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Two Hypergraph Theorems Equivalent to BPI

ROBERT H. COWEN*

Abstract Techniques originally developed for establishing NP-Completeness
are adapted to prove that two compactness theorems concerning hypergraphs
are equivalent to the Prime Ideal Theorem for Boolean algebras (BPI). In ad-
dition, some possible connections between NP-Completeness and BPI are ex-
plored.

1 Introduction We introduce two combinatorial compactness principles and
show them to be in the large class of statements known to be equivalent in ZF
set theory to BPI, the Prime Ideal Theorem for Boolean algebras (see, for ex-
ample, [1], [21, [3], [4], [10]-[20], and [22] for other statements in this class).
Both are about hypergraphs and were suggested by two NP-Complete decision
problems considered by Schaefer [21]. In fact there seems to be an intimate con-
nection between BPI and NP-Completeness; a major aim of this paper is to ex-
plore this connection.

2 A logical compactness theorem One of the more useful versions of BPI
is the Compactness Theorem for propositional logic, which states that a set of
propositional formulas is satisfiable if every finite subset is satisfiable. The
equivalence of the Compactness Theorem for propositional logic and BPI was
first proved by Henkin [10]. Here we shall need a restricted version —when all
the formulas are disjunctions of at most three literals (a literal is a statement letter
or its negation). This restricted version of the Compactness Theorem will be re-
ferred to as 3-SAT and our first task is to show that 3-SAT is equivalent to BPI.

Theorem 1 3-SAT < BPI.
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Received March 21, 1988; revised October 16, 1989



TWO HYPERGRAPH THEOREMS 233

Proof: 1t suffices to show that 3-SAT implies the Compactness Theorem for
propositional logic. Let S be a set of propositional formulas, every finite sub-
set of which is satisfiable. We must show, using 3-SAT, that S is satisfiable.

We can first assume that all formulas of S are in conjunctive normal form
(cnf); this is so because to each propositional formula a unique equivalent cnf
can be associated (that is, the process of finding cnf’s can be defined in a canon-
ical fashion). Next we can assume that S consists entirely of disjunctions because
each cnf can be replaced by its conjuncts.

Finally, let S’ be the result of replacing each disjunction D = (/; v...v )
in S which contains more than 3 literals by the formulas in the set

E={(Lvhva),(~aivhhva),(~a;viivas),...,
(~@g-3 Vi1V ag_3),(~ax_p vV Ix v ~ay)},

where the a; are new letters for each D. It can be readily shown that each truth
assignment satisfying D can be extended to an assignment satisfying the formulas
of E and, conversely, any assignment satisfying E, when restricted to the /;, sat-
isfies D. We claim that any finite subset W’ of S’ is satisfiable; for if W is the
(finite) set of formulas of S that generated the formulas of W', W is satisfiable
and any assignment satisfying W can be extended, as indicated above, to an as-
signment for W’. The satisfiability of S’ now follows by 3-SAT. However, any
truth-functional assignment satisfying S’, when restricted to the literals of .S, sat-
isfies S. Therefore S is satisfiable, as required.

3 Hypergraphs and BP1 We shall consider in this section two compactness
theorems concerning hypergraphs. These two theorems were suggested by two
finite decision problems considered by Schaefer [21]. The first problem, called
ONE-IN-THREE-SATISFIABILITY, states: “given sets Si,...,S,, each having
at most three members, is there a subset 7" of the members such that for each i,
|T N S;] = 1?”. The second problem, called NOT-ALL-EQUAL-SATISFI-
ABILITY, states: “given sets Sy,...,S,, each having at most three members,
can the members be colored with two colors so that no set is all one color?”.
Schaefer shows that these problems belong to the class of NP-Complete prob-
lems, and thus probably there are no algorithms for deciding them that run in
polynomial time (see [7] and [8] for full treatments of NP-Completeness). To
treat these problems in a uniform way we adopt the language of hypergraphs.

A hypergraph is an ordered pair, H = (V,E), where V is a set of elements
called vertices and E is a collection of finite, nonempty subsets of V; elements
of E are called edges. If E consists entirely of pairs, H is called a graph. If V and
hence E are finite sets, H is called a finite hypergraph. We emphasize that the
edges are always finite sets whether or not the hypergraph is finite. A hypergraph
K ={W,F) is a subhypergraph of Hif WC Vand FCE. Let H=(V,E)bea
hypergraph. A subset W of V'is independent if no two elements of W belong to
the same edge of H. A subset W of V' is a vertex cover if each edge of H con-
tains at least one vertex of W. An n-coloring of H is a function f: V- {0, ...,
n — 1} such that | f[e]| > 1, for all ein E with |e| > 1, that is, not all members
of an edge receive the same color, unless the edge is a singleton. We shall prove
that each of the following statements is equivalent to BPI:
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[H,] Let H be a hypergraph. If every finite subhypergraph has an indepen-
dent vertex cover then H has an independent vertex cover.

[H,] Let H be a hypergraph. If every finite subhypergraph is 2-colorable
then H is 2-colorable.

The proofs that BPI = H; and BPI = H, are straightforward; instead of
using BPI directly in the proofs it is easier to use an equivalent form, say either
the Tychonoff Theorem for compact spaces (see [15] and [16]), or a version of
the Rado Selection Lemma (see [2] and [19]). We omit these routine proofs. We
turn next to the converses. We shall prove somewhat more than required; let
HP, i=1,2, n> 1, be the statement H; restricted to hypergraphs whose edges
contain at most n vertices. Then we will prove below that H? = BPI, i = 1,2.

Theorem 2  H{ < BPI.

Proof: We prove that H} implies 3-SAT.

Let S be a set of propositional formulas, all of which are disjunctions of at
most three literals. By repeating literals if necessary (say the first which occurs)
we can assume that each disjunction has exactly three literals. For each disjunc-

tion, d = (/; v I, v I;), we take six new letters, u{, . .., ug and we define five new
sets, X{,...,X¢, as follows (we omit the superscript d on the #’s and X’s for
clarity):

Xl = {llaulau4}

Xy = (b, uy, uy)}
X3 = {ug,uy,us}

Xy = {u3,uy,uq}

Xs = {h,u3}.
We observe (and ask the reader to verify) that any set T such that [TN X;| =1,
i=1,...,5, must contain at least one /; and, conversely, any nonempty subset

of {/1,1,,15} can be extended to such a T, by adding appropriate &;’s. For exam-
ple, {/;,/3} can be extended to T = {/,,/3,u,,us}. We shall refer to the X; ob-
tained from the same d as relatives.

Let hypergraph H be defined as follows: its edges consist of the sets X¢, for
each d in S, together with the sets { p,~p}, for each propositional letter occur-
ring in the formulas of S. The vertex set V of H is the union of the edges.

Suppose now that every finite subset of S is satisfiable. We claim that, like-
wise, any finite subhypergraph, K = (W, F), has an independent vertex cover.
We can assume, without loss of generality, that if any X; belongs to F so do all
its relatives, for any independent vertex cover for a hypergraph induces an in-
dependent vertex cover for each subhypergraph. Let Sg be the set of all din S
for which X¢ belongs to F; then Sk is finite and hence satisfiable. Let Ix be an
interpretation that satisfies Sg. If d belongs to Sk, d = (/; v I, v I5), at least one
of the /; must be true under Ix. Starting with the set of these true literals we can
add appropriate u;’s and also one of { p,~p}, for each { p,~p} in F, to obtain
an independent vertex cover for K; this follows from the observation we made
above and the fact that the u;’s belonging to different @’s are distinct. Hence ev-
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ery finite subhypergraph of H has an independent vertex cover. By H;, H has
an independent vertex cover, I. Since { p,~p} belongs to E, this defines an in-
terpretation: let /; be true if and only if it belongs to the independent vertex
cover I. Again using the above observation, for each d in S, at least one /; must
be in I, that is, true under the interpretation; hence S is satisfiable.

Theorem 3  Hj; = BPIL.

Proof: We prove that H3 implies 3-SAT.

Let S be a set of disjunctions, each with exactly three literals. Assume that
every finite subset of S is satisfiable. Let b be a new propositional letter and for
eachdin S, d = (I, v, v 13), we take two new propositional letters, af, a5, and
we define the sets X¢, ..., X¢, as follows (we omit the superscript d for clarity):

Xi = {h,a,,b}
X5 = (h,az,~a,}
X3 = {l3,b,~a}

Xo={l,~1)}
Xs = {lp,~]}
Xe = {l,~13}
X; = {b,~b}

Xz = {ay,~a,}
Xo = {az,~a,}.

Observe that the hypergraph whose edges are X1, ..., Xs is 2-colorable with b
assigned 0 if and only if at least one of /;, /,, /3 is assigned 1.

Let H be the hypergraph whose edges are the sets X7, for d in S. It is easy
to show, using the above observation and our assumption that every finite subset
of S is satisfiable, that every finite subhypergraph of H is 2-colorable. Hence,
by H3, H is 2-colorable. Let b’s color be 0. Define an interpretation of S as fol-
lows: let p be true if and only if p is assigned the color 1. Then, as we have ob-
served, for each d = (I, v [, v ;) at least one of the /; must be colored 1, that is,
at least one of the /; must be true under the interpretation. Therefore S is satis-
fiable.

If in the statements H/ we now take n = 2, we obtain two theorems about
graphs. These two theorems are equivalent since a graph has an independent ver-
tex cover if and only if it is 2-colorable. However, H, for graphs is known to be
equivalent to C,, the Axiom of Choice for families of pairs (see [17]), and C,
is weaker than BPI (see [14]); thus both H? and H% are weaker than BPI.

The proofs of BPI from H; and H, are “lifted” from those that establish
that the corresponding decision problems are NP-Complete (see [21]); the same
is true for our proof, in Theorem 1, that 3-SAT is equivalent to BPI. Other
proofs of NP-Completeness can be successfully lifted as well; for example, by
lifting Stockmeyer’s proof [23] that GRAPH 3-COLORABILITY is NP-
Complete, Mycielski has obtained a simpler proof of the Theorem of Lauchli [13]
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that P; = BPI, where P; stands for: a graph is 3-colorable if every finite sub-
graph is 3-colorable. We give Mycielski’s unpublished proof next.

Theorem 4 P; < BPI.

Proof: We shall only prove that P; = BPI (see [17] for the converse). Let B =
{B,A,v,",0,1) be a Boolean algebra. We claim first that a subset I of B will be a
prime ideal iff: (1) b; A b, A b3 = 0 implies b; € I, for some i, i = 1,2,3, and (2)
exactly one of {b,b’} belongs to I, for each b € B. We shall prove only that con-
ditions (1) and (2) imply that 7 is an ideal since the rest is rather obvious. Sup-
pose a,b € I. Since (av b) na’ A b’ =0 and a’,b’ & I, by condition (2), it
follows from condition (1) that av b € I. Suppose a € I and b € B; since (a A
byna’'na’=0and g’ & I, it follows that an b € I.

Next we define a graph G (B) as follows. For each ordered triple ¢ =
{by, by, b3) such that b; A by A b3 = 0 we build a Stockmeyer “house” as in Fig-
ure 1. Note that: (1) if the house is 3-colored and vertices by, b,, b; receive the
same color, then ¢ must also receive this color, and (2) if at least one of b,, b, b;
gets a certain color, then ¢ can receive that color. G (B) consists of all these
houses, along with two new vertices ¢ and d, and the following edges:

(1) {c,t}, t =<(b1,b3,b3), by AbyAb3 =0
(2) f{c,d}

(3) {d,b},beB

@) {bb'},beB.

We claim that a 3-coloring of G (B) yields a prime ideal of B and vice versa.

Suppose that G (B) is 3-colored with colors {0,1,2} and assume d receives the
color 2 and c receives the color 1. Then all the b’s receive either the color 0 or
1. If b; A by A b3 = 0 then at least one of the b;’s must receive the color 0; for
otherwise, as noted, ¢ would receive the color 1, where ¢ = (b, by, b3), which is
impossible since # is joined to c. Also, for each b € B, exactly one of b,b’ is col-
ored 0, since (b, b’} is an edge. Thus the set of 4’s which are colored 0 is a prime
ideal.
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On the other hand, if 7 is a prime ideal, assign the color 0 to each 4 in /, and
assign the color 1 to each b in B — I. Color 2 gets assigned to d and color 1 gets
assigned to c. This can be extended to a coloring of G (B) since at least one mem-
ber of ¢t = (b;, by, b3), with b; A b, A b3 = 0, receives the color 0 and hence, as
noted, ¢ can be colored 0 and thus ¢ can be 1.

The Theorem now follows, since the Axiom of Choice is not needed to prove
that finite Boolean algebras have prime ideals, and this readily implies that ev-
ery finite subgraph of G (B) is 3-colorable; for, as can easily be shown, a finite
subgraph of G (B) ‘generates’ a finite subalgebra of B and any prime ideal of this
subalgebra leads to a 3-coloring of the subgraph in the manner indicated above.
Therefore P; implies that G (B) is 3-colorable and hence B has prime ideals.

A proof of P; = BPI could also be obtained indirectly by proving 3-SAT as
in Theorems 2 and 3; we leave the details to the reader.

4 BPI and NP-Completeness In the preceding sections we have used tech-
niques developed originally for establishing NP-Completeness to prove that cer-
tain compactness theorems are equivalent to BPI (in ZF set theory without the
Axiom of Choice). We wish to study the relationship between BPI and NP-
Completeness more systematically and for this purpose we adopt the following
uniform terminology.

Let R be a compactness statement; that is, R says that for a class of struc-
tures and a property P pertaining to these structures, if every finite substructure
of a given structure in the class has property P, then the given structure has prop-
erty P as well. Exactly what is meant by “structure” and “finite substructure” will
be clear in each particular case. In addition we assume that R is provable in
ZF + BPI. For example, if the class of structures is all graphs then finite sub-
structure means finite subgraph, and if P is the property of being 3-colorable then
R is just the statement P; which we considered in Section 3. On the other hand,
if the class of structures is all sets of propositional formulas that are disjunctions
of at most three literals and finite substructure means finite subset while prop-
erty P is satisfiability, then R is 3-SAT. For a compactness statement R, by R*
we shall mean the decision problem with the question: “does the finite structure
have property P?”. We shall only consider statements R such that R* belongs to
class NP. In the case R = P;, R* is called GRAPH 3-COLORABILITY, which
is NP-Complete (see [7] and [8]). It should not be assumed that every finite de-
cision problem gives rise to a compactness result; therefore we have adopted no-
tation which assumes a compactness result at the outset.

We now give a list of pairs R, R* and discuss R’s relation to BPI and R*’s
complexity. In some cases the status of R is unknown and we make a conjecture.
Unless we indicate otherwise, it should be assumed that all statements we make
about the complexity of R* can be found in [8], and statements about R for
which we don’t supply references have been proved above. We write “R < BPI”
if R is weaker than BPI in ZF (without Choice).

(1) If R is n-SAT, then R < BPI, and R* is NP-Complete, if n > 2;
however, for n = 2, R < BPI, since it is a special case of binary consistent
choice on pairs (see [11] and [14]) and R* is solvable in polynomial time.
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() If R is P, and n > 2, then R < BPI and R*, called GRAPH =»n-
COLORABILITY, is NP-Complete; however, for n = 2, R < BPI (see
[14] and [17]) and GRAPH 2-COLORABILITY is polynomial.

(3) If n>2 and R is H] or H} as defined above, then R < BPI and R* is
NP-Complete (see [21]); however, for n = 2, R < BPI, as we have
observed in Section 3 and the corresponding decision problems are
polynomial.

(4) Let R be the statement: “a collection of finite sets has a system of distinct
representatives (SDR) if every finite subcollection has an SDR”. (This is
equivalent in ZF to the infinite marriage problem of [9].) R*, the finite
marriage problem, is polynomial and it is routine to show that BPI = R;
however, the exact status of R is not known; we conjecture that R < BPI.

(5) Let k be a positive integer and let R be the statement: “an infinite
partially ordered set can be partitioned into & chains if every finite subset
can be so partitioned”. Then, by Dilworth’s Theorem (see [6]), R* is
easily seen to be polynomial. BPI = R (see, for example, Theorem 14 of
[4]); however, Howard has shown (in an unpublished communication)
using a Fraenkel-Mostowski model that R # BPI; whether R < BPI in
ZF remains an open question.

(6) If R is obtained from 3-SAT by imposing the additional condition that
each disjunction have at most one negated variable, then R* is polyno-
mial (see [21]). Howard and Ho6ft have shown that R < BPI; in fact they
proved that R is a theorem of ZF (in an unpublished communication).

(7) Let R be the statement: “a system of polynomial equations over the field
{0,1} has a solution if every finite subsystem has a solution”. Then R
BPI. This was stated and proved explicitly in [1]; of course it is implicit
in [10]. R* is NP-Complete. If, however, R is the result of replacing
“polynomial” by “linear” in this statement, we conjecture that R < BPI.
R* is polynomial since a finite linear system can be solved by Gaussian
Elimination.

(8) If R is the compactness theorem for propositional logic with the added
restriction that each propositional variable occurs in only finitely many
formulas, Wojtylak has shown (in an unpublished communication) that
R < BPI; in fact he has shown that AC_yunc = R, where AC gy is the
Axiom of Choice for families of countable sets, and since AC.yyn; # BPI
follows easily from known results (e.g., ACW # OP, BPI = OP, see
[12], p. 184), this suffices. However, R* is NP-Complete since it equals
the satisfiability of propositional formulas.

(9) A graph is locally finite if all its vertices are of finite degree. If n > 2,
let R be the statement P, restricted to locally finite graphs. Then
Mycielski has shown (in an unpublished communication) that AC.qyn =
R and hence, as in (8), R < BPI. R* is NP-Complete.

The examples we have given above are of three types: (1) R < BPI and R*
is NP-Complete; (2) R < BPI and R* is polynomial; and (3) R < BPI and R* is
NP-Complete. We have not given any example, nor do we know of any, where
R = BPI and R* is polynomial. We conjecture that this case does not occur; that
is, if R* is polynomial then R < BPI. This implies in particular that P = NP is



TWO HYPERGRAPH THEOREMS 239

false, since if P = NP were true then, if R = P;, R* would be polynomial and
hence, by the conjecture, R < BPI!
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