \in \mathbb{C} \) let \(p_a = \text{stp}(a) \), and let \(P = \{ p_a : a \in A \} \). First
we proceed as if we were acting within a group structure in Section 2. So for \(p, q \in S \) we define \(p \ast q \) as \(\text{stp}(x \cdot y) \), where \(x, y \) are independent realizations of \(p, q \) respectively, provided \(x \cdot y \) is defined. Notice that \(p*_a \ast p*_b \) is always defined for \(a, b \in A \), and equals \(p_{a,b} \). It follows that \(*P = P \), hence we can skip one step from the construction in Section 2, and consider just \(\text{cl}(P) \) (which equals \(\text{cl}(*P) \) here). By the open mapping theorem, if \(a, b \in \text{cl}(P)(S) \) are independent, then \(a \cdot b \) is defined, and also belongs to \(\text{cl}(P)(S) \) (see the proof of 2.4). In particular, \(* \) is defined on \(\text{cl}(P) \) and \(\text{cl}(P) = \text{cl}(P) \). Within \(\text{cl}(P) \) we look for "generic types" of the group we are going to define. We proceed as in the proof of 2.3; however, as in [4], we have to modify the meaning of \(\Delta \) from Section 2.

Wlog \(e \cdot x \) and \(x \cdot e \) are defined for every \(x \in S \), where \(e \) is the identity element of \(A \). Now \(\Delta \) ranges over sets of the form \(\{ \phi(a \cdot x \cdot b; y) : \phi(u \cdot x \cdot v; y) \in \Delta' \text{ and } a, b \in \text{cl}(P)(S) \} \) for some finite set \(\Delta' \) of formulas of \(L = L(T) \). Most importantly, for this new meaning of \(\Delta \), 1.2 continues to hold and 2.2(c) remains true for \(p, q \in \text{cl}(P) \); hence we are able to carry on reasonings typical for generic types in a stable group. Let \(\mu = |T| \), and let \(\Delta_{\alpha}, \alpha < \mu \) be an enumeration of the finite subsets of \(L(T) \) invariant under \(\cdot \)-translation.

We define \(\text{P}_{\mu} \) as in the proof of 2.3, and similarly as in Section 2 we prove the following claim.

3.2 Claim

(a) If \(p \in \text{cl}(P) \), then \(p \ast \text{P}_{\mu} = \text{P}_{\mu} \ast p = \text{P}_{\mu} \).

(b) \(\text{P}_{\mu} \) does not depend on the choice of \(\Delta_{\alpha} \)'s, and \(R_{\Delta_{\alpha}}(\text{P}_{\mu}(S)) = R_{\Delta_{\alpha}}(\text{cl}(P)(S)) \).

Let \(P' = \text{P}_{\mu} \). Notice that \(P' \) is a closed subset of \(\text{cl}(P) \). If \(P' \) consisted of a single type, the further proof would be nearly the same as in [5]. However, even if \(P' \) may have more elements than one, notice that:

(1) for each \(\Delta \), \(P'|\Delta \) is finite.

On the set of functions \(f \) from \(S \) uniformly definable by instances of some fixed formula, with \(\{ y \in P'(S) : y \downarrow f \} \subseteq \text{Dom}(f) \), we define an equivalence relation \(\sim \) by: \(f \sim f' \) iff for \(y \in P'(S) \) with \(y \downarrow f, f', f(y) = f'(y) \).

By (1), \(\sim \) is a definable equivalence relation, hence \(f/\sim \) is an element of \(\text{G}^{eq} \).

If \(g = f/\sim \) and \(y \in P'(S) \) is independent from \(g \), then \(g(y) \) is defined in an obvious way. In particular, every \(a \in \text{cl}(P)(S) \) determines a \(P' \)-germ \(g_a \) defined for \(c \downarrow a \) by \(g_a(c) = a \cdot c \). Let \(F_0 = \{ g_a : a \in \text{cl}(P)(S) \} \) and let \(F \) be the set of \(P' \)-germs of all definable functions \(f \in \text{G}^{eq} \) with \(\{ y \in P'(S) : y \downarrow f \} \subseteq \text{Dom}(f) \) such that for \(y \in P'(S) \) with \(y \downarrow f, f(y) \downarrow f \). Hence for \(g \in F \) and \(y \in P'(S) \) with \(y \downarrow g \) we have \(g(y) \downarrow g \). Notice that \(F_0 \) is type-definable almost over \(\emptyset \). By the choice of \(P' \), 3.2 and 1.2, \(F_0 \) is contained in \(F \).

For \(g_1, g_2 \in F \) let \(g_1 \circ g_2 \) be the \(P' \)-germ of the composition of \(g_2 \) and \(g_1 \). By the choice of \(F \), \(g_1 \circ g_2 \) is properly defined and belongs to \(F \). Now we define \(h \).

For \(a \in \text{cl}(P)(S) \) let \(h(a) = g_a \in F_0 \). We check that \(h \upharpoonright A \) is an embedding and maps \(\cdot \) to \(\circ \).

Indeed, if \(a \neq a' \in A \) then for any \(b \in P'(S) \) with \(b \downarrow a, a', a \cdot b \neq a' \cdot b \) (this follows by the open mapping theorem and the fact that \(A \) is a group, i.e. satisfies the right cancellation law). Hence \(h \upharpoonright A \) is an embedding.

Now let \(a, b \in \text{cl}(P)(S) \). We have trivially

(2) if \(a \downarrow b \) and \(c = a \cdot b \) then \(g_a \circ g_b = g_c \).
Of course $c \in \text{cl}(P)(G)$. (2) amounts to saying that for $d \in P'(G)$ with $d \downarrow a,b,c$, $(a \cdot b) \cdot d = c \cdot d$, which is trivial.

We need yet to find the type-definable group H containing F_0. Let F_1 be the closure of F_0 under \circ. As in [5] we see that F_1 satisfies the right cancellation law (in the proof we use the fact that for each $g \in F_1$ and $r \in P'$ there is $y \in P'(G)$ with $y \downarrow g$ such that $g(y)$ satisfies r, this follows as in 3.2). Let F_2 be the closure of \{$g_a \cdot a \in P'(G)$\} under \circ. F_2 is a subset of F_1. We will show that F_2 is type-definable. As in [5] it suffices to prove that if $a,b,c \in P'(G)$ then for some $u,v \in P'(G)$ and $x \in P'(G)$ with $x \downarrow u$ there is $y \in P'(G)$ with $y \downarrow x$ and $y \downarrow u$ such that $u \cdot y = x$. Applying this to $x = b$, we can choose $u,v \in P'(G)$ such that $u \cdot v = b$, u and v are independent from b and $u,v \downarrow a,b,c(b)$. It follows that $u \downarrow a,b,c$ and $v \downarrow a,b,c$. By (2), $g_a \cdot g_b \circ g_c = g_u \circ g_v \circ g_c = g_{a \cdot u} \circ g_{v \cdot c}$. F_2 is a type-definable semigroup with the right cancellation law, hence by [5], F_2 is a group. If $a \in \text{cl}(P)(G)$ and $b \in P'(G)$ are independent, then $a \cdot b = c \in P'(G)$, and by (2), $g_a \circ g_b = g_c$. As F_2 is a group, for some $u,v \in P'(G)$, $(g_u \circ g_v) \circ g_b = g_c = g_u \circ g_v$. By the right cancellation law in F_1 we get $g_a = g_u \circ g_v$. This shows that $F_1 = F_2$, and $H = F_2$ satisfies our demands.

As in [5] we can prove that h is 1-1 on $P'(G)$, and the proof above shows that h maps P' onto $\text{gen}(H)$.

Another application of 2.3 consists in showing that existence of a subgroup of G with some properties yields existence of type-definable subgroup of G with these properties. Suppose $W(x_1,\ldots,x_n)$ is a formula of L. We say that a subset A of G satisfies W if all $a \in A$ satisfy W. If H is a type-definable subgroup of G then we say that H satisfies W generically iff all independent tuples $a \in H$ of elements realizing generic types of H satisfy W.

3.3 Corollary If a subgroup A of G satisfies W then the minimal type-definable subgroup of G containing A satisfies W generically.

Proof: Wlog A is a set of constants. Let $P = \{\text{stp}(a) : a \in A\}$. Then obviously each independent tuple $a \in \text{cl}(P)(G)$ of suitable length satisfies W. By 2.3, the generic types of the minimal type-definable subgroups of G containing A belong to $\text{cl}(P)$, hence we are done.

Notice that if H is generically abelian then H is abelian. In particular, we get another proof of an old result (cf. Baldwin and Pillay [2]).

3.4 Corollary If A is an abelian subgroup of G then \bar{A} is also abelian.

Another application concerns the existence of free subgroups of G. Even if it is not known if a free group with ≥ 2 generators is stable, at least we will see that there are “generically free” stable groups. Let $\mathcal{T}(I)$ denote the free group generated by the set I. We say that a type-definable subgroup H of G is generically free if for every $n < \omega$, for each nontrivial word $v(x_1,\ldots,x_n)$ in $\mathcal{T}(x_1,\ldots,x_n)$, H satisfies generically $v(x_1,\ldots,x_n) \neq e$.

3.5 Lemma If A is a free subgroup of G with ≥ 2 generators then \bar{A} is generically free.
DEFINABLE SUBGROUPS OF A STABLE GROUP 179

Proof: Suppose I is the set of free generators of A, and wlog I is a set of constants of L. We say that a word w in letters from I is positive if a⁻¹ does not occur in w for any a ∈ I. Choose a ≠ b ∈ I. Let v_n = a⁻ⁿb⁻ⁿ, n > 0. We say that a word w(x_1, ..., x_n) in letters x_1, ..., x_n is nontrivial if it is nonempty and no x_i⁻¹x_j⁻¹ or x_j⁻¹x_i⁻¹ occurs in w. The following claim can be proved by induction on the length of w.

3.6 Claim Assume w(x_1, ..., x_m) is a nontrivial word in letters x_1, ..., x_m, n, k_i, i ≤ m, are natural numbers. If n_1, k_1, n_2, k_2, ..., n_m, k_m grows fast enough then for any positive words w_i, i ≤ m, of length k_i, w(v_n, w_1, ..., v_n, w_m) ≠ e holds in A.

Let A_0 be the semi-group generated by I. If c ∈ A_0 then c = c_1 ... c_n for some c_1, ..., c_n ∈ I. We define ℓ(c) = n. Applying 2.3 in the language expanded by adding constants for elements of A_0 we see that each generic type r of A is in the closure of {stp(c) : c ∈ A_0}. Also, as in 2.5, for every v, w ∈ A_0, the mappings r → stp(v) * r and r → r * stp(w) are permutations of gen(A). In particular, by 2.2(a), for every v, w ∈ A_0, gen(A) ⊆ cl({stp(vw) : c ∈ A_0}). Hence for every n, k we have

(1) gen(A) ⊆ cl({stp(vn)c : c ∈ A_0 and ℓ(c) ≥ k}).

Now suppose the lemma is false. This means that for some nontrivial word w(x_1, ..., x_m), w(x_1, ..., x_m) = e belongs to r_1(x_1) ⊗ ... ⊗ r_m(x_m) for some r_1, ..., r_m ∈ gen(A). By the open mapping theorem this means that ∃U_1 ∀p_1 ∈ U_1 ∃U_2 ∀p_2 ∈ U_2 ... ∃U_m ∀p_m ∈ U_m, w(x_1, ..., x_m) = e ∈ p_1(x_1) ⊗ ... ⊗ p_m(x_m), where U_i ranges over open neighborhoods of r_i. By (1) and 3.6 we get an easy contradiction.

It is well-known (cf. Shelah [10]) that there are two rotations of R^3 which generate a free group. By 3.5 we see that there is a type-definable subgroup H of the group of linear automorphisms of C^3, which is generically free. But the field of complex numbers is ω-stable, hence H is definable, and stable in itself.

4 On connected type-definable subgroups of G

From now on, "a subgroup of G" will always mean "a type-definable almost over ∅ subgroup of G". So if H is a subgroup of G then gen(H) is a subset of S. Suppose H is a connected subgroup of G and r ∈ gen(H). Then r * r = r and ⟨r⟩ = H. In fact, by 2.3 we have

4.1 Proposition Let r ∈ S. Then the following are equivalent.
(a) r * r = r
(b) ⟨r⟩ is connected and r is the generic type of ⟨r⟩. In particular, r * r = r implies r = r⁻¹.

Proposition 4.1 suggests the following problem. Is it possible to characterize, using only * and topological notions, the class of r ∈ S such that ⟨r⟩ is connected?

We can think of * and topology as our syntactical means, while ⟨r⟩ being connected is a kind of semantical notion. Another way to state this problem is as follows: What are the possible syntactical reasons that make ⟨r⟩ connected?
In this section we find an ample subset Con of S such that $\langle r \rangle$ is connected for $r \in \text{Con}$.

4.2 Remark Let H be a subgroup of G and $p \in S$. Then
(a) $p(G) \subseteq H$ iff for some (every) $r \in \text{gen}(H)$, $p \cdot r \in \text{gen}(H)$
(b) $p(G) \subseteq H^0$ iff for some (every) $r \in \text{gen}(H)$, $p \cdot r = r$.

Proof: (a) \rightarrow is obvious by 1.2. \leftarrow. Let a, b be independent realizations of p, r respectively. Then $c = a \cdot b \in H$, hence $a = c \cdot b^{-1} \in H$.

(b) Let r_0 be the generic type of H^0. Then by (a), $p(G) \subseteq H^0$ iff $p \cdot r_0 = r_0$.

\leftarrow. Suppose $p \cdot r = r$ for some $r \in \text{gen}(H)$. Let a, b be independent realizations of p, r respectively. Then $a \cdot b$ realizes r, b and $a \cdot b$ are in the same H^0-coset of H. It follows that $a = (a \cdot b) \cdot b^{-1} \in H^0$.

Notice that by 2.2(d) and 4.2(a), if $p(G) \subseteq H$ and $r \in \text{gen}(H)$ then $\hat{R}'(p) \subseteq \hat{R}'(r)$, and $p \in \text{gen}(H)$ iff $\hat{R}'(p) = \hat{R}'(r)$. This again shows that any reasonable rank of a generic type is maximal possible. The next fact will be often used.

4.3 Fact Let H be a subgroup of G and $p \in S$. Assume that for some $r \in \text{gen}(H)$, $\hat{R}(r) = \hat{R}(p \cdot r)$. Then $p^{-1} \cdot p(G) \subseteq H^0$ and for every $r \in \text{gen}(H)$, $\hat{R}(r) = \hat{R}(p \cdot r)$.

Proof: Choose a realizing p and b realizing r with $a \downarrow b$, where $r \in \text{gen}(H)$ and $\hat{R}(r) = \hat{R}(p \cdot r)$. By 1.2, $a \cdot b \downarrow a$, hence $a \cdot b \downarrow a^{-1}$, i.e. $a \cdot b$ and a^{-1} are independent realizations of $p \cdot r$ and p^{-1} respectively. It follows that $b = a^{-1} \cdot (a \cdot b)$ realizes $p^{-1} \cdot (p \cdot r) = (p^{-1} \cdot p) \cdot r$ (i.e. $(p^{-1} \cdot p) \cdot r = r$ (* is associative).

By 4.2(b), $p^{-1} \cdot p(G) \subseteq H^0$. Hence, by 4.2(b) and 2.2(c), for every $r' \in \text{gen}(H)$, $\hat{R}(r') \subseteq \hat{R}(p \cdot r) \subseteq \hat{R}(p^{-1} \cdot p \cdot r') \subseteq \hat{R}(r')$, which gives $\hat{R}(r') = \hat{R}(p \cdot r')$.

Notice that $\hat{R}(r) = \hat{R}(p \cdot r)$ is equivalent by 1.2 and 1.3 to $\hat{R}'(r) = \hat{R}'(p \cdot r)$.

4.4 Corollary $p \in S$ and $p(G) \subseteq \langle P \rangle$ then $p \cdot p^{-1} \cdot (G) \subseteq \langle P \rangle^0$.

4.5 Definition We define an increasing sequence of sets $\text{Con}_0 \subseteq \text{Con}_1 \subseteq \text{Con}_2 \subseteq S$. The definitions of $\text{Con}_0, \text{Con}_1, \text{Con}_2$ reflect more and more sophisticated reasons for $\langle r \rangle$ to be connected. Let $*$ denote the group operation in $T = T(\{x_n: n < \omega\})$. The expression $w(x_1, \ldots, x_n)$ of the form $a_1 \cdot \ldots \cdot a_k$, where each a_i is either x_j or x_j^{-1} for some $j \leq n$, is called a $*$-tuple. If $r_1, \ldots, r_n \in S$ and $w(x_1, \ldots, x_n)$ is a $*$-tuple, then $w(r_1, \ldots, r_n)$ is the type from S obtained by substituting in $w(x_1, \ldots, x_n)$ r_i for x_i. We call w a $0\cdot*-tuple$ if $w(\bar{x}) = e$ holds in T. Let

\begin{align*}
\text{Con}_0 &= \{w(r_1, \ldots, r_n): w(x_1, \ldots, x_n) \text{ is a } 0\cdot*-tuple, n < \omega \text{ and } r_1, \ldots, r_n \in S\}, \\
\text{Con}_1 &= \{p \in S: p = \text{stp}(a_1) \cdot \ldots \cdot \text{stp}(a_n) \text{ for some } n, a_i \in G \text{ and } a_1 \cdot \ldots \cdot a_n = e\} \text{ and} \\
\text{Con}_2 &= \{p \in S: \text{there is an infinite indiscernible set } I = \{a^1, a^2, \ldots\} \text{ with} \\
&\quad \quad a^1 = \{a^1_1, a^1_2, \ldots\}, a^1_1 \cdot \ldots \cdot a^1_n = e \text{ and } p = \text{stp}(a^1_1 \cdot a^2_2 \cdot \ldots \cdot a^n_n)\}.
\end{align*}

Finally, let $\text{Con} = \text{cl}(\text{Con}_2)$.

It is easy to see that indeed $\text{Con}_0 \subseteq \text{Con}_1 \subseteq \text{Con}_2$. Also, $\text{Con}_0, \text{Con}_1, \text{Con}_2$ are all closed under \ast, hence by 2.4 Con is closed under \ast. If $\langle r \rangle$ is connected and r is the generic of $\langle r \rangle$ then $r \in \text{Con}_0$, hence $r \in \text{Con}$. The following was the motivation to define Con_2. Suppose we define $\text{Con}_1(G)$ in $S(G)$ like Con_1 in S. Assume some possibly forking extension $r \in S(G)$ of $p \in S$ belongs to $\text{Con}_1(G)$. Then $\langle r \rangle$ is connected (to be shown below), hence also $\langle p \rangle$ is connected. The definition of Con_2 grasps the syntactical meaning of the fact that there exists an $r \in S(G)$ extending p, which belongs to $\text{Con}_1(G)$.

In the next lemma we use local forking. However due to the remark after 1.2 we have to use R'_Δ instead of R_Δ. Recall that for $q \in S$, $q = q|G$.

4.6 Lemma If $r \in \text{Con}$ and $R'_\Delta(q \ast r) = R'_\Delta(q)$ then $(q \ast r)|\Delta = q|\Delta$.

Proof: First assume $r \in \text{Con}_1$. Let $r = \text{stp}(a_1) \ast \ldots \ast \text{stp}(a_k)$ with $a_1 \cdot \ldots \cdot a_k = e$. Let $p_i = \text{stp}(a_i)$. Choose b realizing q, independent from a_1, \ldots, a_k. Wlog $a_1, \ldots, a_k, b \downarrow G$. By 2.2(d) we have

1) $R'_\Delta(q) = R'_\Delta(q \ast p_1) = \ldots = R'_\Delta(q \ast p_1 \ast \ldots \ast p_k) = R'_\Delta(q \ast r)$.

By induction on $i \leq k$ we show

2) $b \cdot a_1 \cdot \ldots \cdot a_i$ realizes $(q \ast p_1 \ast \ldots \ast p_i)|\Delta$ and $R'_\Delta(b \cdot a_1 \cdot \ldots \cdot a_i/G \cup \{a_1, \ldots, a_k\}) = R'_\Delta(b \cdot a_1 \cdot \ldots \cdot a_i|G/G)$.

For $i = 0$, (2) holds vacuously. Suppose (2) holds for $i = t$, we will prove it for $i = t + 1$. We have $\text{Mlt}_\Delta((q \ast p_1 \ast \ldots \ast p_t)|\Delta) = 1$, hence if c realizes $q \ast p_1 \ast \ldots \ast p_t$ and $c \downarrow a_1, \ldots, a_k(G)$, then $r = \text{tp}_\Delta(c/G \cup \{a_1, \ldots, a_k\}) = \text{tp}_\Delta(b \cdot a_1 \cdot \ldots \cdot a_t/G \cup \{a_1, \ldots, a_k\})$. We have $c \cdot a_{t+1}$ satisfies $q \ast p_1 \ast \ldots \ast p_t$. Clearly, r determines $\text{tp}_\Delta(c \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\})$ (as Δ is invariant under translation).

Also, by (1) we have $R'_\Delta(c \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\}) = R'_\Delta(c \cdot a_{t+1}|G)$. Hence we get $\text{tp}_\Delta(c \cdot a_{t+1}/G \cup \{a_1, \ldots, a_k\}) = \text{tp}_\Delta(b \cdot a_1 \cdot \ldots \cdot a_t/a_{t+1}/G \cup \{a_1, \ldots, a_k\})$ and (2) holds for $i = t + 1$.

Applying (2) for $i = k$, using $a_1 \cdot \ldots \cdot a_k = e$, we get that b realizes $(q \ast r)|\Delta$, i.e. $q|\Delta = (q \ast r)|\Delta$.

Now suppose $r \in \text{Con}_2$. Let G' be a large saturated extension of G. Wlog we can choose $I = \{a^1, a^2, \ldots \}$, an indiscernible set witnessing $r \in \text{Con}_2$, such that $r = \text{stp}(a_1^1 \cdot \ldots \cdot a_n^2), I \downarrow G$ and I is based on G', so that $\{a^1, a^2, \ldots \}$ is independent over G'. Thus, $a_1^1 \cdot \ldots \cdot a_n^2$ realizes over G the type \hat{r}. Choose b realizing $q|G \cup I$. It suffices to prove that $\text{tp}_\Delta(b/G) = \text{tp}_\Delta(b \cdot a_1^1 \cdot \ldots \cdot a_n^2/G)$. We shall prove more, namely

3) $\text{tp}_\Delta(b/G') = \text{tp}_\Delta(b \cdot a_1^1 \cdot \ldots \cdot a_n^2/G')$.

Let $q' = \text{tp}(b/G')$, $r' = \text{tp}(a_1^1 \cdot \ldots \cdot a_n^2/G')$ and $p_i = \text{tp}(a_i^1/G')$. We see that $r' = p_1 \ast \ldots \ast p_n$ (in $S(G')$), and $a_1^1 \cdot \ldots \cdot a_n^2 = e$, hence $r' \in \text{Con}_1(G')$ defined in $S(G')$ like Con_1 in S. Also $\text{tp}(b \cdot a_1^1 \cdot \ldots \cdot a_n^2/G') = q' \ast r'$. But $b \cdot a_1^1 \cdot \ldots \cdot a_n^2$ realizes over $Gq \ast \hat{r}$, hence $q \ast r = q' \ast r'|G$. By the assumptions of Lemmas 2.2(d) and 1.3 we get

4) $R'_\Delta(q) = R'_\Delta(q') \preceq R'_\Delta(q' \ast r') \preceq R'_\Delta(q \ast r) = R'_\Delta(q)$.

Thus \(\hat{R}_\Delta'(q') = \hat{R}_\Delta'(q' \ast * r') \). Now we can repeat the first part of the proof with \(r := r', q := q' \) and \(G := G' \) to get \(q' | \Delta = q' \ast * r'| \Delta \), i.e. (3).

Finally suppose that \(r \in \text{Con} \setminus \text{Con}_2 \) and \(R'_\Delta(q \ast * r) = R'_\Delta(q) \). For \(n < \omega \), the set of \(p \in S \) with \(R'_\Delta(p) \geq n \) is closed. By 2.2(a), for \(p \in \text{Con}_2 \) close enough to \(r \) we have \(R'_\Delta(q \ast p) = R'_\Delta(q) \), hence \(\hat{q} \ast \hat{p} | \Delta = \hat{q} | \Delta \). Again by 2.2(a), \(\hat{q} \ast \hat{r} | \Delta = \hat{q} | \Delta \).

When \(G \) is categorical, Zilber proved in [12] that if \(\{ A_i : i < \omega \} \) is a family of indecomposable definable subsets of \(G \), then \(\bigcup \{ A_i : i < \omega \} \) generates a definable subgroup of \(G \). This result was generalized to the superstable context in Berline and Lascar [3]. Unfortunately, in the stable case we do not have such a measure of types as Morley rank in the \(\omega \)-stable case or \(U \)-rank in the superstable case. Here we consider the following problem. Suppose \(H_i, i \in I \), are connected subgroups of \(G \). We know that \(H \), the minimal type-definable subgroup containing all the \(H_i \)'s, is connected. How is \(H \) related to the \(H_i \)'s? As a surrogate for Zilber's result, given \(p_i \in \text{Con} \) such that \(H \vdash q \), we describe topologically how to find \(p \in \text{Con} \) with \(H \vdash q \).

4.7 Theorem
(a) If \(r \in \text{Con} \) then \(\langle r \rangle \) is connected, moreover \(\langle r^n, n < \omega \rangle \) strongly converges to the generic type of \(\langle r \rangle \). So if \(q \) is the generic type of \(\langle r \rangle \) then \(\hat{R}'(q) \) is the pointwise limit of \(\hat{R}'(r^n) \), \(n < \omega \).

(b) If \(P \subseteq S \) and \(r \in \text{Con} \) then \(\langle P \cup \{ r \} \rangle = \langle r \ast * P \rangle \). Also, \(\langle P \ast * r \rangle = \langle r \ast * P \rangle \).

(c) If \(p_1, \ldots, p_n \in \text{Con} \) then \(\langle p_1, \ldots, p_n \rangle = \langle q \rangle \), where \(q = p_1 \ast \ldots \ast p_n \in \text{Con} \).

Proof: (a) By 2.2(d), for each \(\Delta \), \(\langle R'_\Delta(r^n), n < \omega \rangle \) is nondecreasing, and bounded by \(R'_\Delta(x = x) \), which is finite. Hence there is \(n(\Delta) \) such that for \(n > n(\Delta) \), \(R'_\Delta(r^n) = R'_\Delta(r^{n(\Delta)}) \) and by 4.6, \(\hat{r}^{n(\Delta)} | \Delta = \hat{r}^{n(\Delta)} | \Delta \). Thus \(\langle r^n, n < \omega \rangle \) strongly converges to some \(q \in S \). Also, \(r \ast * q = q \). By Theorem 2.3, \(q \) is a generic of \(\langle r \rangle \).

By 4.2(b), \(r(G) \subseteq \langle r \rangle^0 \), hence \(\langle r \rangle = \langle r \rangle^0 \) is connected.

(b) Let \(p \in P \). It suffices to prove that \(r(G), p(G) \subseteq \langle r \ast * P \rangle \). Let \(q \) be a generic of \(\langle r \ast * P \rangle \). By 2.2 we have

\[
* \quad \hat{R}'(q) \leq \hat{R}'(q \ast * r) \leq \hat{R}'(q \ast * p)
\]

\(r \ast * p \in r \ast * P \), hence by 4.2(a), \(q \ast (r \ast * p) \in \text{gen}(\langle r \ast * P \rangle) \). It follows that \(\hat{R}'(q \ast * r \ast * p) = \hat{R}'(q) \), and in (*) equalities hold. By 4.6, \(q = q \ast * r \), hence by 4.2(a), \(r(G) \subseteq \langle r \ast * P \rangle \). Also, \(q \ast * p = q \ast (r \ast * p) \) is a generic of \(\langle r \ast * P \rangle \), hence by 4.2(a) again, \(p(G) \subseteq \langle r \ast * P \rangle \). Similarly, we show \(\langle P \cup \{ r \} \rangle = \langle P \ast * r \rangle \).

(c) follows from (b).

4.8 Corollary
Assume \(P = \{ p_i : i \in I \} \subseteq \text{Con} \). If \(j = \{ i_1, \ldots, i_n \} \subseteq I \) then we define \(q_j = p_{i_1} \ast \ldots \ast p_{i_n} \). Assume \(q \in R = \bigcap_{i \in I} cl(\{ q_j : j \in I \text{ and } j \text{ is finite} \}) \). Then \(q \in \text{Con} \) and \(\langle q \rangle = \langle P \rangle \).

Proof: Clearly, \(\langle q \rangle \subseteq \langle P \rangle \). Suppose \(H \) is an almost-\(\emptyset \)-definable subgroup of \(G \) containing \(\langle q \rangle \). By 4.7(c), for every \(i, \langle p_i \rangle \leq H \), hence \(\langle P \rangle \subseteq H \). It follows that \(\langle q \rangle = \langle P \rangle \).

Notice that if \(q_j \) in 4.8 were defined as generic of \(\langle p_{i_1} \ast \ldots \ast p_{i_n} \rangle \), then any \(q \in R \) would be the generic of \(\langle P \rangle \), hence in fact \(R \) would be a singleton in such
DEFINABLE SUBGROUPS OF A STABLE GROUP

a case. We can say more. By 4.7 and 4.6, if \(r \) is the generic of \(\langle P \rangle \) then \(R'(r) \) is the pointwise supremum of \(\{R'(p) : p \in \ast P\} \). Also, \(r \) is the strong limit of some net of types from \(\ast P \).

In case when the \(U \)-rank of \(G \) is finite, we get a more exact counterpart of Zilber's result.

4.9 Corollary Assume \(G \) is a superstable group with finite \(U \)-rank and \(p \in \text{Con} \). Then for some \(n \), \(p^n \) is the generic type of \(\langle p \rangle \). In particular, \(\langle p \rangle = p^n(G) \cdot p^n(G) \).

Proof: From 2.2(c) and 1.2 it follows that for \(q \in S \), \(U(q \ast r) \geq U(q), U(r) \). Hence we can choose \(n \) such that for \(m > n \), \(U(p^m) = U(p^n) \). It follows that also \(R'(p^n) = R'(p^m) \), and by 4.6, \(p^m = p^n \). By Theorem 2.3 we are done.

5 A special case In this section we focus our attention on the special case of \(\langle p \rangle \) for a single type \(p \in S \). For \(P \subseteq S \) in Theorem 2.3 we explain where the generic types of \(\langle P \rangle \) lie. However, in some respect, the results of Section 3 improved greatly Theorem 2.3: if \(p \in \text{Con} \) and \(q \) is the generic of \(\langle p \rangle \) then \(q = \liminf \{p^n : n < \omega \} = \{q \in S : \) every open \(U \) containing \(q \) contains \(p^n \) for cofinally many \(n < \omega \} \).

(C) For \(p \in S \), \(\text{gen}_{\langle p \rangle} = \mathcal{E}(p) \).

By Theorem 2.3 we have of course \(\text{gen}(\langle p \rangle) \subseteq \mathcal{E}(p) \). Unfortunately Hrushovski found an easy counterexample to (C). Namely, let \(G = (Q, +, 1, P) \), where \(P = \{2^n : n < \omega \} \subseteq Q \). \(\text{Th}(G) \) is \(\omega \)-stable with Morley rank \(\omega \), \(P(x) \) is strongly minimal, \(\langle \text{stp}(1) \rangle = \) all of \(G \), but the strongly minimal type in \(P \) is in \(\mathcal{E}(\text{stp}(1)) \) and is not a generic of \(G \).

We show however that (C) is true for several cases, for example for all stable groups of bounded exponent. In a way we shall answer positively question 5.1 in case when \(P \subseteq S \) is a singleton, in the double step Theorem 5.12 below. We start with comparing \(\langle p \rangle \) and \(\langle q \rangle \) for various \(p, q \in \text{Con}_0 \). We need some additional notation. Let \(w(x_1, \ldots, x_n) = a_1 \ast \cdots \ast a_k \) be a \(\ast \)-tuple. For \(i \leq k \) let \(w_i \) be the shortest \(\ast \)-tuple such that in \(\forall \{x_n : n < \omega \} \), \(a_1 \ast \cdots \ast a_i = w_i \) holds. Let \(\text{In}_0(w) = \{w_i : i \leq k\} \) and \(\text{In}(w) = \{v \in \text{In}_0(w) : v \) is not a proper initial segment of any \(v' \in \text{In}_0(w)\} \). As an example notice that if \(w = w(x_1) \), then \(\text{In}(w) \) has at most two elements which are of the form \(x_1 \ast \cdots \ast x_1 \) or \(x_1^{-1} \ast \cdots \ast x_1^{-1} \).

5.2 Theorem Assume \(w(x_1, \ldots, x_n), v(x_1, \ldots, x_n) \) are 0-\(\ast \)-tuples and \(r_1, \ldots, r_n \in S \).

(a) \(\langle w(r_1, \ldots, r_n) \rangle = \{w'(r_1, \ldots, r_n) \ast w'(r_1, \ldots, r_n)^{-1} : w' \in \text{In}(w)\} \).
(b) If every \(w' \in \text{In}(w) \) is an initial segment of some \(v' \in \text{In}(v) \), then \(\langle w(r_1, \ldots, r_n) \rangle \subseteq \langle v(r_1, \ldots, r_n) \rangle \).
Proof: (a) \supseteq. First we prove that for each $w' \in \text{In}_0(w)$, $\langle w'(r_1, \ldots, r_n) * w'(r_1, \ldots, r_n)^{-1} \rangle \subseteq \langle (w_1, \ldots, w_r) \rangle$.

The proof is similar to that of 4.6 and 4.7(b). Let q be the generic of $\langle w(r_1, \ldots, r_n) \rangle$, $r = w'(r_1, \ldots, r_n)$, and it suffices to prove that $q * (r * r^{-1}) = q$. As $w' \in \text{In}_0(w)$, there is a $p \in S$ such that $q * r * p$ is the generic of $\langle w(r_1, \ldots, r_n) \rangle$. Hence, $\hat{R}(q) = \hat{R}(q * r)$. By 4.3, $\langle r * r^{-1} \rangle \subseteq \langle (w(r_1, \ldots, r_n)) \rangle$.

(a) \subseteq. Let $H = \langle (w'(r_1, \ldots, r_n) * w'(r_1, \ldots, r_n)^{-1} : w' \in \text{In}(w)) \rangle$, and let q be the generic of H. Choose $b_1, \ldots, b_n \in G$ realizing r_1, \ldots, r_n respectively, and if $w(r_1, \ldots, r_n) = p_1 * \ldots * p_k$, where $p_i = r_f$, $\epsilon = \pm 1$, then put $a_i = b_f$. Thus, $a_1 \cdots a_k = e$. Choose c realizing q, independent from b_1, \ldots, b_n. As in 4.6 (the case $r \in \text{Con}_1$) we prove that for every $i \leq k$, $c \cdot a_1 \cdots a_i$ realizes $q * p_1 \cdots * p_i$ (the proof relies on the definition of H). This implies $\langle w(r_1, \ldots, r_n) \rangle \subseteq H$.

(b) follows from (a).

By 5.2 and 4.4 we get the following corollary.

5.3 Corollary Let $p \in S$. Then $\langle p^n * p^{-n} \rangle \subseteq \langle p^{n+1} * p^{-(n+1)} \rangle \subseteq \langle p \rangle^0$.

One could wonder whether $\langle p^n * p^{-n} \rangle = \langle p^{-n} * p^n \rangle$. This seems unlikely, although by 5.2 and 4.8 it is not hard to prove that $\langle \{ p^n * p^{-n} : n < \omega \} \rangle = \langle \{ p^{-n} * p^n : n < \omega \} \rangle$. In the next lemma we shall see that the relationship between $\{ p^n * p^{-n} : n < \omega \}$ and $\{ p^{-n} * p^n : n < \omega \}$ is even closer.

5.4 Lemma Let q be the generic type of $\langle \{ p^n * p^{-n} : n < \omega \} \rangle = \langle \{ p^{-n} * p^n : n < \omega \} \rangle$.

(a) $q = \text{lim}_n p^n * p^{-n} = \text{lim}_n p^{-n} * p^n$.
(b) $\hat{R}(q) = \text{lim}_n \hat{R}(p^n)$ (the limit is pointwise here).

Proof: First notice that $\hat{R}(q) \geq \text{lim}_n \hat{R}(p^n)$, as $\hat{R}(p^n * p^{-n}) \geq \hat{R}(p^n)$. On the other hand we know that $q \in \text{cl}(\{p\})$, where $P = \{ p^n * p^{-n} : n < \omega \}$. For a finite Δ choose m such that for $n \geq m$, $R\Delta(p^n) = R\Delta(p^m)$. As in the proof of 4.6, for every $r \in P$, $\hat{p}^m * r | \Delta = \hat{p}^m | \Delta$. By 2.2(a), $\hat{p}^m * \hat{q} | \Delta = \hat{p}^m | \Delta$. By 2.2(d), $R\Delta(p^m) = R\Delta(p^n * q) \geq R\Delta(q)$. This shows (b).

Now let $r \in \text{cl}(\{ p^n * p^{-n} : n > m \})$. Then $\hat{R}(r) \geq \text{lim}_n \hat{R}\Delta(p^n * p^{-n}) \geq \text{lim}_n \hat{R}(p^n) = \hat{R}(q)$. So by 4.2(a), $\hat{R}(r) = \hat{R}(q)$, and r is the generic of $\langle \{ p^n * p^{-n} : n < \omega \} \rangle$. It follows that $q = r$, i.e. $q = \text{lim}_n p^n * p^{-n}$. But $\hat{R}(q) = \text{lim}_n \hat{R}(p^n * p^{-n})$, hence we see that q is the strong limit of $\langle p^n * p^{-n} : n < \omega \rangle$.

5.5 Corollary Let $p \in S$. There is a connected type-definable almost over \emptyset subgroup H of $\langle p \rangle^0$ such that $\hat{R}(H) = \text{lim}_n \hat{R}(p^n)$.

The q from Lemma 5.4 might be called $p^n * p^{-n}$ or $p^{-n} * p^n$. It is not hard to prove that $p * q * p^{-1} = q$, hence such a notation would imply $p^{(1+\omega) * p^{-1}} = p^{(1+\omega) * p^{-2}}$, which agrees well with $\omega = 1 + \omega$.

Now let us see what the connection is between $\langle P \rangle$ and $\langle P \rangle^0$ for $P \subseteq S$. First we deal with $P = \{ p \}$.

5.6 Lemma Let $p \in S$. Then $\langle \{ p \} : \langle p^n \rangle \rangle$ is finite for each $n > 0$. Also, $\langle p \rangle^0 = \cap_n \langle p^n \rangle$. In particular, $\langle \{ p \} : \langle p \rangle^0 \rangle \leq 2^{\aleph_0}$.

Proof: By 5.3, for $i \leq n$, $p^i \in \text{in}_1(G) \subseteq \langle p^n \rangle$, hence $p^i(G)$ is contained in one left (and one right) $\langle p^n \rangle$-coset of $\langle p \rangle$. Thus also for every $j < \omega$, $p^j(G)$ is contained in one left $\langle p^n \rangle$-coset and it follows that there are only finitely many left
\(\langle p^n \rangle \)-cosets containing some \(p^i(G) \). In particular, for \(q_0 \), the generic type of \(\langle p \rangle^0 \), \(q_0(G) \) is contained in one \(\langle p^n \rangle \)-coset of \(\langle p \rangle \). As \(q_0 = q_0 \ast q_0^{-1} \), we have \(q_0(G) \subseteq \langle p^n \rangle \) and \(\langle p \rangle^0 \subseteq \langle p^n \rangle \).

Thus if \(q \) is a generic of \(\langle p \rangle \) then \(q(G) \) is contained in one left \(\langle p^n \rangle \)-coset of \(\langle p \rangle \). Also, \(q \in \mathcal{L}(p) \) and there are only finitely many \(\langle p^n \rangle \)-cosets containing some \(p^i(G) \). Thus there are only finitely many \(\langle p^n \rangle \)-cosets containing \(q(G) \) for some \(q \in \text{gen}(\langle p \rangle) \). This implies \(\{ \langle p \rangle : \langle p^n \rangle \} \) is finite.

Now suppose that \(H \) is a relatively definable almost over \(\emptyset \) subgroup of \(\langle p \rangle \) with finite index in \(\langle p \rangle \). Then \(q_0(G) \subseteq H \), hence by 2.3 for some \(n, p^n(G) \subseteq H \). It follows that \(\langle p^n \rangle \subseteq H \), i.e. \(\langle p \rangle^0 = \bigcap_{n<\omega} \langle p^n \rangle \).

Notice that if \(X \) is a free group with \(k \) generators then there are \((k + \aleph_0) \)-many normal subgroups of \(X \) with finite index in \(X \). Hence by a similar proof we get

5.7 Corollary If \(P \subseteq S \) then \(\{ \langle P \rangle : \langle P \rangle^0 \} \) \(\leq 2^{\mid P \mid + \aleph_0} \).

Suppose for some \(k, p(x) \vdash x^k = e \); that is, \(p \) is a type of elements of finite order. Then we have \(p^k \in \text{Con}_1 \); hence by 5.6 we get the following corollary.

5.8 Corollary If \(p(x) \vdash x^k = e \) then \(\{ \langle p \rangle : \langle p \rangle^0 \} \leq k \) and \(\text{gen}(\langle p \rangle) = \mathcal{L}(p) \) is finite. Let \(q \) be the generic of \(\langle p \rangle^0 \). Then \(q = \lim_n p^{nk} \). Also, for \(i < k \lim_n p^{nk+i} \) exists and is a generic of \(\langle p \rangle \), and every generic of \(\langle p \rangle \) is obtained in this way.

5.9 Corollary If \(\text{Th}(G) \) is small and \(P \subseteq S \) is finite then \(\langle P \rangle \) is connected-by-finite.

Proof: By adding a finite set of constants to \(L \) we can assume that \(P \subseteq S(\emptyset) \). By Theorem 2.3, every generic of \(\langle P \rangle \) is in \(\text{cl}(P) \), hence \(S(\emptyset) \) being countable implies that \(\text{gen}(\langle P \rangle) \) is countable, too, and \(\{ \langle P \rangle : \langle P \rangle^0 \} < \omega \).

The next theorem shows that in many cases (C) is true. For the definition of weakly normal groups, see [6]. Notice that any pure group which is abelian-by-finite is weakly normal.

5.10 Theorem Assume \(p \in S \) and \(G \) has bounded exponent or is weakly normal. Then \(\text{gen}(\langle p \rangle) = \mathcal{L}(p) \).

Proof: In case when \(G \) has bounded exponent the conclusion follows by 5.8. So suppose \(G \) is weakly normal. Choose any \(q \in \mathcal{L}(p) \). We will prove that \(q \in \text{gen}(\langle p \rangle) \). Let \(r \) be the generic of \(\langle p \rangle \) such that \(q^{-1} * r(G) \subseteq \langle p \rangle^0 \), that is \(q(G) \) and \(r(G) \) are in the same \(\langle p \rangle^0 \)-coset of \(\langle p \rangle \). We will prove that \(q = r \). By Hrushovski and Pillay [6], every definable subset of \(G \) is a Boolean combination of cosets of almost over \(\emptyset \) definable subgroups of \(G \). Hence, fix an almost-\(\emptyset \)-definable \(H < G \). It suffices to prove that for any \(a \in G, r(G) \subseteq aH \) iff \(q(G) \subseteq aH \).

Suppose \(r(G) \subseteq aH \). Then \(r^{-1} * r(G) \subseteq H \), hence \(\langle p \rangle^0 \subseteq H \). As \(q(G) \) and \(r(G) \) are in the same \(\langle p \rangle^0 \)-cosets, we get \(q(G) \subseteq aH \).

Now suppose \(q(G) \subseteq aH \). Then \(q(x) \vdash x \in aH \), and \(q \in \mathcal{L}(p) \), so there are infinitely many \(n \) with \(p^n(G) \subseteq aH \). Choose \(n, k > 0 \) with \(p^n(G), p^{n+k}(G) \subseteq aH \). It follows that \(p^k(G) \subseteq H \), hence again by 5.6 \(\langle p \rangle^0 \subseteq H \). As above we get \(r(G) \subseteq aH \).
It is easy to see that \ast restricted to $\mathrm{gen}(\langle p \rangle)$ is continuous (as a binary function). Unfortunately, \ast is not always continuous on $\mathcal{L}(p)$, because this implies (C) for p. Define $f_p : S \to S$ by $f_p(q) = p \ast q$, and similarly define f_p^{-1}.

5.11 Lemma $f_p|\mathcal{L}(p)$ is a permutation of $\mathcal{L}(p)$. Also, $f_p^{-1} \circ f_p|\mathcal{L}(p) = \text{id}_{\mathcal{L}(p)}$.

Proof: Suppose $\langle p^n : i \in I \rangle$ is a net converging to $q \in \mathcal{L}(p)$, and wlog $\langle p_i^{n_i} : i \in I \rangle$ converges to q' in $\mathcal{L}(p)$. We see that $f_p(q') = q$, hence $\text{Rng}(f_p|\mathcal{L}(p)) = \mathcal{L}(p)$. For a fixed Δ, as in the proof of 4.6 and 5.4, we see that if n is large enough then $\hat{p}^{-1} \ast \hat{p} \ast \hat{p}^n | \Delta = \hat{p}^n | \Delta$. It follows that $\langle p^{-1} \ast p \ast p^n : i \in I \rangle$ also converges to q. But this means that $f_p^{-1} \circ f_p|\mathcal{L}(p) = \text{id}_{\mathcal{L}(p)}$, and we are done.

Let $p \in S$. Suppose we are given a task of getting a generic type of $\langle p \rangle$; we know topology, independent multiplication \ast, but cannot measure any ranks. The first guess would be to choose a $q_0 \in \mathcal{L}(p)$. We know that possibly $\text{gen}(\langle p \rangle) \neq \mathcal{L}(p)$. So it may happen that $q_0 \not\in \text{gen}(\langle p \rangle)$. However q_0 in some respect is more similar to a generic of $\langle p \rangle$ than any p^n, for example any rank of q is \geq that rank of p^n. Also, $\langle p^0 \rangle \subseteq \langle q_0 \rangle \subseteq \langle p \rangle$, gen($\langle q_0 \rangle$) \subseteq gen($\langle p \rangle$) and $\mathcal{L}(q_0) \subseteq \mathcal{L}(p)$ (this is proved below). So maybe if we try again and choose $q_1 \in \mathcal{L}(q_0)$, then we are more lucky in getting a generic of $\langle p \rangle$. The next theorem confirms this guess.

5.12 Double step theorem Assume $p \in S$, $q \in \mathcal{L}(p)$ and $r \in \mathcal{L}(q)$. Then r is a generic type of $\langle p \rangle$.

Proof: First notice that

1. $\langle p \rangle^0 \subseteq \langle q \rangle \subseteq \langle p \rangle$.

Indeed, any almost-\emptyset-definable subgroup H of G containing $\langle q \rangle$ contains $p^n(G)$ for some n, hence also $\langle p^n \rangle$. By 5.6, $\langle p \rangle^0 \subseteq \langle p^n \rangle \subseteq H$. Looking at ranks, (1) implies $\text{gen}(\langle q \rangle) \subseteq \text{gen}(\langle p \rangle)$. Also, $\mathcal{L}(p)$ is closed and closed under \ast, hence $\mathcal{L}(q) \subseteq \mathcal{L}(p)$. Now let $q_0 = q^{-1} \ast q$. We show that

2. $q_0 \in \mathcal{L}(p)$.

Choose a net $\langle p_i^n : i \in I \rangle$ converging to q. Then $\langle p_i^{-n} : i \in I \rangle$ converges to q^{-1}. It suffices to find within an arbitrary open U containing q_0 a type from $\mathcal{L}(p)$. By 2.2(a) we can find an $i \in I$ such that $p_i^{-n} \ast q \in U$. By 5.11, the mapping $s \to p_i^{-n} \ast s$ is a permutation of $\mathcal{L}(p)$, hence $p_i^{-n} \ast q \in \mathcal{L}(p)$.

By (1), $\langle p \rangle^0 \subseteq \langle q_0 \rangle \subseteq \langle q \rangle \subseteq \langle p \rangle$, hence $\langle p \rangle^0 = \langle q_0 \rangle^0 = \langle q \rangle^0$. But $q_0 \in \text{Con}$, hence by 4.7, $\langle q_0^n, n < \omega \rangle$ is strongly convergent to q_1, the generic type of $\langle q_0 \rangle = \langle q \rangle^0$. By 5.3, 5.4 and 2.2(d) it follows that $\hat{R}(q_1) = \lim_n \hat{R}^\prime(q^n_0) = \lim_n \hat{R}^\prime(q^n)$. We know that any $s \in \mathcal{L}(p)$ is a generic of $\langle p \rangle$ iff $\hat{R}^\prime(s) = \hat{R}^\prime(q_1)$, and for every $s \in \mathcal{L}(p)$, $\hat{R}^\prime(s) \leq \hat{R}^\prime(q_1)$. On the other hand, by 2.2(d), $\hat{R}^\prime(r) \geq \lim_n \hat{R}^\prime(q^n) = \hat{R}^\prime(q_1)$, as $r \in \mathcal{L}(q)$. This implies $\hat{R}^\prime(r) = \hat{R}^\prime(q_1)$, hence r is a generic type of $\langle p \rangle$.

Take r from 5.12. By 5.6 we can define the generic type r' of $\langle p \rangle^0$ as $\lim_n r'^n$. A similar argument yields the following corollary.
5.13. Corollary Let $p \in S$. The following conditions are equivalent.

(a) p is a generic type of $\langle p \rangle$.
(b) $p = \lim_n p^{n+1}$
(c) $p = \lim_n p^{n+1}$.

A challenging problem is to generalize 5.12 for arbitrary $P \subseteq S$. This would tell us more about restrictions on the structure of G imposed by the stability assumption.

REFERENCES

