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Remarks on Strong Nonstructure Theorems

TAPANI HYTTINEN, SAHARON SHELAH, and HEIKKI TUURI

Abstract In this paper we continue the work started in Hyttinen and Tuuri
[4]. We study the existence of universal equivalence trees and the existence
of strongly bistationary sets.

/ Introduction In this paper we answer some questions left open in [4]. The
starting point in [4] was Shelah's nonstructure theorem for unstable (and DOP
and OTOP) theories. In [4] we looked how strong nonstructure theorems can be
proved in terms of Ehrenfeucht-Fraisse games (see below). In many cases we were
able to prove maximal results by using rather strong cardinal assumptions, but
also many questions were left unanswered. In this paper we answer two of those
questions.

One case in which we studied strong nonstructure theorems in [4] was the case
in which we assumed about the theory only that it is unsuperstable. In this case
we cannot prove maximal results, as shown in [4]. The theorems we were able
to prove depend on the existence of so-called strongly bistationary sets. In the
first part of this paper we continue the studies on the existence of these sets. In
the main result of this part we show that if λ = κ+, K > ξ > ω, cf(κ) < K and
A c {a < λ I cf(oί) = ξ] is stationary then there is strongly bistationary B c A.

In the second part of this paper we study the existence of universal equiva-
lence trees (see Definition 2.3).

In Hyttinen and Shelah [2] and [3] we will continue the studies of strong non-
structure theorems in the case the theory is unsuper stable.

2 Preliminaries In this chapter we give the most important definitions and
a theorem from [4] needed in this paper. The proof of the theorem in [4] is based
on the construction of Shelah in [9].

Definition 2.1 Let λ be a cardinal and a an ordinal. Let / be a tree (i.e., for
all x G t, the set [y G t \y < x) is well-ordered by the ordering of t). If x,y G t
and {z G ί | z < *} = [zE: t\z<y}, then we denote x ~ y, and the equivalence
class of x for ~ we denote [x]. By a λ,α-tree / we mean a tree which satisfies:
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(i) |[JC]| < λ for every x E t;

(ii) there are no branches of length > a in t\
(iii) t has a unique root;
(iv) if x9 y E t, x and y have no immediate predecessors and x ~ y, then x = y.

Definition 2.2 Let ί and t' be trees.
(i) The domain of the sum t" = t + t' is t U {(6,j>) | b a branch of ί, j> E f'}.

The ordering is defined in the natural way, i.e., t" is obtained from t by putting
a copy of t' on top of each branch in t.

(ii) The domain of the product t" - t X t' is {(x,/,y) \x E f, / a function
from | J E / / | J < Λ Γ } to the branches o f / , ^ E / } . Here ( j t , / , j )< (*',/', y ) iff
(a) either χ = χ',f = f and y<y\
(b) or * < * ' , / < = / ' a n d j E / ' U ) .

Next we define Ehrenfeucht-Fraisse games Gκ(eA,(B). In Section 4 only the
special case G^eA,®) is needed. In Section 3 if we are only interested in
strongly bistationary sets then also only the special case G^ίcA,®) is needed.
But in order to understand the consequences of the existence of α-bistationary
sets the full definition is needed (see Theorem 3.6).

Definition 2.3 Let t be a tree and K a cardinal. The Ehrenfeucht-Fraisse game
approximated by t between models eA and (B, G«(cA,(B), is the following. At
each move a:
(i) player V chooses xa E t, κa < K and either αf E cA, β < κa or Z?f E (B,

β<κa;
(ii) if V chose from <A then 3 chooses b^ E <B, β < κa, else 3 chooses αf E eA,

V must move so that (xa)β<a form a strictly increasing sequence in t. 3 must
move so that {(a^by) \y < a,β < κΊ) is a partial isomorphism cΛ -> (B. The
player who first has to break the rules loses. We write G'(cA,(B) for G^eA,®).

If 3 has a winning strategy for G'( Λ ,(B), then we write e/\ = ' (B and say that
eA and (B are /'-equivalent and t is an equivalence tree of eA and (B. If | eA | = K
and t is a tree such that for all (B of power K, eA = r (B implies eA = (B, then we
say that t is a universal equivalence tree of eA.

Definition 2.4 Hyttinen and Vaananen [5] If t, t' are trees, then the compar-
ison game G<(t,t') is the following. At each move a:
(i) player V chooses some xa E /;

(ii) player 3 chooses some ya E t'.

V must choose xa so that his moves form a strictly increasing sequence in t.
3 must choose ya so that his moves form a strictly increasing sequence in t'. The
player who first runs out of the tree loses. If 3 has a winning strategy, then we
write t < f, if V has then we write t » tf.

Definition 2.5 Let λ > ω be regular, A^λ and t a tree. Then the cub-game
G\A) is the following. At each move a:

(i) first player V moves xa E t,
(ii) then player 3 moves ba E A,

(iii) and finally player V moves aa E λ.
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V must choose xa and aa so that xa > Xβ for all β < a, and aa> ba. 3 must
choose ba so that ba > aβ for all β < a, and if a is a limit, 3 must choose ba =
sup{bβ I β < a} (3 can do this only if the limit is in A). The player who first has
to break the rules loses the game.

Definition 2.6 Let λ > K > ω be regular cardinals.
(i) A set A £Ξ λ is bistationary if A and λ — A are stationary.
(ii) A set A ^ λ is /c-cub if it is unbounded and closed under supremums of

increasing sequences of length a for all a which are <λ and of cofinality >κ.
(iii) A set A £Ξ λ is /c-stationary if it intersects every /c-cub set.
(iv) A set A <Ξ {# E λ | cf(a) = K} is strongly bistationary if A is stationary

and for all a < λ, V does not have a winning strategy for G α (λ — A).
(v) By Ex we denote a stationary subset of [a < λ | cf(a) = ω), such that

E\ Π α is nonstationary in α for every α < λ. The existence of such a set fol-
lows, e.g., from Πκ, if λ = κ+. (See Kanamori and Magidor [6].)

(vi) An increasing sequence of ordinals s = (<Xβ)β<y is closed if 7 is a succes-
sor and aδ = sup(aβ | β < δ} for all limit δ < 7.

(vii) If A <Ξ λ, we write t(A) for the tree of all closed increasing sequences
of elements of A ordered by the initial segment relation.

Theorem 2.7 Let Tbea complete unsuperstable theory. Let λ > \T\ + ω be
regular and let A Q {a E λ | cf(a) = ω] be strongly bistationary. Then there are
non-isomorphic models EM{J%, Φ) and EM(J\, Φ) (as they were denoted in [4])
of T of cardinality λ such that if V has a winning strategy for G{(EM(J^,Φ),
EM(J\9Φ))9 then t^>t(λ-A). Especially then t^>afor all a<λ.

In [4], Theorem 2.7 was stated in slightly weaker form because it made no
difference in that context. In the context of this paper it will make a difference.
Anyway, from the proof in [4] it is clear that Theorem 2.7, also in this form, is
true.

3 On the existence of strongly bistationary sets Theorem 2.7 is of no use
if there are no strongly bistationary sets. In [4] we were able to prove the exis-
tence in the following cases.

Theorem 3.1
(i) Assume either

(a) λ = ωi, or
(b) λ = κ+, K regular, κ<κ = K and λ is not weakly compact in L.

Let 5 c (α E λ | cf(a) = ω] be stationary. Then there is A <Ξ B strongly bista-
tionary.

(ii) If\ = κ+>ωι, κ<κ = K, then E\ is strongly bistationary.

The next lemma is essentially Claim 2 in the proof of Lemma 9.10 in [4].

Lemma 3.2 Letλ> ζ > ω be regular cardinals and let A c= [aGλ\cf(a) = £}.
If a is the least ordinal for which V has a winning strategy for Ga(λ — A) then
a is a regular cardinal or a = ξ + 1.

Proof: Assume that the lemma is false. If a is a limit ordinal then it is easy to
see that V has a winning strategy already for GcfM(λ — A), a contradiction. If
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a is a successor then it must be of the form β + 1 where cf(β) = ξ. But then V
has a winning strategy already for G*+ 1(λ — ̂ 4), a contradiction.

Definition 3.3 Let K be an infinite cardinal and E g κ+. We write Dκ(i?) if
there is a sequence (Cα | α < κ+ and a limit) such that

(i) Ca is cub in a,
(ii) if cf(a) < K then the order type of Ca is less than κ9

(iii) if β < a is a limit point of Ca then βEEand Q = Cα Π 0.

Notice that if Πκ holds and ̂ 4^[Q:</c+ |c/%(Q;)=ω}is stationary then there
is a stationary set E c 4̂ such that Dκ(2?) holds (see Devlin [1] Lemma IV 2.10).

The next theorem is an improvement of case (ii) in Theorem 3.1.

Theorem 3.4 Ifλ = κ+,κ>ω regular, E <Ξ [a <λ\cf(a) = ω j stationary
and ΠK(E) then E is strongly bίstationary.

Proof: By Lemma 3.2 it is enough to show that V does not have a winning strat-
egy for Gκ(λ — E). For a contradiction assume that r is a winning strategy of
V for Gκ(λ - E). Let C c λ be the set of all those a such that for all β < a and
for all 7 < K holds Xy < a if the following sequence exists

(^δ >*δ )δ<7

where x® = τ(Cξ)^δ and cf is the least c in C^ (from the definition of ΠK(E))
greater than x%, for all ξ < δ.

It is easy to see that C is unbounded in λ and closed under sequences of
length K. Choose any aGC of cofinality K. If V plays according to r and at each
move β < K 3 chooses Cβ then 3 wins, a contradiction.

Let us now look at when we can prove the existence of strongly bistation-
ary sets in ZFC. By collapsing a weakly compact cardinal to ω2 we get a model
where if A <Ξ [a < ω21 cf(a) = ωj is a stationary set then the set

[a < ω21cf(a) = ωj, A Π a is stationary in a}

is an ωi-cub set (see Magidor [7]). So in this model A cannot be strongly bista-
tionary. However this cannot be done if instead of ω2 we have a successor of
singular. In fact we can then prove the existence of a strongly bistationary set.
Before doing this let us study a weaker notion.

Definition 3.5 Let λ > ξ > ω be regular cardinals, A <Ξ [a < λ | cf(a) = £}
and a < λ. We say that A is α-bistationary if A is stationary and V does not have
a winning strategy for Ga(λ — A).

From the proof of Theorem 2.7 one can immediately see:

Theorem 3.6 Let T be a complete unsuperstable theory. Let λ > | Γ | + ω
be regular, κ<\ and let A <Ξ [a E λ | cf(a) = ω] be κ-bistationary. Then there
are models EM(J%,Φ) and EM(J\,Φ) (as they were denoted in [4]) of T of
cardinality λ such that for all a. < κ+ V does not have a winning strategy for
G%(EM(J%,Φ),EM(J\,Φ)).

Theorem 3.7 Letλ>κ>ξ>ωbe regular cardinals and A c{jg<λ|c/*(j8) = ξ}
stationary. Assume A = U/<*>4/> where each Aj is stationary and At ΠAj=0 if
i Φj. Then for alla<κ there isja < K such that AJa = \Jja<i<κ A is a-bistationary.
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Proof: Let a < K. For a contradiction assume that for ally < K there is τy a win-
ning strategy of V for Ga(λ - Uj<i<KAi). By induction on β < a choose γ/,
j < K, and eβ so that

(i) yf = τj(eβ')β><β

(ii) eβ is larger than any yf 9j <κ9 β' < β.
Because τ, is a winning strategy, there are i(j) and β(y) such that β(j) is

the least limit β such that

U^'e U A
j8'</3 7</<κ

and /(y) is the unique / such that

U efi'GA,.
β'<β(j)

Then i(j) >j Let

e ( j ) = U € * ' .
i8#<j8(y)

Because α < K there are less than K possible values of e(y). So for some e
there is an unbounded set of j in K for which e(y) = e. If / is such that e e A
then there is an unbounded set of y in K such that / (j) = i. Especially there is some
j > i such that i(j) = i, a contradiction.

Theorem 3.8 Assume λ = κ+,κ>ξ>:ω,cf(κ)<κ and A c {a < λ | cf(a) = ξ}
stationary. Then there is B ̂ A strongly bistationary.

Proof: Let A = \Ji<λAh At stationary and At Γ)Aj=0 if / Φj. By Lemma 3.2
it is enough to find B c A such that for each regular cardinal ξ < K, B is
ξ-bistationary.

Let κa, a < y = cf(κ) < K, be a cofinal sequence of regular cardinals below
K. For each OL < y and each j < λ of cofinality κa there is, by Theorem 3.7,
m(aj) <j such that \Jm(ajχi<jAi is κa-bistationary. By Fodor's Lemma
there is m(a) such that m(a,j) = m(a) in an unbounded set of y. Let m =
U α < 7 w ( α ) + 1. Let B — Am. Clearly this is as required.

4 On the existence of universal equivalence trees Universal equivalence
trees could be called generalized Scott ranks for uncountable models. In [4]
we showed that if CH holds, then there is a linear order of power ωi with no
universal equivalence ω2,ω!-tree. On the other hand, by a remark of Hella [4],
if 2ω = 2ω i, then trivially every model of power ωx has a universal equivalence
ω2,ωi-tree. This is because every (2ω i)+, ωi-tree can then be majored by an
ω2, ωi-tree.

Next we are going to prove another positive result about the existence of uni-
versal equivalence trees. We will show that in a model of ZFC constructed by
Mitchell [8], every linear order of power ωi has a universal equivalence ω2, oc-
tree t which is small in the following sense: there is a tree t' of power ωj such
that t = t' + 1.

Definition 4.1 Let Ά(κ,κ + ) denote the following assumption: "There is a
tree of power K with at least κ+ branches of length K."
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Thus Ά(ωγ9ω2) states the existence of a generalized Kurepa tree whose lev-
els are allowed to be of power ω! instead of power ω. Using an inaccessible car-
dinal, Mitchell constructs a model of ZFC where Ά(κ,κ+) fails.

Theorem 4.2 (Mitchell [8]) Suppose that in 3Dί, θ and K are regular, λ is inac-
cessible, and θ < K < λ. Then there is an extension yiofW in which 2^ = 2* =
K + = λ, all cardinals δ such that δ < K or δ > λ are preserved, and A{ κ,κ+) fails.
In particular, Con(ZFC and ->A'(ωι,ω2)) is equivalent to Con(ZFC and 3κ(κ is
inaccessible)).

In Theorem 4.2 above we are interested in the case where θ = ω and κ = ωx.
Note that the failure of A'(ωλ,ω2) trivially implies the failure of CH.

Definition 4.3
(i) Let η be a linear order. An interval"of η is a subset / <Ξ η such that if

x,y G I and x < z < y, then z E /. / inherits the ordering of η.
Let / and / ' be nonempty intervals of η. We denote / < 0 / ' if / Π / ' = 0 and

for all a G / and b G /', a < b.
(ii) A Dedekind cut of η is a pair of intervals (possibly empty) (/,/') such

that / is an initial segment of η, Γ is an end segment of η, IΠ / ' = 0 and η =
IΌΓ.

(iii) If a G η then η<a denotes the interval η \ [x E η\x < a]. We define τ/-α,
η>a, and r/-α similarly.

(iv) By cf(iy) we denote the cofinality of a linear order η and by ci(r/) the
coinitiality of 77, that is, 01(17) = cf(τy*), where η* denotes η with the ordering
reversed.

(v) The type of a Dedekind cut (/,/') is (cf(/),ci(/')) and the depth of (/,/')
ismax{cf(I),ά(Γ)}.

Definition 4.4 Let 21 and 33 be models and t a tree. Let

P= ((aa,ba,xa))a<β

be a play (that is, sequence of moves) in G'(8l,93), where for all a < β, aa G 21
and ba G 33. Suppose 3 has not lost in P. Then we denote the partial mapping
{(aa,ba) \a<β] by pm(P).

Lemma 4.5 Assume ->CH. Let η and η' be linear orders of power ωλ and let
(/,/') be a Dedekind cut ofη of depth ωx. Suppose σ is a winning strategy of 3
in the game Gωω+X(η,η'). We denote G = Gωω(η,η'). Then there is a play P
ofG where 3 has followed σ and V still has moves left, and a Dedekind cut (J, J')
ofη', such that no matter how V continues the play P, at each move, assuming
3 follows σ, ifv chooses from / U / then 3 chooses from / U J and ifv chooses
from Γ U / ' then 3 chooses from Γ U /'.

Proof: If / or / ' is empty, then the claim is trivial. Suppose then / and / ' are
not empty, and, for instance, cf(/) = ωx.

Assume for a contradiction that the claim does not hold. Let B be a full
binary tree of height ω. For each beBwe construct an interval Jb of v\' and a
play Pb of G, such that:
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(i) if b' and b" are the immediate successors of b, then Pb c pb,9 pb c pb*9

Jb = Jb. U Jb. and Jh> Π Jh. = 0 ;

(ii) ran(pm(P^) 11) Π Jb Φ 0 and ran(pm(P£) t /') ΠJbΦ0.

Using our assumption it is easy to do the construction.
Now, let (bn)n<ω be an arbitrary branch in B. Let P — U/7<ω Pbn

 a n d K —
Πn<ω Jbn- As 3 has in P followed σ, 3 can still make one move without losing.
Let V continue P be moving an element of / which is greater than any in
dom(pm(P)) Π / (here we use cf(/) = ωi). By (ii), 3 must respond by an ele-
ment in K, which shows that K is nonempty. Thus we see that η' is at least of
cardinality 2ω, a contradiction.

Next we construct trees T(η) for linear orders η of power ωi with at most ωi
Dedekind cuts of depth ω\. We show that it is consistent relative to the existence
of an inaccessible cardinal that (ω ω) X T(η) 4- 1 is a universal equivalence tree
for an η.

Construction 4.6 Let η be a linear order of power ωi with at most ωi
Dedekind cuts of depth ω\. Let [aa \ a < ωi and a even} enumerate η and let
{(Da,D'a) I a < ω\ and a odd} enumerate the Dedekind cuts of η of depth ωi.
We construct a tree T(η).

We construct by induction trees Ta9 a < ω1? such that:

(i) Ta is of height <α + 1 and TaQTβifa< β.
(ii) The nodes of Ta are nonempty intervals / of η, and the root of Ta is 77.

(iii) If / E Ta, and Iδ9 δ < e, are the immediate successors of /, then Iδ Π Iδ> =
0 for all δ < δ' < e, and / = (Jδ<e ̂ δ

(iv) Suppose (Iδ)δ<e is an initial segment of a branch in Ta9 e is a limit ordinal,
and / = Πδ<€ /δ. If / is nonempty, then /is the unique supremum of (Iδ)δ<€

in Ta. If / i s empty, then (Iδ)δ<e has no supremum in Γα.

Conditions (i)-(iv) imply the following properties:

(v) if KΓ in Ta9 then / ' c /;
(vi) if / and / ' are nodes of Ta9 and / and / ' are not comparable in the order-

ing of the tree Ta, then IΠΓ = 0 ;
(vii) U{/ |/ isaleaf of Ta] =η.

(In the proofs below we will also use some other properties of our construction
which are not listed in (i)-(vii).)

Let To be a tree whose only node is η. Suppose then that we have defined Tβ9

β < a.
Case 1. If a is a limit, let T'a = \Jβ<a Tβ. We extend T'a to Ta by the follow-

ing process: at the tip of each branch (Iδ)δ<e of a limit ordinal length in Tf

a we
add the node / = Πδ<e h> if I is nonempty.

Case 2. Suppose a = 7 + 1 and 7 is even. Let / be the unique leaf in Ty such
that aΊ E /. We build Ta from Ty by adding the node / ' = / - ^ on top of /, and
also the node /" = I>ay, if /" is nonempty.

Case 3. Suppose a = 7 -I- 1 and 7 is odd. Suppose that (cf(Dy),d(DΎ)) =
(κ,λ). (Note that K or λ may be 0, if either interval is empty.) We build the tree
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Ta from TΊ by the following procedure which eliminates the deep Dedekind cut
from the leaves of Ta.

(a) Suppose there is a leaf / in Ta such that IΠ Dy and / Π D'Ί are nonempty.
Let (bδ)δ<κ be a cofinal sequence of points in / Π Dy and (cδ)δ<λ a coinitial
sequence of points in / Π D'r Then for all δ < K and δ' < λ, we add the inter-
vals I-bδ - \Je<δ I~be and I~Cδ' - \Je<δ' I~Ce as new nodes on top of /.

(b) Suppose there is a leaf /in Ta which is an end segment of Dy. Let {bδ)δ<κ

be a cofinal sequence of points in /. Then for all δ < K, we add the intervals
I~bδ - U e < δ / - 6 e on top of /.

(c) Suppose there is a leaf/in Ta which is an initial segment of D'τ Let (cδ)δ<κ

be a coinitial sequence of points in /. Then for all δ < λ, we add the inter-
vals I-Cδ - \Je<δ I~Ce on top of /.

This ends the induction. Finally, we let T(η) = U«<ωi Ta.

Lemma 4.7 Let η be as in Construction 4.6. Then T(η) is an ω2iωι-tree of
power ωγ. In addition, each leaf of T(η) is an interval containing just one ele-
ment and each element ofη occurs exactly in one leaf of T(η).

Proof: Since each level of T(η) consists of disjoint intervals of η, each level is
of power <ω t .

We show that there is no ωi-branch in T(η). Assume for a contradiction
that (/δ)δ<ωi is an ω{-branch in T(η). From the construction it is obvious that
we can find a sequence s = (dδ)δ<ωι of elements of η, such that s is either
strictly descending or strictly ascending in η and for all δ < ωi, dδ G /δ. Suppose,
for instance, that s is strictly ascending. Let / = Uδ<ωi v~dδ a n d J' = η — J-
Now each Iδ contains a nonempty end segment of /. Let y be such that (Dy,D'Ύ) =
(/, / ' ) . From (iv) of Construction 4.6 it follows that there is a leaf /of Ty+ι which
belongs to 5. We have a contradiction, because in Γ τ + 1 there is no leaf which
would contain a nonempty end segment of /.

We prove then the last claim. Suppose /is a leaf of T(η) containing elements
a < b E η. By Case 2 in Construction 4.6, there is a node in T(η) whose great-
est element is a. But now we have a contradiction to (v) and (vi) of Construc-
tion 4.6. Suppose a G η is arbitrary. Let A be the set of those nodes of T(η)
which contain a. From (iii) and (iv) of Construction 4.6 it follows that A is a
branch of T(η). As A is of length < ωx, it follows from (iv) that A has to be of
a successor length; that is, the topmost element of A is a leaf.

Theorem 4.8 Assume -iCH. Let η and η' be linear orders of power ωi with
at most ωi Dedekind cuts of depth ωx. Let t= (ω ω) X T(η) + 1. Ifη = ' η', then
η = η'.

Proof: Let σ be a winning strategy of 3 in G\η,η'). If x G V = (ω ω) X T(η),
then we denote by p(x) the projection of x in T(η).

For each / G T{η) we will construct an interval/(/) of η' and a play P(I)
in G''(Ϊ7,7/'). We order the intervals/(/), /G T(η), into a tree T in the follow-
ing way:

/(/) </(/ ' ) in Γ iff / < Γ in T(η).
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Let us denote T'u = Tf Γ {/(/) | / G Ta j . We do the construction so that the fol-
lowing hold:

(i) T'a satisfies (i)-(iv) of Construction 4.6, where Ta is replaced by T'a and η

byη'.
(ii) If /is a node in T(η) and /' and /" are its immediate successors in T(η),

then/'<(>/" iff/(/') <<>/(/").
(iii) P(/) is a play where 3 has followed σ, V has moved only elements xint' such

that p(x) < I in the ordering of T(η), and for all continuations P' (in
G'(η9η')) of P(/), IΌf(I) is closed under σ.

(iv) If / C / ' , thenP(/) c p ( / ' ) .

We define/(η) = η' and P(r?) = ( ). Suppose/(/) and P(I) have been con-
structed for all / G \Jβ<Oi Tβ. We are going to define/(/) and P{I) for /G Γα.

Consider first the case where a is a limit. Then if / = Πδ<e δ̂ is a n e w added
node in Ta (see Case 1 in Construction 4.6), then we define/(/) = Πδ<ef(h)
andP(/)=U«< e P(/δ)

Consider then the case where a = y + 1 and γ is odd (Case 3 in Construc-
tion 4.6). Let the notation be as in Case 3. We treat as an example Case 3(a),
where λ = K = ωu that is, (cf(Dy),ά(Dy)) = (ωuωι). (Case 2 and other sub-
cases of Case 3 are similar and easier.) The problem is to split/(/) into pieces
like /was split, and define the corresponding plays.

In the following construction for Case 3 (a) we only let V continue P(I) so
that his moves x in the approximating tree t' are such that the projection in T(η)
isp{x) = /. First we apply Lemma 4.5 to split/(/) into two pieces /and / ' and
to find a continuation P' of P(/), such that in the next ω ω moves when P' is
continued, the winning strategy σ of 3 maps every point chosen by V in Dy Π /
and D'y Π / to J and J' respectively, and vice versa. As σ is a winning strategy
of 3, cf(/) = α>i and ci(/') = ωi. Let (dδ)δ<ωι be a cofinal sequence in /and
(e δ ) δ < ω i a coinitial sequence in /'.

We describe then how to split /into ωγ pieces. (The procedure for / ' is sym-
metric.) It is straightforward to show that there is a cub set C c= ωi whose ele-
ments eE:C have the property: If V continues P' by a finite number of moves
moving only elements from the set {bδ | δ < e} U {db \ δ < e}, then 3's responses,
using σ, are in the union of (Jδ<eI~bδ a n d Ud<eJ~dδ- (We say then that e is
closed under finite continuations of P'.)

We will define by induction ordinals

€0 < < e r < ω i < •

which are closed under finite continuations of P\ and elements

r^GJ, f < ω l β

Suppose we have for some f < ωx defined e0 < < eδ<^ < and the ele-
ments Γξ, where ξ < eδ for some δ < f. As Cis cub, e' = sup{eδ| δ < f} G C. Let
V play so that he continues P' and he moves in the first ω moves b% and d^ for
all £ < e', yielding a play P" ^ P'. Let C be the set of those e closed under finite
continuations of P". Since C is cub, there is ef G C Π C", ef > e'. Now V con-
tinues P" and moves in the next ω moves b$. and d% for all e' < ξ < ê , yielding
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a play P"'. Let rξ = (pm(P / / r ))(^) for all e' < ξ < e r. This completes the
description of the induction.

Let

Now we define

Ah) = J*rδ - U J*r*
€<δ

for all δ < ωi. The corresponding play P(I&) is P'" above from the phase of
induction where rδ was defined.

This ends the construction of /(/) and P ( / ) , I G T(η). Let us now define
the isomorphism g: η -• η'. If a G η, then by Lemma 4.7, there is exactly one leaf
/in T(η) which contains a, and /is actually the singleton of a. As 3 can continue
P(/) still ω ω + 1 moves without losing. Also, /(/) has to be of the form {a'},
where a' G η'. We let g(a) = a'.

We have to prove that if a < b, theng(α) <g(b). Let A = {IG T(η) \aG
/ , * € / } . Obviously, the elements of A form an initial segment of a branch in
T(η). By (iv) of Construction 4.6, this segment is of a successor length. Let /be
the topmost element in A, Now it follows from condition (ii) above and from
(v) of Construction 4.6, applied to appropriate T'a9 that g(a) < g(b).

Finally, we show that g is onto. Let b be an arbitrary element in η'. Let A =
[I G T(η) \b G/(/)}. Using properties (iii) and (iv) of Construction 4.6, ap-
plied to appropriate T'a, it is easy to see that the elements of A form a branch
s = (Ia)a<β ώ T(η). Let P = \Ja<βP(Ia),I = na<βIa and Γ = Γ W / ( 4 ) .

Suppose for a contradiction that s is of a limit length. Then V has still one
move left and he can continue P by moving an element in /', and 3 loses because
he must move in /, which is empty. This is the place where we use the " + 1 " part
in the definition of t. This contradicts the fact that σ is a winning strategy of 3
inG'(η,η').

Thus s must be of a successor length. Let / be the topmost node of s.
We know that / is the singleton of some element a G η. As above we see that
/(/) = {b}, and thus g(a) = b.

Next we prove that in the model of Mitchell every linear order of power ωi
has at most ωi Dedekind cuts of depth ω{.

Let U(η) be constructed like T(η), except that if α = y + 1 and 7 is odd we
do nothing and let Tα = Ty.

Lemma 4.9 Let η be α linear order of power ω\.
(i) U(η) is of power ωλ.

(ii) Ifη has K Dedekind cuts of depth ωχ9 then U(η) has at least K branches of
length ωx.

Proof:
(i) Each level of U(η) consists of disjoint subsets of η, and is therefore of

power <ωj.
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(ii) Suppose that (/,/') is a Dedekind cut of type (ω^ω), for example.
From Construction 4.6 it is easy to see that on each level a. < ωλ of the tree U(η)
there is some node Ia such that Ia contains a nonempty end segment of /. Now
(Ia)a<ωx *

s a n ω!-branch in U(η) and it is rather easy to see that these branches
are distinct for distinct Dedekind cuts.

Corollary 4.10 IfΆ(ωι, ω2) fails, then each linear order of power ωx has at
most ωx Dedekind cuts of depth ωx.

Corollary 4.11 In the model 9Ϊ of Theorem 4.2, where θ = ω and K = ωi, the
following holds: every linear order η of power ω\ has a universal equivalence
ω29ωrtree t which is of the form t1 + 1, where tf is of power ωλ.

4.12 Remark Instead of trees we can use linear orders to measure the length
of Ehrenfeucht-Fraisse games; i.e., instead of choosing an increasing sequence
of elements of a tree, V chooses decreasing sequence of elements of a linear order.
We say that a linear order ξ is a /c-well ordering if there is no decreasing sequence
of length K in ξ. Then we can formulate Corollary 4.11 in the following way. In
the model 9ϊ of Theorem 4.2, where θ = ω and K = ω{, the following holds: every
linear order η of power ω! has a universal equivalence linear order ξ such that
£ is an α^-well ordering and is of cardinality ω{.
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