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The Boolean Spectrum of an o-ΛΛinimal Theory

CHARLES STEINHORN and CARLO TOFFALORI*

Abstract We show that the number of isomorphism types of Boolean
algebras of definable subsets of countable models of an o-minimal theory is
either 1 or 2K°. We also show that the number of such isomorphism types is
1 if and only if no countable model of the o-minimal theory contains an infi-
nite discretely ordered interval.

A structure 3TC linearly ordered by < is said to be o-minimal if its defin-
able subsets are exactly those that can be obtained by using only quantifier-free
formulas involving <, i.e., unions of finitely many points and intervals. A com-
plete theory T of linearly ordered structures is said to be o-minimal if all models
of T are o-minimal. We note that in [2] and [5] it is shown that "all models" may
be replaced by "some model" in the definition of an o-minimal theory. Model
theoretically, o-minimal structures are the simplest linearly ordered structures,
playing the same role with respect to < as minimal structures do with respect
to = . Carrying this analogy further, o-minimal theories correspond to strongly
minimal theories.

o-minimal theories were studied extensively in [4]. Here we wish to con-
sider a particular question about such theories. Let T be a theory and 311 a model
of T. Denote by B(ΐftl) the Boolean algebra of the definable subsets of 3TC, and
define the Boolean spectrum of T, SpecT, to be the set of isomorphism types
of the algebras 5(9)1) as 311 ranges over the countable models of T. It is well
known that the Boolean spectrum of a strongly minimal theory T contains only
one element: the isomorphism type of the countable super atomic algebra of CB-
type (2,1). That is, a strongly minimal theory T is /7-K0-categorical (see [7]).
Thus we are interested in examining the corresponding problem in the o-minimal
case.

The most obvious question to raise is whether all o-minimal theories are
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/7-Ko-categorical. The answer, just as obviously, is no; one need only consider
the theory of discrete linear order without endpoints. Nevertheless, there are
many examples of /?-K0-categorical o-minimal theories:

the theory of dense linear order without endpoints
the theory of divisible ordered abelian groups
the theory of real closed fields.

Observe that in each case the underling order is dense.
Our aim then is to classify the/? - K0-categorical o-minimal theories, or,

more generally, to analyze the Boolean spectrum of any o-minimal theory. We
will show that

• an o-minimal theory T is p-K0-categorical iff no (countable) model of T
contains an infinite discrete interval, and that

• if T is o-minimal but not/?-K0-categorical, then |SpecT| = 2K°.

Here is the plan of the article. In Section 1 we recall some basic facts con-
cerning o-minimal theories and Ketonen's classification of countable atomic
Boolean algebras (see [1]). We also show that, for every theory T of linearly
ordered structures, SpecT contains the isomorphism type of the countable atomic
Boolean algebra Bo with the property that for every infinite b G Bo, there exist
infinite bxb2 G Bo such that bx v b2 = b and b{ Λb2 = 0. Section 2 is devoted
to some technical lemmas. Finally, in Section 3, we prove the main theorems.

We assume throughout that T is a complete theory without finite models.
We also adopt the usual convention that all models of T are elementary sub-
models of some large saturated model 01 of T. If 3TC H T and X G 5(911), we
will sometimes identify X with any formula defining it. Lastly, we say that X
is 0-definable if X is definable without parameters.

1 Some preliminaries We first review some facts about countable atomic
Boolean algebras. Ketonen classified the isomorphism types of countable atomic
Boolean algebras in [1]. In what follows, however, we adopt the terminology
of [7].

We first recall the Cantor-Bendixon (hereafter CB) analysis of a countable
atomic Boolean algebra. For an atomic Boolean algebra B, we denote by I(B)
the ideal generated by the atoms of B. Then, if B is a countable Boolean algebra,
we define the sequence {IV(B)' v Ξ On) of ideals of B as follows:

I0(B) = {0),Il(B)=I(B),

Iλ(B) = U IV(B) for limit λ,

/„+! (B) = the preimage of I{B/IV{B)) under the canonical
homomorphism of B onto I(B/IV(B)).

Clearly, there is a (smallest) countable ordinal v0 for which Ivo+i (B) = IVQ{B),
which we designate the CB-rank (B). For b G B — IPo(B), we define CB-rank
(b) = oo, and for all other b G B, we let CB-rank (b) = min{^: b G Iv+ι(B)).

We recall that a countable atomic Boolean algebra is called superatomic
if, with VQ as above, B/IPQ(B) = (0). It is known that the CB-analysis of a
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countable super atomic Boolean algebra determines its isomorphism type. Let us
turn now to the case where a countable atomic Boolean algebra is not super-
atomic. For a Boolean algebra B and b E B, we denote by B[b] the Boolean
algebra whose domain is [x E B: x < b]. The key to the classification of count-
able atomic Boolean algebras that are not superatomic is provided by the clas-
sification of such algebras B that are uniform, i.e., which satisfy CB-rank
(B[b]) < CB-rank (B[b*']) for all b E B with CB-rank (b) < α>, where b*
denotes the complement of b in B (see [1] or [7]). We first observe that if B Φ
(0) is a uniform, countable atomic algebra and CB-rank (B) = vθ9 then
B/IVQ(B) is a countable atomless algebra. The isomorphism type of such an
algebra then can be described by a function fB\ B/IVQ{B) -• α>i, which we now
define. Let S(B) be the dual space of B, and forp E S(£), let CB-rank (/?) =
min{CB-rank (b): bep). Also, for b <E B, let

[/(&) = | p G S ( 5 ) : bepA CB-rank (/?) = <»}

and, for every p E 5(5) with CB-rank (/?) = oo, let

r(p) = min{CB-rank (B[c])ι c Gp}.

Then we define

fB{b/IV0{B)) = sup{r(/7): p E £7(6)}.

For details we refer the reader to [1] or [7]. We only wish to point out that/g
is strictly additive if we let v + ξ = max[ϊ>,ξ}.

Finally, we denote by Bo the uniform countable atomic algebra satisfying,
for each infinite b E Bo, that there exist infinite b\ ,b2 E Bo with b — b\V b2 and
bx Λ b2 = 0.

We assume that the reader is familiar with the principal results of [4], but
nonetheless we wish to recall the characterization of o-minimal linear orders
from that paper. Let ΐPfί = (M,<,. .. ) be o-minimal. Then there is an m < ω
such that (M,<) can be written as the ordered sum

( M , < ) = Cι+> '+Cm

where, for each / < m, (C/,<) is elementarily equivalent to one of

(ω,<),(ω*,<),(Z,O,(ω + ω*,<),(Q,<),
or a finite linear order,

and for all / < m, if C, does not have a last element, then Ci+i has a first ele-
ment. Moreover, if m is minimal, then Q is 0-definable in (M,<) for each / <
m. That is, Q = Φ/(M) for some formula Φi(v) without parameters in the lan-
guage {<}. So if 91 = ΐίϊί then (N,<) can be written as the ordered sum

(N,<) = φ1(JV) +•••+ φm(N)

where (φi(N),<) = (Q,<) for each / < m. In particular, if such an 3Π contains
an infinite discrete interval 7, then we may assume without loss of generality that
there is an / < m such that I = φj(M). Hence, we may suppose that I is 0-de-
finable and, for any dl = DTI, that φj{N) is an infinite discrete interval in (N,<).

We conclude this section with the following straightforward fact.
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Proposition 1.1 For any countable linearly ordered structure 911, there is an
91 > 911 such that 91 is countable and B(ΐίl) = Bo.

Proof: An easy compactness argument shows that there exists a countable
9111 > 9H such that for every formula φ(v) with parameters from 911, if Φ(M)
is infinite, then φ(M{) can be split into two infinite, disjoint 9U!-definable sub-
sets. Taking 91 to be the union of an increasing ω elementary chain of models
built in this way gives the result.

From Proposition 1.1 we immediately obtain

Proposition 1.2 If a theory T extending the theory of linear order has a
countable saturated model 911, then £(911) = Bo.

2 Basic lemmas This section is devoted to proving some technical lemmas.
Throughout, we assume that:

(a) T is an o-minimal theory
(b) 9H N T
(c) / = φ(9H) is an infinite, discrete, 0-definable interval in 9H such that

(φ(9H),<) is elementarily equivalent to (ω,<), (ω*,<), (Z,<), or
(ω + ω*,<), and S denotes the successor function on /.

Definition 2.1 Let au...,an E Φi'tt). The sequence (au...ran) is S-
independent if for each / = 1,... ,n andy E ω, SJ(ai) < ai+x.

Let m E /and suppose that there exists some m' E /such that {m,mf) is
S-independent. Also, let p E Si (91Z) be the type over 9H corresponding to the
cut

{v > SJ(m):jG ω] U [υ < m': m' E 9ft and mf > Sj{m) for ally E ω}.

L a s t l y , if a real izes /?, w e d e n o t e b y ΐftl(a) t h e m o d e l o f T p r i m e o v e r 91Z U {a},
a s g u a r a n t e e d b y [4] .

Lemma 2.2 With notation as above, /?(9ϊl(#)) = {SJ(a): j E Z).

Proof: Suppose for a contradiction that there is some af E 9TC(#) — 9H that real-
izes/? but is different from SJ(a) for ally E Z. Then tp(α',91l U {a}) is isolated
by some formula θ(v,a) in the language L(9ϊl) having constants for each ele-
ment in 9H. By replacing a' by an endpoint of θ(ΐftl(a),a), if necessary, we can
assume that a' = /(#), where / i s an 9H-definable function. Without loss of
generality, by using/" 1 if required, we may also suppose that a' > a. Then,
by the Monotonicity Theorem (see [4]), there is an interval / = (a,b) in 9H such
that the formula a < v < b is in /?, f\j is a strictly monotone bijection between
/ and another interval / ' = {a'\b') in 911, the formula a' < υ < b' is in p,
and/(c) > c for all c E /.

It is easy to see that we may assume that m E / Π /', where m is as in the
definition of/?. Since/(c) > c for all c E </, it follows that/must be order-
preserving. If there were somey E ω for which/(m) = Sy(m), then it would
have to be the case that a' —f{a) — SJ(a), contrary to our hypothesis. Hence,
f{m) must be greater than any realization of p, and so, since / is order-
preserving, a' =f(a) could not realize p. Hence the lemma is proved.
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Lemma 2.3 Let a — (aί9... ,an) and b — (b\,... ,bn) be S-independent

sequences of realizations of p. Then tp(a9ΐPfί) = tp(bfΐfϊί).

Proof: We proceed by induction on n. There is nothing to prove in the case
where n - 1. So let n > 1, and suppose for a contradiction that a = (au . . . ,an)
and b = (bu . . . ,bn) are sequences of S-independent realizations of p such that
tp(α,3H) Φ tp(5,311). By the induction hypothesis, we may assume that b =
(bua2,.. .,an).

Let 0(f) be an L(3H U {#2, ,#Λ})-formula such that

1=0(tfi) Λ -i(9(Z?i).

It then follows for all kj < ω that the formulas

(3v)(3w)Sk(m) <v< S~l(v2) ^Sk{m) <w< S~l(v2) Λ Θ ( V , V 2 , ... ,vn)

Λ -iθ(w,V2,...,Vn)

are in tp(a2,... ,αΛ;ϋU). However, applying Lemma 2.2 π — 1 times, it is easy
to see that there is no c e 3ΪΓ = ^ ( t f j (a2) satisfying SJ(m) < c and
SJ(c) < a2 for ally < ω, and hence by o-minimality, for some k,l < ω, we have
either

\=(W)Sk(m) <v< S~ι{a2) -* 0(y)

or

Kvt ^ C m ) < y < S~ι(a2) -+ -ιθ(v).

Either alternative immediately yields a contradiction, so the lemma is proved.

Lemma 2.4 Suppose that a = {au... ,an) is an S-independent sequence of
realizations of p. Then p(3Il(α)) = (J {S7(tf/): j G Z | .

Proof: For a contradiction, suppose that there is some Z? E/?(Sfll(<7)) satisfying
b Φ SJ(aj) for ally E Z and / = 1,. .. ,A2. Suppose that aι < b < ai+\ for some
1 < / < n (the cases b < a0 and b> an are handled similarly). Let σ(υ,a) be an
L(9K) formula isolating tp(ή,3TC U {a}). By Lemma 2.3, it follows that \=σ(c,ά)
holds for all cGp(ΐfϊί(a)) satisfying Sj(θj) < c and SJ(c) < ai+ϊ for ally < ω.
Hence, by o-minimality, there must be some kj < ω such that H(Vf )Sk(ai) <
v < S~l(ai+{) -+ σ(v,a). But this is clearly impossible.

Lemma 2.5 Suppose that X is a set of realizations of p (in %) that is closed
under S and S~ι(so, in particular, (X,<) is a discrete linear order without end-
points). Then p(y(l(X)) = X.

Proof: Since any b E p(ΐί\ί(X)) must be isolated over 9H by a finite, 5-
independent sequence a of elements in X, the result follows immediately from
Lemma 2.4.

3 The principal theorems We now prove the main results of the paper.

Theorem 3.1 An o-minimal theory is p-Xo-categorical iff no (countable)
model of T contains an infinite discrete interval.
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Proof: Let T be a /7-K0-categorical o-minimal theory. For a contradiction,
suppose that there is a countable ΐftl \= T that contains an infinite discrete inter-
val /. By the remarks made about o-minimal linear orders in Section 1, we
may assume that /is 0-definable and elementarily equivalent to either (ω,<),
(ω*,<), (Z,<), or (ω + ω*,<). Moreover, by Proposition 1.1 we may also
assume that B(ΐf\l) = Bo, and hence that for every n < ω, / contains an S-in-
dependent sequence of length n. Let m,m' e /so that {m,m') is S-independent,
and let p be the type over OH determined by the cut

{v > Sj{m): j < ω) U (v < b: b e 3H Λ (V/ < ω)b > SJ(m)\.

Now, let a realize/?. It follows by Lemma 2.2 that/? (911 (α)) = {SJ(a):j e Z}.
But then the interval [m,a] <Ξ 9H(α) is infinite and cannot be split into two dis-
joint infinite definable subsets. This implies that B(ΐί\ί(a)) φ. Bθ9 a contradic-
tion, since T was assumed to be jp-Ko-categorical.

Conversely, suppose that T is an o-minimal theory and that no countable
model of T contains an infinite discrete interval. Then by the remarks on o-
minimal linear orders made in Section 1, if 911 is a countable model of T, we
can write (M,<) as the ordered direct sum

(M,<) = d + ••• + Cm

where, for each / < m, (Q,<) is a 0-definable interval in 9H and is either finite
or a dense linear order without endpoints. Then it is easy to see that B(dϊί) =
Bo, and hence that T is /7-K0-categorical.

Let us also observe that an o-minimal theory T is /?-K0-categorical iff there
exists a (countable) 9H f= T that does not contain an infinite discrete interval.
This follows from the proof of Theorem 3.1 and the remarks in Section 1 about
the ordered sum decomposition of an o-minimal linear order.

Theorem 3.2 IfΎ is an o-minimal theory that is not p-X0-categorical, then
|SpecT| =2*°.

(In particular, if T has fewer than 2K° non-isomorphic countable models, then
T is /7-Ko-categorical.1 The theory of real closed fields demonstrates that the
converse obviously is false.)

Proof: For n> 3, let (D(n),<) be the discrete linear order without endpoints
where

D(3) = ω X Z

D(n + 1) = ω x D(n) for all n > 3

and < is given by the lexicographic order. It is an easy matter to verify by induc-
tion on n that B((D(n),<)) is a superatomic Boolean algebra of CB-rank n.

Next, let (Q x Z,<) be the discrete linear order in which < is given by lex-
icographic order. We now fix a sequence (an: 0 < n < ω> of elements from this
structure satisfying Sj{an) < an+χ for ally < ω and all 0 < n < ω, and let Io =
( — oo9aι) and /„ = (an,an+i) for each n > 0.

For each infinite X c ω — {0,1,2}, we now define a discrete linear order
without endpoints, (D(X),<), as follows. Enumerate Xas {xo,Xi,... } with
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x0 < xx <"-. Then we obtain (D(X),<) by inserting into each cut in (Q x
Z,<) of the form

{SJ(a) < υ:j< ω] U {v < b: b<Ξ Q X Z Λ (V/< ω)b > SJ(a)},

where a E In and S7(tf) < an+χ for ally < ω, a copy of (D(xn),<). Pictorially,

Q X Z , 7 , ** gf , g γ ί

We now assert that the CB-rank of B((D(X),<)) = ω, and that B((D(X),<))
is not superatomic but is uniform. For the first of these assertions, it suffices
to consider an interval / = (a,b) in D(X), with a,b E D{X) U {±00} and
SJ(a) < b for ally < ω. Because the CB-rank of B((Q x Z,<)) is oo, it is easy
to see that CB-rank (/) = oo if any one of the following hold: (i) b lies in a copy
of Z in Q x Z or is oo, or (ii) a is —oo, or (iii) a lies in a copy of Z in Q x Z
and b lies in a copy of D{xn) that is not in the cut determined to the left by
{SJ(a) < v: j < ω], or (iv) a lies in a copy of D(xn) and b lies in a copy of
D{xm) where D(Xn) and D(xm) are distinct. In the remaining cases, namely
if a lies in a copy of Z in Q X Z and b lies in the copy of D(xn) that is in the
cut determined to the left by {SJ(a) < v: j < ω], or a and b lie in the same
copy of D{xn), we easily see that CB-rank (/) < xn — 2. Hence, the CB-rank
of B((D(X),<)) = ω, as asserted. It is obvious from the analysis just presented
that B((D(X),<)) is not superatomic and also that it is uniform. We leave the
details to the reader.

Now suppose that T is an o-minimal theory. We complete the proof of the
theorem by defining countable models ΐftlx for each infinite X <Ξ ω — {0,1,2}
such that

(*) if XΦ Y9 then B(ΰfLx) φ B{WY).

Let ΐttl be a countable model of T satisfying B(ΐί\ί) = Bo. It then follows that
ΐfll contains an infinite discrete 0-definable interval /, which, ignoring a possi-
ble initial copy of (ω,<) and final copy of (ω*,<), is isomorphic to (Q x Z,<).
Let m E /. For any X as above, let ΐf\ίx be the model of T that is prime over
ΐftl U D(X), where each element of D(X) realizes the type/? E S(ΐttl) determined
by the cut in ΪSΪL given by

[v> Sj{m):j <ω} U [υ < b: b E 9fϊl Λ (V/ < ώ)b > SJ(m)}.

By Lemma 2.5, we see thaip(WLx) = D(X).
Before proving (*), we show that if q is a nonalgebraic type over ΐftl that

is realized in ϋftx, then q(ΐftlχ) as an order is isomorphic to D(X) with either
its usual or reversed order. Given such a q, we will prove this assertion by find-
ing 911-definable intervals Ip = (aua2) and Iq = (bι,b2) such that ax < v < a2

is in/? and bx < v < b2 is in q, and an UH-definable order-preserving or revers-
ing bijection/ between Ip and Iq.

Let b E ΐftlχ realize q, and let φ(v9yι,. . . ,yn) be an L(3ϊl)-formula so
that there are au ... ,an E p{WLx) such that φ(v9au ... ,an) isolates tp(έ>,3H U
Z)(Jf)). Assuming now that we have taken n above to be minimal, we observe
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that we will be done if we show that n = 1. Toward a contradiction, suppose
that n > 1. Notice that the minimality of n allows us to assume that a— (α 1 ?

. . . ,an) is an 5-independent sequence of realizations of p. Let 911' be a model
of T that is prime over 911 U {a2,. . . ,an}. We assume that 911' is elementar-
ily embedded into 911 (#) over 911 U {#2> >#«}• By Lemma 2.4, we see that
/?(91Γ) = (J {SJ(cii): j E Z}, and since AI is minimal, we have that #(91Z') =

0 . Let /?' be the type over 911' determined by the cut

[υ> SJ(m):j< ω} U {v < S~J(a2):j < ω}.

Clearly, ax realizes p'. Let 911" be the model of T prime over 31Γ U {#!}. We
notice that 911" contains a realization b0 of g, and also, by Lemma 2.2, that
/?'(91l") = {Sj{ax)\j<ΞZ}. Without loss of generality, b0 =f(a), where/is an
9ΐl-definable function. Now let g(v) be the 911 U [a2,..., αΛ} -definable func-
tion given by g(v) = f(v,a2i...,an). Then there exists an interval / = [cuc2]
in 91Γ, with C! = Sk(m) and c2 = S"^^!) for some k,l E ω, on which g is a
strictly monotone bijection of intervals in 911'. Since 31Γ contains no realizations
of q, it follows that g(J) c git. But g(/) evidently is an interval in 9ΪI that can-
not be split into two infinite definable subsets, contradicting the assumption that
5(911) = Bo. Hence, n = 1, as claimed.

Using what we have just proved concerning realizations of types in 9HX,
and that B(ΐftl) = Bo, an analysis similar to one we gave in order to calculate
the CB-rank (B(D(X))) shows that CB-rank (B(ΐPfίx)) = ω for any infinite
X ^ ω — {0,1,2}. Similarly, we also observe that B(ΐίϊix) is not superatomic,
but is uniform. Details are left to the reader. In particular, we now have that
B(ΐl\Lx)/Iω(B(ΐί\Lx)) is a countable free Boolean algebra.

Finally, we can move to the proof of (*). Suppose that X Φ Y. Let x E
X Δ Y, say x E X - Y, and let x = xn. We define the interval / c 9H^ by

([m^x^, if n = 0

\[xn,Xn+i)> if Λ > 0.

(Here, we identify the set of realizations of p in ΐftlx with D(X) itself.) A now
routine analysis establishes that CB-rank (/) = oo.

Let/r =fBmx)- B(ΐί\lx)/Iω(B((y(lχ)) -> ω i be as defined in Section 1.
We claim that

fx(I/Iω(B(3ΪLx)))=x-l.

For this, we first observe that a case-by-case analysis shows that the only types
q over 9HX containing the formula υ E / which are members of U(I) are, if
n > 0, those whose cut in 9H^ is the "limit" from either the right or left, or
both sides, of copies of D(x). If n = 0, then U(I) contains, in addition, the type
q determined by the cut {v > Sj(m): j < ω] U {υ < b: b E D(X)}. Since CB-
rank (D(x)) = x, and

CB-rank (5(911*) [S]) = sup{CB-rank (/) + 1:
/ E B(ΐKlx) Λ / c 5 a n interval

Λ CB-rank (/) < oo}
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for any definable set S <Ξ 3H^, it follows (identifying the definable set S and the

formula v G S) that ϊ{q) = min{CB-rank (B{Ή,X) [S]): S G q] = JC - 1 for

ί G t/(/). Hence, /*(///* (5(9^))) = x - 1, as claimed.
By the Ketonen analysis of uniform Boolean algebras (see [1]), we complete

the proof of the theorem if we show that there is no S E B(ΐftlγ) for which CB-
rank (S) = oo andfγ(S/Iω(B(<3ϊlγ))) = x - 1. Since fγ is strongly additive, the
o-minimality of T allows us to assume that S = (a,b) for some a,b, G 311 y U
{±oo} with a < b. The analysis now proceeds through four cases. Using the strict
additivity of fγ and what we proved about realizations of types over ΐίϊί in 3TCy,
we leave it to the reader to verify that all other cases can be analyzed using the
four below.

(i) a,b G 3K and (a9b) Π (9Πr - 311) = 0 . Here, since 5(3TC) = Bo, it is
a simple matter to verify that/y(S/7ω(£(31ly))) = 1.

(ii) a,b G 3TC and (#,Z?) Π (3ϊly — 311) ^ 0 . Arguing as we did above to
show thatfχ(I) = x — 1, we can show for every π < ω that there is an
interval Jn c 5 satisfying /y(/π//ω(fi(3Ky))) = j π - 1. Hence, the
strict additivity of/y implies thaifγ(S/Iω(B{ΐSfLγ))) > ω.

(iii) α = m and Z? realizes p. Using the strict additivity of/y once again, it
is routine to show that/y(S//ω(5(3Ky))) = y - 1 for some j G 7 .

(iv) α realizes p and Z? realizes /?. In this case also, one easily sees that
fγ(S/Iω(B(Vllγ))) = y - 1 for some y G Γ.

Since we have shown that/y(S//ω(fi(3Ky))) Φ x - 1, it follows that (*), and so
Theorem 3.2, is proved.

NOTE

1. The referee has pointed out that this remark can be deduced from Theorem 3.1 using
the fact that an o-minimal theory whose models all contain an infinite discrete order
has 2K° nonisomorphic countable models. This fact has an easy proof due to
Marker —see [3]. It also follows from a general result of [6], asserting that a theory
which extends the theory of linear order and has Skolem functions has 2*° noniso-
morphic countable models.
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