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On an Unsound Proof of the Existence

of Possible Worlds

CHRISTOPHER MENZEL*

Abstract In this paper, an argument of Alvin Plantinga's for the existence
of abstract possible worlds is shown to be unsound. The argument is based
on a principle Plantinga calls "Quasicompactness", due to its structural sim-
ilarity to the notion of compactness in first-order logic. The principle is
shown to be false.

The concept of possible worlds has been of great value to the development
of modal logic, metaphysics, and the philosophy of language over the past thirty
years or so. However, there is still a great deal of controversy regarding the
nature of these entities. Are they concrete? Abstract? Indeed, are there really
any such things at all, or is the concept merely heuristically useful?

Much of this controversy stems from the fact that, typically, accounts of
possible worlds simply postulate their existence, usually offering by way of
justification no more (and no less) than the theoretical elegance and usefulness
of the account. The question of the nature and existence of possible worlds thus
generally comes down to one's assessment of a given account's theoretical power
and appeal.

In his reply [5] to Pollock's article [6] in the Profiles volume dedicated to
his work, Plantinga offers a proof of the existence of abstract possible worlds
from relatively weak premises. More specifically, he argues for the proposition
that

(*) For any possible state of affairs. S, there is a possible world in which S
obtains.

If sound, this argument would provide a strong justification for believing
in possible worlds, and would give Plantinga's conception of worlds a forceful

*I would like to thank Jon Kvanvig and Hugh McCann for their comments on an ear-
lier draft of this paper.
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advantage over competing paradigms. But it is not to be. I will show that the
argument fails as it stands, and suggest that its prospects for repair are dim.

We begin with some definitions and an assumption used in the proof.

Dl A state of affairs S includes another state of affairs S' just in case, nec-
essarily, S obtains only if S' does.
D2 A possible world S is a possible state of affairs such that for any state of
affairs S", either S includes S' or S includes not-S'}
D3 A state of affairs S obtains in another state of affairs S' iff S' includes S
(see (*)).
D4 S properly includes S' iff S includes S", and S' does not include S.
Al For any set M of states of affairs, there is a state of affairs f\M that
obtains iff every member of M obtains.

Now let us review some first-order metatheory which will be useful in
clarifying the ideas that lie behind Plantinga's argument. Let £ be a language
with some infinite number of terms and predicates, and let Σ be the set of all
sentences of <£. A set Σ' £= Σ is saturated iff, for every sentence σ of <£, either
σ G Σ' or -«σ G Σ'.2 We prove the following restricted version of Lindenbaum's
Lemma:

LL For every sentence σ G Σ, //* {σ) zs1 consistent, then {σ) can be extended to
a consistent saturated set.

Proof: Let σ G Σ. Consider the set Γ c Pow(Σ) (the power set of Σ) such that
s G Γ iff σ G s and s is consistent. Γ is partially ordered by the set theoretic
proper inclusion relation C. By the Hausdorff maximal principle, Γ has a max-
imal linearly ordered (MLO) subset Γ', i.e., a subset that is linearly ordered
(by C) and that is not a proper subset of any linearly ordered subset of Γ. Claim:
UΓ' is a consistent saturated set. It is easy to show from the maximality of Γ'
that UΓ' is saturated. So suppose UΓ' is not consistent. Then, by the definition
of consistency, there is a proof P of a contradiction from UΓ'. Since proofs are
finite, and since Γ' is linearly ordered by C, this means that there is some set
s G Γ' containing all the members of UΓ' used in P But then s is inconsistent,
contrary to our assumption that the members of Γ" c Γ are consistent.

A consistent saturated set like UΓ' can be thought of as the result of start-
ing with {σ} and consistently choosing a new sentence to add to the set of sen-
tences one has constructed up to any given stage (taking unions at limits).3 A
possible world in the sense of D2 might be thought of in a similar (though in-
formal) way as the result of starting with a possible state of affairs S and con-
sistently "conjoining" a new state of affairs to the state of affairs one has
constructed up to any given "stage". Plantinga exploits this similarity to con-
struct an argument for (*) parallel to the one above for LL. Γll present the argu-
ment with commentary interspersed.

Let S be a possible state of affairs, and let A be the set of states of affairs
that are possible and include S. (A is thus analogous to the set Γ above. As Plan-
tinga notes, the existence of A itself is hardly uncontroversial; see below.) A is
partially ordered by proper inclusion (in the sense of D4). By the Hausdorff
maximal principle, A has an MLO subset B, i.e., a subset that is linearly ordered
(by proper inclusion) and that is not a proper subset of any linearly ordered sub-
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set of A. (B is thus analogous to our Γ'.) The natural move to make at this
point, analogous to the Claim in the proof above, would be to show that /\ B
(the analogue of UΓ") is a possible world, i.e., that it is possible and
"saturated"—that for every state of affairs S', either f\B includes S' or /\B
includes not-S'. The proof that B, and indeed the "conjunction" of any MLO
subset of A, is "saturated" and includes S is relatively simple (see [5], p. 329).
The problem comes in showing that MLO subsets are in fact possible. In the
proof for LL, the saturated set UΓ' is shown to be consistent in virtue of the
finiteness of proofs. There is no analogous notion for Plantinga to draw on with
respect to states of affairs. Hence, he appeals a priori to the following princi-
ple of "Quasicompactness" ([5], p. 329):

A2 For any set M of possible states of affairs, if M has an MLO subset
(ordered by proper inclusion), then M has an MLO subset M* which is such
that if /\M** is possible for every finite subset M** of M*, then so is /\M*.

Since B is an MLO subset of A9 by A2 it follows that A has an MLO subset B*
which is such that if f\ B** is possible for every finite subset B** of B*, then
so is /\ B*. But then we can show that /\ B* is possible. For consider any finite
subset C of B*. Since B* is linearly ordered by proper inclusion, C is as well.
Hence, since Cis finite, it has a unique "most inclusive" member, i.e., a member
Γthat properly includes every other member of C. Since TG A, Tis possible.
It is easy to see that Γis equivalent to /\ C, and so /\ C too is possible. Since
C was arbitrary, it follows that /\B** is possible for every finite subset B** of
B*. Therefore, /\B* is possible as well.

The problem with the argument is that the principle of Quasicompactness
is false. To see this, note first that the concept of finiteness is perfectly acceptable
within Plantinga's framework; since the framework is designed fully to describe
all of reality, he places no limitations on the concepts that can be used to pick
out a state of affairs. Consider, then, for each natural number n the state of
affairs Pn: The number of stars being finite and greater than n. I assume that
each Pn is possible, for all n EN. Let D = {Pn\n EN}; so D is a set of possi-
ble states of affairs. For each n, Pn properly includes Pm, for all m < n, so D
itself is an MLO subset of D, and it is the only such subset. Furthermore, for
every finite subset D** of D, D** is possible, since the most inclusive member
Pm of D** includes every member of D** and, as assumed, each such Pm is pos-
sible. But of course f\Di$ not itself possible, since it includes both There being
only finitely many stars and There being infinitely many stars.

Quasicompactness, of course, is drawn from the structurally similar com-
pactness theorem of first-order model theory, which states that if every finite
subset of a given set Φ of sentences of a first-order language is model theoreti-
cally consistent (i.e., has a model), then so is Φ. The reason that first-order logic
is immune from a proof analogous to the one in the previous paragraph is that
finiteness is not first-order expressible: no first-order sentence is true in all and
only finite models.4 It is expressible in higher-order logics; which is just to say
that they are not compact. Since Plantinga's rich framework is analogous to a
higher-order logic (insofar as it contains the concept of finiteness), it exhibits
an analogue of noncompactness.
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There are two ways to patch up the proof that spring to mind, neither of
them particularly attractive. First, one could put expressive limitations on Plan-
tinga's framework that would not allow the construction of the counterexam-
ple above by disallowing the use of the concept of finiteness in picking out states
of affairs. But then one would be hard pressed to justify calling the impoverished
possible worlds of the resulting framework "possible worlds", since intuitively
there would still be states of affairs which no such worlds would include, e.g.,
Edgar's believing that there are finitely many stars.5

Second, one might try to avoid the counterexample to Quasicompactness
by tightening up the conditions on M in A2. Specifically, one might postulate
that the cardinality of A is greater than Ko, and then restrict M in A2 to
uncountable sets of states of affairs; that is, one could replace A2 with

A2' For any set M of possible states of affairs, and any uncountable cardinal
K, if card(M) = K and M has an MLO subset (ordered by proper inclusion), then
M has an MLO subset M* which is such that if /\M** is possible for every
subset M** of M* such that card(M**) < K, then so is /\M*.

However, there are problems here as well. Where K is a limit cardinal, an
analogous counterexample arises. Benardete [2] suggests the possibility of other
physical universes spatio-temporally unrelated to our own (not unlike David
Lewis's picture sans extensional analysis of modality). There seems no a priori
reason to deny that there could be K such universes for any infinite cardinal K.
So let K' be a limit cardinal, and for every cardinal n < κ\ let Qn be the state
of affairs, the number of stars being less than κf and greater than n. A coun-
terexample to A2' goes through for K' just as in the counterexample to A2.

Suppose then we restrict the cardinals in A2' to infinite successor cardinals.
Then there are no obvious counterexamples along the same lines. But Plantinga's
proof surely loses its luster if it must be assumed ad hoc that the cardinality of
the set A of possible states of affairs that include 5 is a successor cardinal.
Indeed, insofar as there is anything to be said on the matter, it seems to me that
A is not a set at all6 but a proper class, so long as we grant: (i) that for each
cardinal n there is the state of affairs Rn\ There being n stars, and (ii) that if
m Φ n9 then Rm Φ RnP However that may be, there is no happy move in the
offing here either. The proof, I think, cannot be salvaged.

NOTES

1. A more adequate definition must bring temporality into the picture, as Pollock notes
([6], pp. 121-122) and as Plantinga agrees ([5], p. 327). This added subtlety, although
important in a complete account, is inessential here. Irrespective of the issue of tem-
porality, Pollock's own definition ([6], p. 122) doesn't assume that every state of
affairs has a complement, and so is perhaps to be preferred. But the definition here,
which is Plantinga's ([7], pp. 88-89), helps to clarify the motivations for his proof
of (*).

2. Such sets are of course usually called maximal, but I use 'saturated' so as to avoid
confusing maximality in this sense with maximality in the sense of Hausdorff's prin-
ciple, introduced below.
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3. The usual proof relies more overtly on such a construction. In that proof (for infi-
nite languages generally) Hausdorff s principle appears in the guise of the well-
ordering principle.

4. More strongly still, no set of first-order sentences has arbitrarily large finite mod-
els but no infinite models (cf. [3], p. 143).

5. In reply, one might claim that this state of affairs could be captured simply by a
world that includes, for some n, 1026 say, the state of affairs Edgar's believing there
are n stars. But, of course, Edgar needn't believe such a thing for any particular n
in order to believe there are finitely many stars. So that won't work. One might then
claim that, by giving the numerical quantifier narrow scope, we can capture Edgar's
belief via the state of affairs Edgar's believing that, for some n, there are n stars. But
this is ambiguous. If the variable '«' here is ranging over all numbers, then the state
of affairs will not do the job, since it is compatible with Edgar's believing, e.g., that
there are Ko stars. What is needed is the state of affairs Edgar's believing that, for
some finite number n, there are n stars. But that's just the sort of thing that can't
be expressed on the proposal in question.

6. At least, not a ZF set. For a set theory that allows sets which are "too big" to be ZF
sets, see [4]. This theory would be no help to Plantinga.

7. A last gasp here might be to formulate a Hausdorff principle for classes generally
and try to run the argument through with a proper class size analogue of A2, i.e.,

A2" For any proper class M of possible states of affairs, if M has an MLO sub-
class (ordered by proper inclusion), then M has an MLO subclass M* which is such
that if /\ M** is possible for every subset M** of M*, then so is /\ M*.

But a counterexample is still available. Say that the number of a class K is determina-
ble just in case AT is a set. Then, for any cardinal K, let Pκ be the number of stars
being determinable and greater than K, and let Df = [Pκ \ K G CARD) (where CARD
is the class of all cardinals). Assuming that each Pκ is possible, D' then provides a
counterexample parallel to D in the counterexample to A2.

What we really need in order to get a handle on these questions is a thoroughly
developed, axiomatic theory of states of affairs. Progress in this direction is found
in [1] and in Chapter 4 of [8].
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