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Toposes come to logic from outside, notably from category theoretic meth-
ods in geometry, and the border crossing has occasioned its share of difficulties.
Most of the present work aims to initiate the newcomer to toposes, connecting
them to established concerns in logic. A classical logician and set theorist whose
own initial response to toposes in the foundations of mathematics was skepti-
cal (see [2]), Bell introduces topos theory in a way congenial to mainstream logi-
cians and with his usual expository skill. Then he swings away from the project
of initiation into a speculative epilogue. He goes beyond the conventional model
theoretic content of the body of the book to suggest that abstraction in math-
ematics, including set theory, has led to a point where the "pluralism" of cate-
gory theory must replace the "monism" of set theory (p. 235). His arguments
here should provoke debate from all sides.

Requiring basic knowledge of model theory and set theory, the book covers
the standard theorems of topos theory and some set theoretic techniques for con-
structing toposes. It requires no prior knowledge of category theory, although
a reader might find it helpful to look at some of the other sources Bell cites or
at the brief nontechnical treatment in [14]. The book gives more extensive and
elementary treatment of logic in toposes than [9], and could serve as an intro-
duction to that book's results on categorical methods in the lambda calculus and
recursive functions. It could also serve a logician as a starting point toward
understanding Lawvere's work, and also towards [1], [6] and other research liter-
ature in toposes and categorical logic, although for these latter it would have
to be supplemented by more general category theory.

A topos can be seen as a kind of universe in which one can interpret higher-
order logic and do mathematics. The universe of sets is an example and so are
its Boolean extensions as used in independence proofs. In a less classical vein
there is a well-known topos of smooth spaces: A universe which includes among
its objects a line R, a plane R2

9 and so on through all classical manifolds of dif-
ferential geometry and more, including infinitesimal spaces. In this topos every
object has a geometric structure and every function is continuously differentia-
ble. One can work within this topos more or less as if working with ordinary
sets and arbitrary functions, and yet be assured that all the functions one con-



BOOK REVIEW 151

structs will be differentiable and all the results one proves will apply to differ-
entiable spaces.

There is an effective topos, which it would be premature to call "well-
known" right now although it is the object of intense investigation. Its central
feature is that in it every well-defined function from the natural numbers to
themselves is recursive. Thus one can proceed more or less as if working with
ordinary sets and arbitrary functions yet be assured that all the functions con-
structed will be recursive. One reason for interest in this topos is that in it there
are objects with a certain peculiar property: There are nontrivial 'sets' A such
that A is isomorphic to the 'set' of all functions from it to itself. (It is easy to
see that a classical set A isomorphic to the set of all functions from it to itself
is a singleton, with one function to itself!) These 'sets' are rich enough to pro-
vide interesting models for the lambda calculus —models in which every func-
tion from the 'set' of terms to itself is already one of the terms (see [13]).

Of course the phrase "more or less as if working with ordinary sets" glides
over the novelty of topos logic. Classical logic, sound in the topos of sets, is not
sound in all toposes, yet a fairly simple higher-order logic is. This is what Bell
calls local set theory, and he presents toposes almost entirely in terms of it. He
could even be faulted for too sharply minimizing the use of category theory; he
claims "the merit of avoiding the difficult category theoretic arguments origi-
nally employed to establish the basic properties of toposes, replacing them
instead with comparatively simple 'set theoretic' reasoning" (p. vii). In fact, cate-
gorical methods are no more intrinsically difficult than his. A topologist or
algebraist will find the quick elegant category theoretic proofs in Barr and Wells
[1] clearer than the syntax of local set theory. But logicians may welcome a book
on toposes which, while it is demanding, is demanding in a logician's style.

Local set theory The first chapter surveys category theory, concentrating on
just the features relevant to this book. Even so, a reader leery of categories need
not actually absorb all this material before going on for a first reading. The sec-
ond chapter introduces toposes in a form that leads naturally to the third chapter
where the central logical tools are introduced: local set theories. The fourth chap-
ter applies local set theory to prove the basic theorems of topos theory. The next
two chapters apply local set theory to particular constructions (themselves based
on Gόdel-Bernays set theory) including sheaves over topological spaces, fuzzy
sets, and Boolean extensions of the universe of sets. Chapter seven discusses nat-
ural numbers and real numbers in a topos. In this chapter Bell briefly describes
the free topos, which he follows [9] in describing as "the ideal universe, for the
constructively minded mathematician" (p. 233). There is an epilogue speculat-
ing on the significance of topos theory, and an appendix on classifying toposes.
Briefly, the classifying topos of a theory is a topos containing a model of that
theory such that any model in any topos is an image of it (in a specific sense).

The presentation of local set theory is remarkable for its paucity of primi-
tives and axioms.1 This axiomatization is worth seeing even if one is familiar
with purely categorical proofs. A local language is a typed term language with
no connectives or quantifiers among its primitives. It has a type Ω, seen as the
'type of truth values'. For any finite list of types A\,... ,An there is a product
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type Ai x . . . x An, and each type A has a power type PA. There are variables
over each type, and typed function symbols. We say that/ has signature A -*
B, meaning that/ is a function from type A to type B. Terms are defined in the
usual way: each variable of type A is a term of type A, and for each function
/ of signature A -> B and term r of type A, fτ is a term of type B. For terms
7χ,..., τn, of types Au... ,An respectively, there is a term {τ\,..., r^) of type
Ax x .. .x An. A formula is a term of type Ω. For any two terms T and r' of
the same type there is a formula r = r'. For any formula σ and any variable x
of type A there is a term {x| σ) of type PA. And for any terms r of type 4̂ and
σ of type P>1 there is a formula T E: σ.

The axioms include the usual structural rules for a sequent calculus, axioms
of equality, an axiom saying that an Λ-tuple < τ l s . . . ,τn) determines and is
determined by the n terms τ\ through rΛ, and axioms of extensionality and
comprehension for terms of any type PA. We will state the comprehension
axiom scheme, since we discuss it below. It simply says, for every formula σ and
variable x, that this formula is true:

X G {Λ:|σ} <-> σ.

Since all variables are typed, this is in effect a bounded separation axiom scheme:
For every typed formula σ and type A there is a collection {x E A \ σ]. From
these Bell defines the usual sentential connectives and quantifiers, derives a non-
classical logic which we discuss below, and proves an array of theorems of local
set theory.

The set theory is "local" in two senses. First, it is in a typed language. All
quantifiers in local set theory are typed; only outside of the set theory can we
quantify over all types and so on. Bell does not explain why this is a good thing,
and the conventional wisdom, until recently at least, was that set theory had the
advantage over higher-order logic precisely because it was not typed. The
weakest claim one could make for this typed set theory is that it works for all
the things it does work for and the typing is never felt as a limitation in prac-
tice. But the stronger claim would be to point out that applications come typed.
Untyped logic is artificial. There are the familiar objections that, for example,
single typed set theory makes it meaningful to ask whether the number five is
an element of the group of symmetries of the plane (and in some versions the
answer is yes). Here I will only point out that computer languages are typed, and
higher-level computer languages have more types, because typing facilitates
applications.

The second sense in which these set theories are "local" is that not a sin-
gle one of them is conceived as the universe for mathematics. Each is the uni-
verse of its own mathematics, or a "local reference frame" for mathematics in
BelΓs preferred metaphor, comparable to others through geometric morphisms.
We return to this in discussing the epilogue.

Bell describes the logic of local set theory thus: "The basic axioms and rules
of local set theory will be chosen in such a way as to yield as theorems precisely
those of (higher order) intuitionistic logic" (p. 68). This description may be reas-
suring to many logicians but it is seriously misleading if it suggests that topos
logic was designed to agree with some previously established higher-order intui-
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tionistic logic. It is worth taking a moment to get the history straight, since this
too-widely received view conceals a philosophical puzzle.

Higher-order intuitionistic logic Logicians through the 1960's rarely wrote
about "higher-order intuitionistic logic". Rather they wrote about "intuitionistic
analysis", which could refer either to something like choice sequences or to
extensions of Heyting arithmetic in various versions of second-order or higher-
order logic. And there were many different versions. Troelstra [19] offers 52 dif-
ferent named axiom systems, and many more unnamed variants, extending Heyt-
ing arithmetic to various fragments and kinds of higher-order logic. In part this
was because he had metamathematical results on each system, but there is a
deeper reason why so many systems had been studied. Through the 1960's an
intuitionistic system was expected not only to use intuitionistic logic but to begin
with 'intuitionistically acceptable' axioms. Few logicians believed in Brouwer's
philosophy, but all took belief in it as part of the point of studying intuitionistic
analysis.

There was, and still is, little agreement as to what might be intuitionisti-
cally acceptable. There was, however, fairly wide agreement that the full axiom
scheme of comprehension was not. That is, it seemed intuitionistically unaccept-
able to assume that merely because a collection A was given and a formula σ
could be expressed there must be a legitimate whole consisting of those things
in A satisfying σ. So one would limit the comprehension scheme to certain intui-
tionistically harmless formulas σ. But again, there was no consensus as to which
these should be, and logicians seemed curious to try out many variations rather
than intent on establishing one.

At least one aspect of extensionality was also dubious. Dana Scott, for
example, in describing quantification over intuitionistic predicates, or "species",
once said that "we are being careful not to assume these species are extensional
in the sense of the validity of

vxvyvX[x = γΛxeX^yeX]

because remarks in [8] and elsewhere indicate that non-extensional predicates
may be of interest and even of importance" ([17], p. 210).

Toposes were created in the 1960's by Alexander Grothendieck as a highly
successful tool in algebraic topology and algebraic geometry. Grothendieck later
urged logicians to look into toposes for their similarity to the universe of sets,
for he had seen that they 'lift' properties from the universe of sets the same way
categories of sheaves of groups lift properties from the category of abelian
groups. But he has not pursued this himself and he probably never saw any con-
nection with intuitionism. Nor were Lawvere and Tierney thinking of intui-
tionism when they axiomatized elementary topos theory in 1969-1971. They
wanted to develop further Grothendieck's methods, and Lawvere thought axio-
matic topos theory could provide a context for simple foundations for differ-
ential geometry, which idea was confirmed by the smooth topos mentioned
above. They did not approach toposes through logic though they knew logic
would be interpretable in any topos. In fact both have always felt that overem-
phasis on formal logic distracts from a clear understanding of toposes. They sue-
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ceeded at capturing the key features of Grothendieck's toposes using the central
category theoretic tool of adjunctions (pp. 30 ff). Lawvere had known for some
years that a natural approach to logic via adjunctions was likely to yield some-
thing like Heyting's intuitionistic logic, but for him that was a mathematical fact
about adjunctions and not a philosophical desideratum for logic.

The 1970's saw two approaches to higher-order intuitionistic logic come to
domination. The first was actually set theoretic, intuitionistic Zermelo Fraenkel
set theory, IZF. This was produced by Friedman and Myhill, often working
together, at a time when Myhill at least already knew of Lawvere and Tierney's
topos theory.2 The second was Scott's higher-order intuitionistic logic which
first appeared in [18], an article asserting its soundness and completeness for
interpretations in toposes. Topos theory was among the inputs to these theories,
not a later device for interpreting them.

Thus the slogan that "topos theory is higher-order intuitionistic logic" is
not a description of topos theory but a modern explication of "higher-order
intuitionistic logic", and one which considerably reforms its explicandum. The
resemblance between traditional intuitionism and this modern higher-order intui-
tionistic logic lies in the rules of inference. The modern versions agree with Heyt-
ing's rules of inference for connectives and quantifiers; the formal differences
in a nutshell are as follows. Traditionally, the existence property is part of intui-
tionism. A statement (3x)Fx is accepted only if for some constant c we accept
Fc. The disjunction property is also a traditional part of intuitionism. We accept
a disjunctive statement Av B only if we accept either A or B. Neither of these
properties holds in higher-order intuitionistic logic in the current sense, including
Bell's local set theory. But they do hold in the logic of the free topos, which is
why this topos has been called the ideal universe for the constructively minded
mathematician (it remains to be seen whether actual constructively minded
mathematicians will agree). The modern versions also use the full axiom scheme
of comprehension, and their axioms of equality include the kind of extension-
ality that Scott avoided in the quote above.

Scott ([18], p. 686) discussed concerns about intuitionistic acceptability of
the axioms and then deferred them, proceeding for the moment without wor-
rying about them. (Perhaps Friedman and Myhill said similar things though I
have not found them.) The deferral, well over ten years old now, seems likely
to become permanent.

Yet topos logic resembles traditional intuitionism strongly enough to be
puzzling. Why should the most natural definitions of the logical connectives in
terms of adjunctions agree so closely with Heyting's formalization of Brouwer's
philosophy? Is there a link through topology? Perhaps the intuitions of Brouwer
and of earlier constructivists were shaped by experience with continuously vary-
ing quantities. And it is certain that category theory was created and developed
through its first 15 years as a tool for relating topological structures to others.
To Lawvere, toposes are universes of continuously variable sets (see [11] and
[12], inter alia). Perhaps Brouwer and others were more or less aiming at a logic
stable under continuous variations and this led them in the direction topos theory
would go. And perhaps not. The effective topos is far from topological; almost
all it has in common with topological toposes are the adjunctions that define a
topos and this is enough to make the logic of toposes apply to it not only in prin-
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ciple but quite usefully. So a link through topology may not be a deep enough
explanation.

The resemblance could be mere coincidence, though it seems unlikely. At
any rate it is not the result of design. The earlier topological models of intui-
tionistic logic, for example, were expressly designed to model that logic and so
they did, but that is all they did. Toposes were designed for quite different pur-
poses, which they serve well, and their logic forces itself on us quite naturally.
The way the logic grows irresistibly out of the properties of a topos is not so
clearly manifest in a treatment which derives the properties from the logic, but
see [10] for an example.

Completeness theorems Bell shows how to interpret a local language in a
topos. A local set theory S consists of a local language and a collection of axioms
in that language. He proves that the rules of inference for local languages are
sound for interpretations in toposes and he also proves a kind of completeness
theorem: For any local set theory S, if every interpretation of the language of
S that satisfies the axioms also satisfies a formula σ then σ is deducible from the
axioms by the rules of inference. Here the reference to "every interpretation"
includes quantification over toposes. It means "every topos and every interpre-
tation of the language of S in that topos". But Bell proves more. For every local
set theory S there is a topos CS and a canonical interpretation of S in CS such
that the following holds: A formula σ is deducible in S if and only if it is true
in that interpretation.

He also shows that for every topos there is a local set theory S such that
the topos is equivalent to CS, and thus he can use deductions in local set the-
ory to prove the standard theorems of topos theory. The fact that the topos CS
is constructed out of the expressions in S may give an illusory feeling of nominal-
ism to the whole procedure; but the theory S itself is apt to have a proper class
of types and of terms. The construction uses linguistic devices, but is not lim-
ited to the kind of finitely or effectively specified languages a nomimalist would
want. Bell gives credit to others who have used the logic of toposes this way,
but this is the first publication to bring together all these proofs in logical form.

It must be said that the completeness theorem, also found in [9], [18], and
elsewhere, is more a logician's theorem than a category theorist's, and a cate-
gory theorist's view of it suggests logical questions. It is a logician's theorem in
that it takes the local set theory S as fixed and allows the toposes to vary; we
quantify over all toposes, or construct a topos CS suited to S. Of course the
point of topos theory for a category theorist is also to let the toposes vary— to
choose the most suitable one for any purpose —but generally not to vary the
toposes to suit some formalized theory, and at any rate to take each single topos
seriously. From this point of view we naturally want to know what theory if any
is complete for a given topos.

It is obvious that local set theory as axiomatized here is not complete for
interpretations in sets. The law of excluded middle, for example, is valid in sets
but not provable in local set theory. A stronger point can be made. Arithmetic
is finitely axiomatizable in local set theory (Chapter 7) so Godel's incomplete-
ness theorem shows that no consistent effectively axiomatizable local set theory



156 COLIN McLARTY

with arithmetic is complete for interpretations in a topos of sets. The result
extends easily to many other toposes, though no work seems to have been done
to tell just how far it extends and by what methods.

Such incompleteness is to be expected from any set theory or higher-order
logic, so we might look to first-order logic. Here GδdeFs completeness theorem
tells us that the first-order part of local set theory plus the law of excluded mid-
dle is complete for the topos of sets (eliminate the free variable restriction on
the cut rule if you want to require that every type be interpreted by a nonempty
set). This first-order part of local set theory could be extended more modestly
by adding the DeMorgan law u~(φ & φ) -* (~φ v ~φ)n as an axiom. This does
not imply the law of excluded middle (see Johnstone [7]) but is sound and com-
plete for some toposes. Or we could add the law of excluded middle > v ~<p"
as an axiom for every formula φ with no free variables, but not for all formulas.
This is also sound and complete in some toposes but not all. Some work, done
by logicians not thinking of toposes, has shown that certain first-order logics
are sound and complete in various specific toposes. Kripke's completeness proof
for first-order intuitionistic logic shows it is complete in certain toposes; and
some work on tense logic with intervals is related to completeness proofs for cer-
tain other logics. But the field has hardly been touched.

Examples Bell does not describe the topos of smooth spaces (he has writ-
ten about it in [3] and [4]) nor the effective topos, but develops examples closer
to standard concerns in logic: Kripke models, Boolean extensions of the universe
of sets, and fuzzy sets. He shows how toposes provide a unifying framework for
these constructions and alludes to their relevance to others, such as ultraproducts
in nonstandard analysis and Cohen forcing. Logicians began speculating on the
connection between Kripke's models for intuitionistic logic and Cohen's forc-
ing models almost as soon as the techniques were known. Bell gives a good
account of the correct answer to their relationship, correct in that it is natural,
elegantly addresses the specifics, and yet embeds the two in a much broader con-
text, namely that both are constructions in presheaf toposes.

The discussion of fuzzy sets stops just short of an interesting observation
which argues for extending each universe of fuzzy sets to a topos. A locale is
a partially ordered set in which every two elements have a greatest lower bound,
every set of elements has a least upper bound, and lower bounds distribute over
upper bounds. (Think of the open sets of a topological space: the intersection
of any two is open, so is the union of any set of them, and intersections distrib-
ute over unions.) Given a locale if the universe of //-fuzzy sets is a universe in
which the claim x E y has a truth value in //. That is, it may be "partially true"
with partial truth explicated by H as a set of truth values (for details see pp.
210ff). Bell shows that the //-fuzzy sets form a topos if and only if H is a
Boolean algebra.

But set theory rests on two primitives — membership and equality—and
fuzzy set theory has only fuzzified membership. That is, a claim x = y is either
simply true or simply false in the universe of //-fuzzy sets. This is a serious limi-
tation on fuzzy sets. It makes fuzzy powersets problematic, since equality of sub-
sets ought to be as fuzzy as claims about their members. Furthermore, given an
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//-fuzzy set S and an //-fuzzy equivalence relation R on it, there is no //-fuzzy
set of equivalence classes for the equivalence relation, since equality of equiva-
lence classes would have to be as fuzzy as the relation R.

Bell does not mention that extending the notion of an //-fuzzy set to
include sets of equivalence classes for equivalence relations amounts to allow-
ing arbitrary //-fuzzy equality relations —and the result is precisely the topos of
//-sets as defined by Bell (p. 202). And of course in the topos all higher-order
constructions are available, including powersets and more. All of this is in [16].
The //-fuzzy sets are just those //-sets on which equality is not fuzzy, so using
the topos of //-sets allows us to restrict ourselves to those when we want to, but
it also gives a naturally greater range of constructions.

BelVs epilogue The soberly model theoretic tone of the book changes to brisk
speculation in the epilogue "On the wider significance of topos theory". The epi-
logue begins with an account of developments in abstract algebra through the
1930's and 1940's, notably Bourbakiste structuralism, which preceded category
theory. Bell describes the then increasing awareness of the importance of mor-
phisms, structure preserving maps between structured sets, and points out that
this fell short of the Bourbakiste ideal of structuralism since it did rely on the
set theoretic make up of its structured sets. He says that category theory pro-
vided the first axiomatic framework for mathematics "which takes the notions
of structure and morphism as primitive (as objects and arrows respectively) and
which is indifferent to any particular set-theoretic construction that structures
may possess" (p. 236). He offers an analogy:

Category theory may be said to bear the same relation to abstract algebra as
does the latter to elementary algebra. Elementary algebra results from the
replacement of constant quantities (i.e. numbers) by variables, keeping the
operations on these quantities fixed. Abstract algebra, in its turn, carries this
a stage further by allowing the operations to vary while ensuring that the re-
sulting mathematical structures (groups, rings, etc.) remain of a prescribed
kind. Finally category theory allows even the kind of structure to vary: it is
concerned with structure in general, (p. 236)

It is not clear whether Bell means to say that category theory evolved out
of abstract algebra, but the reader might reasonably get the impression that he
does. And, in fact, from the point of view of the history of ideas that is not an
indefensible claim. Bell's model theoretic approach emphasizes the continuity
between abstract algebra and category theory, and one could claim that that is
the most important feature of category theory and thus the relevant part of its
history. This reviewer, on the other hand, believes Bell understates the impor-
tance of geometry and topology, both in his history and in his treatment of
toposes. Certainly, from the point of view of a detailed history of events, topol-
ogy has occupied category theorists from the beginning much more than abstract
algebra has.

Still on the same page, Bell remarks that "In category theory the morphisms
(arrows) play an autonomous role which is in no way subordinate to that played
by structures themselves. So category theory is like a language in which the
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'verbs' are on an equal footing with the 'nouns.' In this respect category theory
differs crucially from set theory in which the corresponding notion of function
is reduced to the concept of set" (p. 236). Besides the linguistic metaphor this
is interesting because throughout the book Bell treats arrows in a topos not by
way of function symbols in local set theory but by way of functional relations.
That is, he reduces functions to sets (see pp. 120-126 for example). Of course
Bell began by promising to avoid category theoretic arguments in favor of set
theoretic ones (p. vii, quoted above), but now we find that he is aware that this
means neglecting the crucial feature of category theory, a feature which the epi-
logue seems to depict as a virtue of category theory in comparison with set
theory.

Perhaps he considered this neglect a painful necessity in order to reach a
wider audience. On the other hand, perhaps he himself does not find the equal
treatment of 'nouns' and 'verbs' a virtue, but only means to say that a certain
kind of structuralist would regard it as one. He makes no comment either way
to explain the contrast between his procedure throughout the book and the
opposite procedure he seems to praise in the epilogue.

Now Bell's strategy is not at all to oppose set theory to category theory.
He sees category theory as the latest stage in the developments in abstract math-
ematics that included set theory; and no one can deny this view in broad terms.
But it may be that Bell stays too close to set theory, which after all is not the
whole of mathematics, and not the part that gave rise to category theory. He
develops an argument based on the independence proofs of set theory, saying
they show that the set concept is radically underdetermined so that "it becomes
natural, indeed mandatory, to seek for the set concept a formulation that takes
account of its underdetermined character, that is, one that does not bind it so
tightly to the absolute universe of sets with its rigid hierarchical character. Cat-
egory theory furnishes such a formulation through the concept of topos, and
its formal counterpart local set theory" (p. 238). But the independence proofs
show precisely that the ZF axioms themselves can accommodate an array of dif-
ferent set theories —with or without choice, with or without the continuum
hypothesis, and so on. They can hardly represent more than the very thin edge
of a wedge for arguing that ZF should be displaced in foundations by the vastly
more general notion of a topos.

This brings up an impression one may have in considering the topos the-
oretic treatment of Kripke models, Boolean extensions, and fuzzy sets, namely
that these things are not very hard to understand on their own. And in fact any-
one who only wants to understand, say, Boolean extensions, would do best to
study only them and skip toposes. The motivations for topos theory do not lie
so close to set theory, nor do the applications topos theorists work on such as
the smooth topos and more recently the effective topos. Apparently the exam-
ples Bell gives attracted him to topos theory and so they may attract other set
theoretically trained logicians, but it seems that the more characteristically cat-
egory theoretic applications would provide better motives for expanding from
set theoretic foundations to category theoretic ones.

Bell's suggestion that "the topos theoretic interpretation of mathematical
concepts bears the same relation to classical set theory as relativity theory does
to classical physics" (p. 242) will catch criticism from both sides. Few confirmed
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set theorists will enjoy it, yet neither is it likely to satisfy proponents of cate-
gory theoretic foundations. A continuous real valued function on a topologi-
cal space X appears as a single real number in the topos of sheaves over X,
Sh(^), and Bell gives a pretty description of that topos as a framework 'comov-
ing' with the varying function so that within that framework the function
appears to be a single number (p. 240). But it is not clear how far this can be
pushed. Bell says that looking at the function in the topos "causes its variation
not to be 'noticed' in Sh(^ί); it is accordingly regarded as a constant real num-
ber" (p. 240). But the variation has objective effects within the topos and the
number is not "constant" in the fullest sense within the topos, unless it corre-
sponds to a constant function on the space in the usual sense.

The view of a topos as a 'coordinate frame' and of geometric morphisms
between toposes as 'coordinate transformations' breaks down in that geomet-
ric morphisms do not faithfully preserve and reflect information. The impor-
tant examples, the ones Bell cites, are precisely not invertible. Nor is there, so
far as anyone has found to date, some kind of invariant substrate that toposes
can be regarded as 'coordinate frames' on.

Proponents of categorical foundations will particularly object to Bell's say-
ing that toposes with set-like features "correspond to inertial coordinate systems"
(p. 241), since such toposes certainly do exist. A physicist who believed in strictly
inertial coordinate frames would ipso facto reject general relativity. So Bell's own
analogy suggests rejecting topos theory in the foundations of mathematics. On
his analogy toposes would be treated the way curvilinear or accelerated coor-
dinates were in classical physics: as occasionally handy technical devices, but no
challenge to the absolute truth of the classical theory.

In the end Bell does not seem to have made up his own mind concerning
the status of toposes in foundations. The epilogue is curiously noncommittal.
He chooses to "start with an account of the relationship between set theory and
category theory, contrasting the 'monism' of the former with the 'pluralism' of
the latter" (p. 235), and in this context "pluralism" seems a term of praise, but
Bell never explicitly chooses between them. To say that category theory repre-
sents the latest in the advance of algebra, and that toposes stand to set theory
as general relativity to classical physics is surely high praise for category theory
and toposes. In the passage quoted above he said the independence proofs make
it "mandatory to seek" an alternative to current axiomatic set theory, something
like topos theory. But he did not say it was mandatory to use such an alterna-
tive and in fact he takes Gόdel-Bernays set theory as the foundation for the
whole book (p. vii). The toposes he invokes as examples in the comparison with
relativity theory, as well as in his discussion at the end of the epilogue of Law-
vere's idea of negating constancy, are all explicitly constructed out of sets. He
does not adopt categorical foundations.

And yet his ambivalence may itself strike a chord in the reader. This book
is a clear look at topos logic with set theoretic foundations, and a sometimes
impassioned look at toposes in foundations, by a logician who does not always
think in topos theoretic terms and is not entirely certain how far foundations
should rest upon topos theory or upon set theory. This book contributes to the
investigation of toposes in logic and in foundations, rather than to an argument
for or against them.
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NOTES

1. Bell's axioms for a topos are equally spare, precisely paralleling the primitives and
axioms of this logic. In fact Johnstone discussed such an axiomatization, saying "it
is really a set theorist's rather than a category theorist's definition of a topos, in that
it subordinates the notion of function' to the notion of a 'subset'" (p. xviii in [6]).
And Bell's practice bears this out. He defines function types and functional appli-
cation in local set theory (pp. 84, 117) but never uses them, and his examples and
the points he makes do run more toward set theory than category theory.

2. The proceedings of the 1971 Dalhousie conference on toposes, algebraic geometry,
and logic list My hill as a participant, although in fact he was unable to attend and
[5] was presented there by Goodman. Shortly after that Lawvere became a colleague
of Goodman's and Myhill's at SUNY Buffalo.
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