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Concerted Instant-Interval
Temporal Semantics I:
Temporal Ontologies

ALEXANDER BOCHMAN

Abstract The general problem of the relationship between instant-based and
interval-based temporal semantics is studied. The paper is in two parts. In
this first part we consider instant and interval temporal structures and specify
conditions for their mutual definability.

1 Introduction This paper belongs to the “research program” associated
with the so-called interval-based temporal semantics (see, e.g., van Benthem [2],
Burgess [5]-[6], Kamp [10]-[11], and others). These semantics have arisen mainly
from the need of describing temporal expressions of natural languages. Although
in many respects they have obvious advantages over ordinary instant- or point-
based semantics, interval-based semantics are far less developed both formally
and conceptually. Moreover, there are many reasons to think that a proper un-
derstanding of natural language expressions, and the more general task of ade-
quately describing change while resolving well-known puzzles concerning change
(see, e.g., Hamblin [8], Kamp [11], Kretzmann [13], and Sorabji [16]), could not
be achieved on the “monistic” basis of either pure instant or pure interval seman-
tics (although there are some reasons to think that points have in some sense de-
pendent being on intervals). In this paper we will adopt an even-handed approach
to these semantics, and show that there is a large area of “peaceful coexistence”
in which they are mutually definable. In this first part we will consider temporal
structures, comprising both points and intervals, and show how they can be re-
duced to pure point structures as well as to pure interval structures.! In the sec-
ond part of the paper we will explore the possibilities of extending this area of
agreement on temporal semantics proper, while also considering some natural
logics of change that arise on the basis of these semantics.
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2 Point-interval structure A point-interval structure PI is defined as a triple
(P, I,<) where P is a set of points (which we will denote by small Greek letters),
Iis a set of intervals (small Roman letters), and < is an incidence relation: o <
t means that a point « belongs to an interval 7. Below we will make use of the
following definitions:

Definition 1

(i) An interval ¢ is a part of an interval s (in notation, ¢ < s) iff (a)(a < >
a<s)

(ii) Intervals ¢ and s overlap (in notation, ¢ - s) iff they have a common part.

Definition 2 An interval ¢ is bounded by points o and 3 (in notation, C(a:f3)
ff (a#B) & (<))& (BL) & (S)(a<s&B<Ls>1tL5).

We will say that a point-interval structure is linear if it satisfies the follow-
ing five axioms:

PIl (a)(a<tea<s)-t=s

P12 o # (- (3t)(C(xtB))

PI3  (£)(3aB)(C(atB))

Pl4 (a<) & (a<s)-> Au)(B)(B<ue (BLt)v(B<Lys))
PIS (a)(B)(v)(B#y-> (AN (a<t& ~(BLtoy<D)).

According to these axioms intervals having the same points coincide (PI1),
any two different points determine an interval they bound (PI2), any interval is
bounded by points (PI3), for any two intervals having some point in common
there exists an interval containing all and only points of these intervals (P14), and
for two different points there is always an interval containing a given third point
and only one point from this pair (PI5). We will say that a linear PI-structure
is open (or unbounded) if it satisfies:

PI6 (a)(3)(3s)(a<t& a<s& ~(tes)).

It must be noted here that the above structure doesn’t determine the direc-
tion of time. There are many reasons for not including this controversial feature
in the definition of temporal structure, and besides, it is worthwhile to investi-
gate how much can be described without such an assumption (cf. Needham [14]).

By the definition of C and Axiom PI2 any pair of different points uniquely
determines an interval they bound. Hence we may use the following description:

[aB] =gor (1) (C(atB)).
We also define the betweenness relation among points:
blapy) =(a#B#y#a) & (B< [ay]).
And finally, the fusion of intervals ¢ and s is defined as an interval containing
exactly points of ¢ and s:
tVs =gor (U)(a)(a<uoa<tva<s).

In view of PI1 this is a correct description. Note that by PI4 a fusion of two in-
tervals exists if they have a common point.
Now we are in a position to prove our representation theorem. We first show
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that the betweenness relation among points satisfies all the axioms of linear order
without a first or last element.

Theorem 1 The betweenness relation on points for any open linear PI-
structure satisfies the following properties:

(P1) b(aBy) - b(vBa)

(P2) o #B # vy # a—b(aBy)vb(ayB) vb(Bay)

(P3) b(aBy) » ~b(ayB)

(P4) b(aBy) & (6 #a) & (6 #B) & (8 #v) > b(aBd) vb (68y)

(P5) (a)(3B7)(b(Bary)).

Proof: (P1) follows from the definition of the betweenness relation. For (P2)
we build the folowing three intervals: ¢ = [aB] V [BYy], s = [ay] V [yB], and
u = [Ba]V[ay] (all exist by Axiom PI4). It is easy to show that these intervals
contain the same points and hence coincide. Suppose now that # = [un]. By the
definition of fusion we have that both x and » must belong to at least two in-
tervals from the set {[aB], [ay], [By]} and hence they must belong to at least
one of these intervals. Suppose that u and 7 belong to [«8]. Then ¢ £ [af] and
therefore v < [af].

For (P3), if y < [ef] and B < [ay], then [aB] = [ay] and therefore any
interval containing « will contain g iff it contains v, which contradicts Axiom
PIs.

For (P4), since both « and v belong to # = [«6] V [6y], we have that B < ¢
and therefore 8 belongs either to [« 6] or to [6v].

Finally, for (P5), by Axiom PI6 there are ¢,s such that they are not over-
lapped and both contain «. Consider ¢ Vs and suppose that it has boundary
points 3 and v. If @ = B, then [By] = [ay] and since ¥ < £ V s we have that
v < tor y <s. But if y belongs to ¢, then [« 8] < ¢ and therefore s < ¢. Similarly,
it can be shown that v cannot belong to s. Therefore a # 8, a # vy, and a < [By].
This completes the proof.

Consider the following mapping f. For any instant « : f(«) = o , while for
any interval ¢ : f(¢) = {a : «<t}. Then it is obvious that f is an isomorphism be-
tween an open linear PI-structure {P,1,<) and a structure {P,I(P),<p), where
I(P) is a set of all finite point-intervals (that is, sets of points of the form {« :
b(Bary) or & = B or a = v} for any pair {8,v} of different points) and o <p
t =« € t for t € I(P). Therefore we have:?

Theorem 2 The set of axioms PI1-P16 characterizes point-interval structures,
generated by a linear betweenness order without a first or last element.

Note Checking the proof of Theorem 1 it is easy to see that postulates PI1-
PI5 characterize point-interval structures, corresponding to arbitrary linear point
structures (which are determined by postulates P1-P4).

Below we will give an analogous internal characterization of pure interval
structures, corresponding to linear PI-structures.

3 Interval structures An interval structure is defined as a pair (I, <), where
Iis a set of intervals and =< is a relation of being a part on it. Below we will use
the folowing definitions:
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Definition 1 (overlapping) tes= (u)(u<t& u=<s).
Definition 2 (fouching) t*s= (u)(v)(veueo votvves).
Definition 3 (abutment) t+s=t*s & ~tos.

Definition 4 (fusion) (Vs =g ()(V)(vVoueo votvvoes).

In view of Axiom I1 below the above description is correct. Now we will say
that an interval structure is /inear if it satisfies the following axioms:

I0 ‘<’is a partial order on intervals

I1 (u)(teu—->secu)y-t=<s

I2 tos—t*s

I3 t*xsv@u)(t+u&u+s)

I4 ~(tos)&t+u&u+s&t=w&ssw-ou=<sw.

We say that the structure is open if it also satisfies:
I5 ()Au)@s)(t+u&t+s& ~(ue-s)).

Theorem 3 The set of postulates 11-15 completely characterizes interval struc-
tures, corresponding to open linear point-interval structures (and thereby also
interval structures, generated by open linear point structures).

Proof: 1t is obvious that I1-I5 hold for finite intervals of open linear point struc-
tures and hence in all open linear point-interval structures. Now for pairs of abut-
ting intervals we define the following equivalence relation:

(t,s}={u,v} = (W)(wHt&wksow*u & w*v).

Let (#,s) be an equivalence class, containing {¢,s}. We will identify points with
such equivalence classes and define the incidence relation in the following way:

(t,s) Kust*xu & s*u.

By the definition of the equivalence relation this definition is correct. Consider
now the following lemma:

Lemma 1 ~(uev) &t*xu&txv&s*xu&skxv-txs,

Proof: If t does not touch s, then by I3 for some w: ¢+ w & w + 5. Now, by
the definition of touching and I2 there exists an e = (¢t Vu)V (u Vs). Since t <
e and s < e (by I1) we have by 14 that w < e. But taking into account that w over-
laps neither ¢ nor s we obtain (again using I1) that w < u. In the same way it can
be shown that w < v and hence u - v —a contradiction.

As a consequence of this lemma we have the following alternative descrip-
tion of our equivalence relation:

{t,s}={uv}=t*xu&t*xv&s*xu&&s*uv.

To prove the theorem we now must check all the postulates PI1-PI6.

PI1. Suppose that ¢ is not a part of s. By I5 there are u, v such that ¢ +
u, t + v, and ~ (u - v). If both u and v touch s, then there must exist a w =
(uVs)V (vVs) and by 14 ¢ < w. But ¢ is not overlapped with # and v and hence
by I1 ¢t < s, which is impossible. Suppose now that u# does not touch s and con-
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sider {t,u). We have that (¢,u) < ¢ but by the consequence from Lemma 1 {#,u)
does not belong to s. Therefore we have in our defined structure

(x)(a<t—-a<s)-I=<s

and hence PI1 holds.

PI2. If two pairs {¢,s}, {u, v} of abutting intervals are not equivalent then
at least one element from the first pair does not touch some element from the
second pair. Suppose that ¢ does not touch ». Then by I3 some interval i abuts
both ¢ and u. Now if s does not touch i then we will consider j = ¢V i. It is ob-
vious that s + j (since ¢ + s), ¢ * j, and u + j. Note that s is not overlapped with
u, since in the opposite case we would have by 14 that i < (1 Vs) Vu and hence
i < s, because i is not overlapped with ¢ and «. In this way we can always find
an interval that touches all intervals ¢, s, u, v and abuts at least one interval from
each pair {¢,s} and {u,v}. Suppose now that i is such an interval, which abuts
t and v, where ¢ is not overlapped with v, and consider some interval r such that
(t,sy < rand (u,v) < r. Then by I2 there existsa k = (¢t Vr)V (r Vv). Now by
I4 we have i < k and by 11 i < r. Therefore i is a minimal interval, containing
(t,s) and {u,v) and hence PI2 holds.

PI3. By IS, for any interval ¢ there exist nonoverlapping intervals u, v such
that ¢ abuts both. Consider now points {«, ¢) and (v, ¢). If it were the case that
u abutted v, then by I4 we would have that ¢ = (# V v), which is impossible.
Therefore these points are distinct and just as in the proof for PI2 above we may
show that 7 is a minimal interval, containing these points.

PI4. Suppose that some point {i,j) belongs to both ¢ and s. Then by Lemma
1, f touches s and ¢ V s exists. Suppose now that some point {u,v) belongs to
t Vs, but does not belong to either ¢ or s. If # does not touch s, then by I3 some
interval w abuts both u and s. Consider r = uV (¢ Vs): w < r (by 14), but since
w is not overlapped with # and s we have that w is a part of ¢. Therefore ¢ * u
(since ¢ overlaps uVw and (u Vw)Vt = uVt). Hence we have that any inter-
val, which touches ¢ Vs, also touches either # or s. As a consequence we have that
both u and v touch either ¢ or s. Suppose now that v does not touch ¢ and u does
not touch s. Then we have u * ¢, s * v, and some interval k abuts both ¢ and v.
By 14 k is a part of (1 Vs) Vv and hence it is a part of s. But on the other hand
k = tVuVuvand therefore it is a part of u. Hence s overlaps u, which is impos-
sible. As a result we have that if (u,v) < t Vs then either ¢ or s touches both u
and v, that is {(u,v) < f or {u,v) < s.

PI5. Suppose this it is not true for some points o = {i,j), 8 = (t,s), and
v = (u,v). Since 8 # v, {t,s} must contain an interval that does not touch some
interval from {u,v}. Suppose that ¢ does not touch u# and r is an interval that
abuts ¢ and u (cf. I3). Now « # 3, since in the opposite case ¢ is an interval con-
taining «, 3 but not v. In the same way o # v. Consider then intervals [«8] and
[ay]: since [aB] must contain vy and [ay] must contain 8, we have that these
intervals coincide. We will denote this interval by w. By the construction of an
interval, bounded by points (from the proof of PI2 above), we have that w abuts
some interval, say i, from {i,j} and one interval from each pair {z,s}, {u,v},
which are not overlapped with i. We must now consider four cases. Let w abut
s and v. If s is not overlapped with v, we have that both w and wV i abut v and
s and therefore i < w (by I4), which is impossible. Hence s overlaps v. Now we
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have by 14 that r <= (¥ Vv) V (s V) (this fusion exists by 12, because (4 V v) over-
laps (s V1)) and hence r < (s Vv). But on the other hand r < u VwV ¢ and there-
fore r < w. Thus w is overlapped with v Vs and hence it must overlap either v
or s —a contradiction. Now let w abut ¢ and v. We have again that ¢ overlaps v
and r is a part of both w and v, which is impossible. The case when w abuts s
and u is similar, while it is impossible that w abuts ¢ and u, because they are not
overlapped. Thus all cases lead to contradiction and therefore PI5 holds.
Finally, P16 follows directly from our definition of point.

Note It can be shown that the set of postulates characterizing finite intervals
of any linear point structure could be obtained by deleting I5 and adding the fol-
lowing condition:

I5 ~t<ss>@Qu)(ust& ~u-°s)& (V) (usv&v=st-ovesvv=u)).

Note that IS’ is redundant for intervals that satisfy I5. On the other hand,
the set of postulates characterizing convex intervals on linear structures is 10~
14 together with

I6 Any chain of intervals has a fusion.

4 Definitions of points It is well known that there is no definite answer to
the question of what we can count as an interval in linear point structures. The
general requirement is that intervals must be connected or convex sets; that is,
if I is an interval then

acel&pel&blayB)oyvEL

But in addition to that we may require, for example, that intervals be finite,
bounded by points, open, or closed. Just in the same way there is no unique an-
swer to the question of how we may define points in interval structures. There
are actually many ways of doing it available in the literature. In this section we
will consider most of them and propose some new ones. As will be clear from
the following, different definitions may lead to different ‘continua’.

Below we will give a general definition of a set of intervals that determines
a point. But first we will introduce the following auxiliary definitions:

Defini!ion 5 If F and G are sets of intervals, then
(G FxG= ()t EF&seEGot*5s)
(ii)) FsG= (t)(S)(tEF&sEeG—tos).

Definition 6 A set of intervals is said to be a point-filter iff
() F*F
(i) (H(teF->s=<t)->~@u)(u<s).

In other words, any interval in a point-filter touches any other interval from
it, and if some interval is a common part for all its members then it is atomic.
Thus, point-filters may have no more than atomic ‘intersections’. But they may
have no common part at all. Now we will stipulate that any point-filter deter-
mines some point. But there still remains the possibility of two point-filters de-
termining the same point:

Definition 7 Two point filters determine the same point iff (¢)(¢t x*Fot*G).
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Later we will give other identity conditions for points, which will lead to non-
standard point structures.

Now we will distinguish three kinds of point filters, which correspond in fact
to different interpretations of the notion of point.

Definition 8
(i) A point-filter is said to be an atom-point-filter (apf) iff (3t)(s)(s € F—
t<s).
(ii) A point-filter is a boundary-point-filter (bpf) iff ~ (F 3 F).
(iii) A point-filter is a limit-point-filter (Ipf) iff Fs F & ~ (3t)(s)(sE F—>t <5).

We will say that point-filters of the above kinds determine, respectively, atom
points, boundary points, and limit points. 1t is obvious that any point-filter be-
longs to one (and only one) of these kinds. It follows from the definition of
point-filter that an apf may have only an atomic interval as its common part,
whereas any bpf must contain a pair of abutting intervals and hence cannot have
a common intersection. We could define Ipf simply as a set of intervals, satis-
fying (iii) above, since this condition implies that it is a point-filter. Note that
in our representation theorem (Theorem 3) we in fact used boundary points.

The above types of point-filters roughly correspond to the following under-
standings of the nature of points:

(i) Point as an atomic interval. A distinctive feature of this understanding
is that points and intervals are objects of the same kind. It is interest-
ing to note that such an interpretation could be easily incorporated into
modern set-theoretical representations of the continuum, since points
can be identified with minimal intervals.

(ii) Point as a boundary. According to this understanding, which may be
ascribed to Aristotle, or even to Pythagoreans and Plato, points are
boundaries or ends of intervals; they are obtained in the process of
dividing lines and their existence depends on the existence of the intervals
they bound. For a long time this understanding was the most common
one. Our formal definition stems from Hamblin [9], who gave a
corresponding definition for directed linear order (cf. Burgess [S]).

(iii) Point as a limit. According to this interpretation a point is an ideal
object, which can be obtained as a limit of approximations by an infinite
sequence of intervals converging to it. In fact, it is the essence of
Whitehead’s method of extensive abstraction. Similar approaches have
been developed by Russell [15] and Wiener [17] (cf. also van Benthem
[11-[2] and Kamp [10]-[11]).

Although point-filters of different kinds cannot coincide, they may determine
the same point. Thus, a boundary point may coincide with some limit point. But
atom points can coincide with neither boundary points nor limit points. Many
problems arise if we mix points of different kinds. Thus, for any atomic inter-
val there exist two boundary points, which bound it. Now if we treat any bound-
ary point as an atom point, it will acquire its own boundaries and we will achieve
a quick reproduction of points in the vicinity of our source atom (cf. Kamp
[1p.*

For any atomic interval ¢ the sets {#} and {s: ¢ < s} are, respectively, mini-
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mal and maximal apf’s, and for any apf there is a maximal and a minimal apf
that determine the same point. Two maximal or minimal apf’s determine the
same point if and only if they coincide.

Any set of intervals satisfying the condition

*) ()(tEFot*xF)& ~(F4F)

is a maximal bpf. On the other hand minimal bpf’s are simply pairs of abutting
intervals. Here we also have that for any bpf there are a maximal and a mini-
mal bpf that determine the same (boundary) point. Two maximal bpf’s determine
the same point only if they coincide, whereas two minimal bpf’s {#,s} and {u, v}
determine the same point if and only if both ¢ and s touch « and v (see the proof
of Theorem 3).

The sets of intervals satisfying

(¥%) (1)(tEFot3F) & ~(3s)(u)(u € F> s < u)

are exactly maximal Ipf’s, and for any Ipf there is a maximal Ipf determining the
same point. But as can easily be shown there are no minimal Ipf’s.

In view of the above facts we may identify atom points either with atomic
intervals or with maximal sets of intervals, which have some common part,
whereas boundary points could be defined as maximal bpf’s, that is as sets of
intervals satisfying (*) above. In this way we may avoid the use of “higher-order”
definitions of points as certain sets of sets of intervals. Note also that boundary
points could also be defined as sets of intervals, satisfying the formula:

()(tEFot*F& ~(t5F)).

These sets correspond to maximal sets of intervals that have some common
boundary point.

Unfortunately, the situation with limit points is more complicated. Two dif-
ferent maximal Ipf’s may determine the same point, and this happens just when
this point is also determined by some bpf. Suppose that {,s} is a pair of abut-
ting intervals and define the following two sets:

Ft={u:u-t& ux*sj and Fs={u:u-s & ux*t}.

Both these sets are point-filters, and in the case when no atomic interval from
t abuts s and no atom from s abuts ¢ (this obviously holds, for example, when
there are no atomic intervals) both are maximal Ipf’s, determining the same point,
which is also determined by the bpf {z,s}. Therefore limit points cannot be sim-
ply defined as maximal Ipf’s (contrary to Russell, Wiener, Kamp, and van Ben-
them) at least if we want to obtain an ordinary linear point structure (but see
below).

Nonatomic structures We will say that a linear interval structure is nona-
tomic if it satisfies

I7T (#)(3s)(s<2).

This structure characterizes intervals in dense linear point structures. Since in this
case there are no apf’s, the definition of point-filters can now be simplified:
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Definition 6’ A set of intervals F'is a point-filter iff

() FxF

(i) t* F& s* F—t*s.

It is easy to show that (ii) above is equivalent to the condition that elements from
F do not contain a common part. Now, two point-filters F,G will determine the
same point if and only if F * G. Note also that Ipf’s may now be defined sim-
ply as point-filters, satisfying the condition F s F. Sets of intervals satisfying

(*) ()(tEFot*F)

are now exactly maximal point-filters, and for any point-filter there is obviously
a maximal point-filter determining the same point. Moreover, two maximal
point-filters determine the same point if and only if they coincide. Thus we may
identify points in nonatomic structures with maximal point-filters, that is with
sets of intervals, satisfying (*) above.

In nonatomic linear structures any boundary point coincides with some limit
point. However it is still possible that some limit points do not coincide with any
boundary points (we have in this respect a clear and grounded correspondence
with rational vs. real points on a real line). Corresponding ‘pure’ Ipf’s could be
characterized as point-filters, satisfying

(¥ F—13F),
and pure limit points could be identified with sets of intervals, satisfying
FSF& (t)(t* F—t€EF).

The set of points determined by all point-filters forms a complete dense linear
order, and it coincides with the set of all boundary points if and only if the fol-
lowing condition holds:

I6° Any bounded chain of intervals has a fusion.

5 Nonstandard continua In the history of the philosophical analysis of time
we can find attempts to develop alternative temporal ontologies. Most of them
were inspired by the desire to avoid Zeno’s paradoxes and to resolve problems
concerning the description of change (see Kretzmann [13]). Our frameworks al-
low us to describe some of these attempts.

Discrete continuum Suppose that an open linear interval structure in which
16 holds satisfies also the following discreteness axiom:

I8 t+s->Qu)At(w) &u<st&u+s)

where At(u) means that  is an atomic interval. It is obviously an atomic struc-
ture. Moreover, in this structure there are no Ipf’s and hence the corresponding
point structure could be represented as an alternated sequence of atom points
and boundary points that join them. Such a structure was proposed by Joannes
Damascius (see Sorabji [16]) as an answer to Zeno’s paradoxes. It reappears in
some works of the fourteenth-century atomists (see Zoubov [18]) and in works
of Giordano Bruno, who distinguished two kinds of indivisibles — minima and
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termini. According to Bruno, minima are indivisible magnitudes proper, whereas
termini are their boundaries.

Leibniz’ continuum This continuum could be roughly described as a result
of ‘splitting’ all points of an ordinary continuum on pairs of points, which will
serve as primary boundaries of corresponding abutting intervals. The origins of
such a construction can be found in Aristotle’s distinction between continuity and
contiguity (cf. Physics 227a6-23). This structure was proposed by Leibniz in his
dialogue “Pacidius Philalethi” (1676) as a representation of the structure of time.
And it has reappeared recently as a (perhaps undesirable) by-product of the
Russell-Wiener construction of points (see van Benthem [3]).

In order to give a formal description of it we will define half-point-filters
(hpf’s) as sets of pairwise overlapping intervals, which satisfy the following con-
dition:

*) (OGS)(tsF&ssF—-sot).

Note that any hpf is a point-filter. We will consider hpf’s as determining half-
points, and give for them the following identity condition:

Two hpf’s F and G determine the same half-point iff F3 G.

In view of (%) above it is an equivalence relation. Now, maximal sets of pairwise
overlapped intervals are exactly maximal hpf’s and two maximal hpf’s determine
the same half-point if and only if they coincide. Thus, we may identify half-
points with maximal sets of pairwise overlapped intervals. For any pair of abut-
ting intervals in a nonatomic linear structure there are exactly two maximal hpf’s
that determine the same point as this pair of intervals. Hence in complete lin-
ear structures to any point two half-points will correspond.

We may also define the notion of a ‘generalized’ point (g-point, for short),
which will comprise in some sense ‘ordinary’ points and half-points. In order to
do this we simply provide another identity condition for point-filters:

Two point-filters F and G determine the same g-point
iff (1)(t5FotsG).

This equivalence relation is stronger than the identity relation for points (cf. Def-
inition 7 above), and hence point-filters that determine the same g-point also de-
termine the same point. In addition, point-filters that are not hpf’s determine the
same point if and only if they determine the same g-point. Thus, to any ‘stan-
dard’ point will correspond three g-points, two of which are at the same time
half-points, while the third g-point could be interpreted as the ‘union’ of these
half-points in the following sense: the union of corresponding hpf’s is a point-
filter that determines the third g-point. Although this structure looks strange, it
also has precedents in the history of the philosophical analysis of time (see Knuut-
tila and Incerilehtinen [12] and Brentano’s views in Chisholm [7]).

NOTES

1. The theory, described below, is in fact a special case of a general mereological the-
ory, suggested in Bochman [4].
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2. In accordance with the approach proposed in this paper we would personally prefer
the following formulation of Theorem 2: The set of axioms P1-PS5 characterizes point
structures generated by open linear Pl-structures.” But for historical reasons we know
primarily what it is to be “a linear point structure” whereas point-interval structures
are known only in a derived way.

3. Such an understanding is reflected also in Euclid’s Elements, where points are char-
acterized as ends of lines.

4. In Sextus Empiricus (Adversus Mathematicos, IX, 282-293) we find the following
puzzle: If a line consists of points, then divisions of it would lead either to the emer-
gence of some new points or to divisions of the points themselves. It seems that here
we have the same mixture of different kinds of points.
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