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On Potential Embedding and
Versions of Martin's Axiom

SAKAE FUCHINO

Abstract We give a characterization of versions of Martin’s axiom and some
other related axioms by means of potential embedding of structures.

1 Introduction Let A and B be structures. For a condition & on p.o.-sets
(e.g., ccc, proper, <k-closed, etc.) let us say that A4 is §-potentially embeddable
into B if there exists a p.o.-set P with the property & such that [Fp “A is em-
beddable into B”. Similarly we shall say that A and B are §-potentially isomor-
phic if there exists a p.o.-set P with the property & such that |Fp “4 = B”.

The notion of (<, )-distributive-potentially isomorphism and <«k-closed-
potentially isomorphism have been studied in Nadel and Stavi [7]. In Fuchino,
Koppelberg, and Takahashi [4] a characterization of (<«,o0)-distributive-poten-
tially isomorphism to a free Boolean algebra is given under certain set theoretic
assumptions on k.

In this note we shall consider the question if §-potential embedding (&-po-
tential isomorphism) implies the real embedding (isomorphism).

The following examples suggest that this question is by no means trivial for
some instances of 4 and B even when we consider the ccc as the condition &.
Example 1.1c is due to S. Kamo.

Example 1.1

(a) Let A be the subalgebra of the Boolean algebra ¢(w;) consisting of finite
and co-finite subsets of w;. Assume that there exists a ccc Boolean algebra B
which is not productively ccc. Let C be a ccc Boolean algebra such that B@® C
does not satisfy the ccc. By the ccc of B, A4 is not embeddable in B. But, since
IFc+ “B does not satisfy the ccc”, we obtain the result that IFo+ “A4 is embedd-
able into B”.

This situation can also be coded in structures in a language with only a binary
relation symbol: Let B and C be as above. Let D and E be the structures de-
fined by
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D= (wli{(a’B):aaBE wp, & ¢6})a
E= (B%,{(a,b):a,b€ B, a-b =0)).

Then no uncountable substructure of D is embeddable into E. But I+ “D is
embeddable into E”.

(b) (CH) Let A and B be mutually nonembeddable X;-dense suborderings
of R. Let P be the standard p.o.-set forcing MA + 2%¥° = R,. Then, by Baum-
gartner [1], |Fp A = B holds.

(c) Let A = (R,<) and B = (R\ {0},<). Clearly A # B. However if Pis a
p.o.-set which adds any new real then |Fp “A = B” holds. This can be seen as
follows. Working in the generic extension V[G] of the ground model V, where
G is a P-generic filter over V, let x € RVICI\RY. Let {a,},cws {Dn}ncw {Cilnco
{d,}ne. be sequences of elements of Q U { —o0,+ 0} such that gy = ¢y = —oo,
by =dy= 4+, lim,_, a, =lim, _,, b, = x and lim,,_,, ¢, = lim,,_,, d, = 0 where
{an}new,{Cnlneo are strictly increasing and {5, },c.,{d, }ne. are strictly decreas-
ing sequences. Then there exist (f,)new, (8n)new € VIG] such that f,,g, € V,
VE“S,: (@n,@ns1] > (CnyCpyr]”and VE“g,: [byy1,b,) > [dny1,dy)” forn € w.
Let f=Unewfn Y Unew 8- Then f€ V[G] and f is an isomorphism of A4 to B.

If B has some “good” properties we can deduce the real embedding (isomor-
phism) to B from the potential embedding (potential isomorphism). The follow-
ing trivial lemma is such an example:

Lemma 1.2 Let B be «*-universal for x = |A|. If there exists a p.o.-set P
such that \Fp “A is embeddable into B” then A is embeddable into B.

In Section 2 we show that the ccc-potential isomorphism to a free algebra im-
plies the real isomorphism (Theorem 2.1).

For a condition & on p.o.-sets and a cardinal « let PES (PI¢) denote the fol-
lowing axiom:

For all structures A4, B such that |A| = «, if 4 is &-potentially embeddable
into B (if 4 is &-potentially isomorphic to B and |A| = | B|) then A4 is em-
beddable into (isomorphic to) B.

Similarly we shall also consider a class of axioms on potential partial embedding.
Let PPE? be the axiom saying:

For all structures A, B in some relational language L, if |Fp “there exists a
substructure C of A of size « which is embeddable into B” for some p.o.-set
P with the property & then there exists a substructure C of 4 of size x which
is embeddable into B.

Here we call a language L relational when L contains no function symbols. Note
that the definition of PE¢ and PI¢ would not be changed if the structures con-
sidered would have been restricted to be in relational languages.

In Section 3 we show that the axioms PE¢, PI¢, and PPE? are closely re-
lated to the corresponding version of Martin’s axiom. We show that Martin’s
axiom on the property & for « dense sets is equivalent to PES (Theorem 3.3). In
particular, PES* is equivalent to Martin’s axiom for « dense sets.

In Section 4 we shall give still another characterization of versions of Mar-
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tin’s axiom which is related to the characterization of Martin’s axiom given in
Todorc&evi¢ and Veli¢kovi¢ [9].

Using the axioms on potential partial embedding introduced above and their
weakenings to be defined in Section S, we also give characterizations of some
other known axioms related to Martin’s axiom (Theorem 3.6 and Theorem 5.4).

2 Free algebras Let V be any variety. For an algebra 4 and a subset X of
A let [X]4 denote the subalgebra of A generated by X. An algebra 4 in V'is
called V-free (or simply free for short) if there is a subset X € A such that 4 =
[X]14 and for any B € V and any mapping f: X — B there exists a homomor-
phism f: A —» B extending f. Such X is said to be a free basis of A.

Clearly X is a free basis of A4 if and only if [ X]4 = A4 and, for every finite
Y < X, Yis a free basis of [Y]4.

Theorem 2.1 Let A be an algebra in a variety V. If there exists a ccc p.o.-set
P such that l-p “A is free” then A is really free.

Proof: Let P be as above and X be a P-name such that IFp “X is a free basis
of A”.

Claim 2.2 Let a € A and B be a subalgebra of A such that Fp“B=[XNB],”.
Then there is a subalgebra B’ of A such that B’ is countably generated over B,
a € B’ and Fp “B’ = [ X N\ B’14”. If B is free then B’ is also free and any free
basis of B can be extended to a free basis of B'.

Proof: For each b € A let Y, be a countable subset of A such that |Fp
“[X N Yp]4 D b”. This is possible since P satisfies the ccc. Let Y be a countable
subset of Bsuchthatae [Y] and Y, S Yforeveryb€ Y. Then B'=[BU Y],
is as desired.

Now suppose that U is a free basis of B. Let Y ={y,:n € w}. Let p, € P,
k, € wand u,; € B'\B for i < k, and n € w be such that

Dn = Ppy for every n € w,
Pn ke “Unos . . . Uk, € X7 fOr every n € o,
DPnlbp “yn € [BU {uyg,. .. ,Uni,}]a” forall n € w.
It follows that
B'=[BU {u,; i< ky, n€ wlly.
Clearly UU (u, ;:i < ky,, n € w} is then a free basis of B’. This proves Claim 2.2.

Let k = |A|. By Claim 2.2 we can construct sequences (A,)qa<g and (X, )o<p
for some 3 < k inductively so that:

(Aa)a<p is a continuously increasing sequence of subalgebras of A4;

(Xa)a<p is a continuously increasing sequence of subsets of 4 and X, is a
free basis of A, for all o < 3;

IFp“A, = [X N A,]4” for all o < B;

Ua<B Aa =A.

Then U,<g X, is a free basis of A. This completes the proof of Theorem 2.1.
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For p.o.-set which collapses any cardinal, the theorem corresponding to The-
orem 2.1 does not hold. In particular, Theorem 2.1 for proper p.o.-sets does not
hold. This can be seen by the following example in the variety of Boolean alge-
bras. Let P be a p.o.-set which collapses «*. Let B = Fr «* X Fr «. B is not free
since it is not homogeneous. But |Fp “B is free”.

A Boolean algebra A is said to be projective if A is a retract of a free Bool-
ean algebra, i.e., if there are a free Boolean algebra F and homomorphisms
e:A—F, f:F— A such that foe = id,. A theorem by S&epin says that a Bool-
ean algebra A4 is projective if and only if A @ Fr« is free for k = |A| (see
Koppelberg [6]). Hence we obtain the following corollary.

Corollary 2.3 Let A be a Boolean algebra. If there is a ccc p.o.-set P such
that \Fp “A is projective”. Then A is really projective.

Since not every subalgebra of a free Boolean algebra is projective, the fol-
lowing problem still remains open:

Problem 2.4 Does ccc-potantial embedding into a free Boolean algebra im-
ply the real embedding?

Note that in varieties such as groups, Abelian groups, etc., where any subalge-
bra of a free algebra is also free, the problem above does not arise.

In contrast to Problem 2.4 we have a complete answer to a similar problem
on potential embeddability in the power-set algebra over w:

Proposition 2.5 (Fuchino [3]) Let B be a Boolean algebra. Then the follow-
ing are equivalent:
(1) There exists a ccc p.o.-set P such that

IFp “B is embeddable in p(w)”;
(2) There exists a ccc p.o.-set P such that

Ikp “B has a finitely additive strictly positive measure”;

n times

"
(B)B® -+ @ B has the ccc for every n € w.

Note that condition (1) of Proposition 2.5 does not mean the ccc-potental em-
beddability of B into the power-set algebra ¢ (w) in our sense since the power-set
algebra ¢ (w) in the generic extension is, in general, not equal to the power-set
algebra ¢ (w) in the ground model.

3 Potential embedding and Martin’s axiom For any condition § on p.o.-
sets and cardinal «, let MAS be the following assertion:

For any p.o.-set satisfying the condition & and for any family O = {D,:
a < k} of dense subsets of P, there exists a -generic filter over P.

Using this notation, the proper forcing axiom (PFA) and Martin’s maximum
(MM) can be denoted by MAR P and MAR P respectively. For these
axioms see, for example, Jech [5]. Martin’s axiom for « dense sets (i.e., MAS®)
is also denoted, as usual, by MA,.
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Lemma 3.1 For any condition & on p.o-sets and an infinite cardinal x, MAS
implies PEE, P1%, and PPES.

Proof: Assume that MA® holds. We shall show that PI¢ and PPE hold. The
proof of PE¢ can be done similarly.

Let 4 and B be structures of size k. Suppose that there exists a p.o.-set P sat-
isfying the condition & and a P-name f such that Fp “f is an isomorphism from
AtoB”. Foreacha& Aand b € B let

D, = { p € P:there exists some d € B such that p IFp “f(a) =d’},
D; = { p € P:there exists some ¢ € A such that p -5 “f(c) = b”}.

Clearly D, and Dy, are dense subsets of P. Let D = {D,:a€ A} U {Dy: b € B}
and let G be a D-generic filter over P. Then the mapping f: A — B defined by

fla)=b for some b € B such that there exists p € G with p - “f(a) = b”

is an isomorphism from A to B. This proves that PI¢ holds.

For PPE¢ let A and B be structures in a relational language L. Suppose that
there exists a p.o.-set P satisfying the condition & and P-names C, 4 such that
IFp “C is a substructure of A of size « and 4 is an embedding of C into B”. Let
g be a P-name of injective enumeration of C of length «, i.e., Fp “¢:k = Cis
1-1 onto”. For each o < « let

D, = {p € P:p decides g(a) and h - g(a)}.
Let D = {D,:a € «} and let G be a O generic filter over P. Let
C = {a € A :There exists p € G and «a < « such that p IFp “g(a) = a”}.
Then C is a substructure of A of size k. Let h: C — B be defined by

h(a)=>b for b € B such that there is p € G and a < « with
plp“g(a)=anheg(a)=>0".

It is easy to see that 4 is an embedding of C into B.

Lemma 3.2 P15k, does not hold for any condition & such that there exists a
p.o-set P satisfying & which adds a new real. In particular P15 implies ~CH.

Proof: Immediate from Example 1.1c. The second assertion can also be seen di-
rectly in Example 1.1b.

Similarly, using Example 1.1a, we could show that PEY or PPELT implies
—CH. However we can actually prove much more general results. For a condi-
tion &, we shall say that & is a regular condition on p.o.-sets if, for any p.o.-set
P and any dense subordering Q of P, P satisfies & whenever Q satisfies &. Note
that the conditions & on p.o.-sets used to define the usual versions of Martin’s
axiom of the form MA¢ (o-centered, ccc, proper, stationary preserving, etc.) are
regular.

Theorem 3.3 For a regular condition & on p. o-sets and an infinite cardinal «,
MAZE is equivalent to PES.

Proof: By Lemma 3.1 it is enough to show that PEZ implies MAZ. For « = R,
this is clear since MA§, and PE§ already hold in ZFC. Let us assume that MA$
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does not hold for an uncountable x. We shall show that PEZ does not hold. Let
P be a p.o.-set satisfying the condition & with a family » = {D,:a < «} of
dense subsets of P such that there exists no D-generic filter over P.

Claim 3.4 There exists a p.o.-set P’ satisfying the condition & and a family
D’ = {D,,: o < k} of dense subsets of P’ such that

(a) there exists no ’-generic filter over P’,

(b) for every a < k and p € D), there exists q € P’ such that p < q and

qED&\B U D

Ex\{a}

Proof: For every p € Plet T, = (g, o: @ < k} where we assume that g, , & P
and gp, o # qp,o for p,p’ € P and a,a’ € « such that (p,a) # (p’a’). Let

P=PU T,
PEP
and

<P =<PU(P'\9po) PP EP, a <k P =p)
U {(dp,as9p,8) P E P, a =B <«j.
Since Pis dense in P’ = (P’, <P’), P’ still satisfies the condition &. For a < « let
D, =D,U{q,,:p€D,]}.
Then P’ and ' = {D,,: a < «} are as desired.

By the claim above we may assume without loss of generality that for any
a < k and p € D, there exists g = p such that

q EDO‘\ U DB'

Bek\{a}
Now let 4 = (K:{a}:xn)a<x,n<w and B = (P, Dou Cn)a<x,n<w where

C,={P15...sDn) D15 ..,Dn € P, there exists g € P
such that ¢ < py,...,p,}.

Then the embeddability of A4 into B is equivalent to the existence of D-generic
filter over P. It follows that A4 is not embeddable into B. But we have that |Fp
“4 is embeddable into B”. Hence PE¢ does not hold. This completes the proof
of Theorem 3.3.

From Theorem 3.3 and Lemma 3.1 it follows that PE¢ implies PI¢ for a regu-
lar condition & on p.o.-sets and every infintie cardinal «.

Problem 3.5 Is PISY equivalent to PES?

Some structures constructed in [7] and [4] exemplify that PI;{‘I"“’S“"ing

is inconsistent. These examples also show that, just as for MM, the axiom
PIat-Preserving i maximally (possibly) consistent in the corresponding family of
axioms.

Problem 3.6  Is PI§2Preserving equivalent to MM?
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A subset Y of a p.o.-set P is said to be centered if for every u € [Y]<“ there
exists x € P such that x < y for all y € u. A p.o.-set P has precaliber « if for
X € P of size « there exists Y € X of size « such that Y is centered.

Theorem 3.7

(a) PPESY is equivalent to MAy, .

(b) Assume that every ccc p.o.-set is productively ccc (this is true, e.g., under
some weak version of MAy,). Then for any cardinal « of uncountable cofi-
nality, PPESC is equivalent to the assertion:

(3C,) Every ccc p.o.-set has precaliber k.

Proof:
(a) In [9] it is proved that MAy, is equivalent to the assertion:

(3C) Every ccc p.o.-set has precaliber ;.

So it is enough to show the equivalence of PPET to this assertion. First let us

assume JC. Let 4 and B be structures in some relational language L. Suppose that
there exists a ccc p.o.-set P and P-names C, 4 such that [ “C is a substructure
of A of size 8, and £ is an embedding of C into B”. Let & be a P-name of in-
jective enumeration of C of length w; (i.e., IFp “g:w; = C is 1-1 onto”). For
each o € wy let p, € P, a, € A and b, € B be such that p, IFp “¢(a) = a, and
hog(a) = b,”. By the assumption there exists an uncountable X € w, such that
{p,:a € X} is centered. Let C be the substructure of 4 with the underlining set
{a,:a € X} and let 4: C— B be defined by k(a,) = b, for a« € X. Then A is an
embedding of C into B.

Now assume that there exists a ccc p.o.-set Q which does not have precal-
iber 8;. So there exists an uncountable subset X of P which does not have any
uncountable centered subset. Let P be a ccc p.o.-set forcing MAg,. If IFp “Q
does not have the ccc” then, as in Example 1.1a, we can construct a counterex-
ample to PPEY’. So let us assume IFp “Q satisfies the ccc”. Then we have IFp
“every uncountable subset of Q has an uncountable centered subset”.

Let A = (8(,R,87)ne, and B = (Q, X, R,)ne., Where

R,=1{(q1,---,9,):41,...,9, € Q and there exists
re Qsuchthat r<gqq,...,q,}.

Then any uncountable substructure of A is not embeddable into B but I-p “A is
embeddable into B”. This shows that PPEY does not hold.
(b) is proved similarly.

4 Forcing axioms for homogeneous covering of structures Let & be a
condition on p.o.-sets. A partition [S]<“ = K, U K| for a set S is said to be
8-destructible if there exist a p.o.-set P satisfying the condition § and a P-name
X of a 0-homogeneous subset of S with respect to the partition (i.e., IFp
“[X]1<“ € K,”) such that for all s € S there exists p € P such that p lFp s € X.
In [9] the following characterization of MA, is given.

Theorem 4.1 ([9], see also Todorcevié [8]) MA, is equivalent to the follow-
ing assertion:
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(£ Let S be a set of size < k. Suppose that a partition [S]<° = Ky U K, is
ccc-destructible. Then there exists a o-covering S = U;c, S; of S such
that each S; is 0-homogeneous with respect to this partition (i.e.,
[Si1<¢ € Ko).

In this section, we give a similar theorem in terms of potential embedding.
Let A, B be structures in a language L which contains a unary relation symbol S.
We say that S in B has an 4-homogeneous o-covering if there exist embeddings
f; of A into B for i € w such that S& = U, fi[S*].

Following the above terminology of Todorcevi¢ and Velickovié, let us say
that S in B is &-destructible by A if there exist a p.o.-set P with the property &
and a P-name f of embedding of A into B such that for every b € S? there is
a p € P such that p [Fp “b € f[S4]”.

Let HC? denote the following assertion:

Let A and B be structures in a language L which contains a unary relation
symbol S such that |A|,|S?| < «. If S in B is §-destructible by 4 then S in
B has an A-homogeneous o-covering.

The following lemma shows that HCS® is a generalization of £,.

Lemma 4.2 Let S be any infinite set and let [S]1<* = K, U K, be a partition.
Then there exist structures A, B in a language L which contains a unary relation
symbol S such that
(@) |A4| =|B| =S|,
(b) [S]<®=KyU K, is &-destructible if and only if S in B is &-destructible and
(c) S has a o-covering {S;:i € w} of 0-homogeneous sets with respect to the par-
tition [S1<° = Ko U K, such that |S;| = |S| for all i € w if and only if S in
B has an A-homogeneous o-covering.
Proof: Let
A = ([817%,[S],[81°“, gw)new
B= ([S] <w’ [S]lsKOsgn)nGws
where [S]! is supposed to be the interpretation of S in both the structures and
g, is an n-place function defined by
{50y »Sn—1); if a; is the singleton {s;} for i< n
; otherwise.

gn(ag,...,an_1) ={

Proposition 4.3 Let & be a regular condition on p.o.-sets and « an infinite
cardinal. Suppose that MA? implies that, for any p.o-set P satisfying the con-
dition &, the finite support product of w copies of P still satisfies the condition &.
Then HCE is equivalent to MAS.

Proof: First assume MAZ. Let A, B be structures in a language L which contains
a unary relation symbol S such that |4|,|S?| < k and S in B is &-destructible
by A. Let P and f be as in the definition of &-destructibility. Let Q be the finite
support product of w copies of P; i.e., let

Q={qge“P:{i€ w:q(i) # 1p} is finite}
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with the ordering
g <rifand only if g(i) = r(i) foralli € w.

By the assumption, Q satisfies the condition &.
For each b € S? let

D, ={q€ Q:q(i) IFp “b € f[S*]” for some i € w}.
Then D, is dense in Q. Fora€ A and i € w let
E,;={q € Q:q(i) IFp “f(a) = b” for some b € B}.
Then E, ; is dense in Q. Let
D=(Dy:bESP)U(E,;:a €A, i€ w).

By MAZ there is a D-generic filter G over Q. For i € w let f;: A — B be defined
by f;(a) = b for a € A where b € B is such that g (i) IFp “f(a) = b” for some
q € Q. Then each f; is well-defined embedding of A into B and U,¢,, f;[S4] = S&.

Assume now that MA? does not hold. Then as in the proof of Theorem 3.3
there are p.o.-set P of size « satisfying the condition & and a family D = {D,,:
a < k} of dense subsets of P such that there exists no D-generic filter over P and
for every a < k and p € D, there exits g = p such that

q € Da\ U Dﬁ'
Bex\ {a}
Now let X be any set of size < « disjoint from P. Let A = (x U X, X,{«},
K")o<r.n<w @a0d B = (P U X, X, D,, Cp)q<x n<eo Where X is supposed to be the
interpretation of S in both the structures and C,,n € w is defined as in the proof
of Theorem 3.3. Then S in B is &-destructible by 4 but there is no A-homoge-
neous o-partition of S in B since A is not embeddable in B.

5 Some other axioms In this section we shall consider the following weaken-
ings of the axioms defined in the introduction. For n = 1, n € w, a language L
is said to be n-ary if each function symbol of L is k-ary for some k < n and each
relation symbol of L is /-ary for some / < n.

For a condition & on p.o.-sets and a cardinal  let PEZ , (PIZ ) be the fol-
lowing axiom:

For all structures A4, B in some n-ary language L such that |A| =«, if A is
&-potentially embeddable into B (if 4 is &-potentially isomorphic to B and
|A| = | B|) then A is embeddable into (isomorphic to) B.

Similarly let PPEZ , be the axiom saying:

For all structures A4, B in some n-ary relational language L, if [Fp “there ex-
ists a substructure C of A of size x which is embeddable into B” for some
p.o.-set P with the property & then there exists a substructure C of A4 of size
k which is embeddable into B.
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MAZE , is the axiom:

For every p.o.-set P satisfying the condition &, if D, is a dense subset of P
for o < «, then there exists an n-linked subset G of P such that G N D, #
& for every a < k.

Lemma 5.1
(a) PEY, PI{St and PPEL hold in ZFC for any cardinal «.

(b) PEwl preservmg Ple preservmg, and PPEwl preservmg hOld in ZFC.

Proof: (a) Immediate from the fact that a generic extension with a ccc p.o.-set
preserves every cardinal.

For n = 2, everything proved in Section 3 can be rewritten to form corre-
sponding assertions for n-indexed axioms:

Lemma 5.2 For a condition & on p.o.-sets, an infinite cardinal k, and n = 2,
MAE , implies PEE ,, PI¢ ,, and PPES ,

Proof: Similar to Lemma 3.1.

Lemma 5.3 For a regular condition & on p.o.-sets, an infinite cardinal k and
n =2, MAE , is equivalent to PEE .

Proof: Similar to Theorem 3.3.

Theorem 5.4
(@) For n =2, PPELT, is equivalent to the assertion:

(X,) For every ccc p.o.-set P, every uncountable subset X of P has an
uncountable subset Y which is n-linked.

(b) Assume that every ccc p.o.-set is productively ccc. Then for any cardinal k
of uncountable cofinality, PPEL; is equivalent to the assertion:

(X, n) For every ccc p.o.-set P, every subset X of P of size k has a sub-
set Y of size k such that Y is n-linked.

Proof: Similar to Theorem 3.6.

Lemma 5.5 Let & be any condition on p.o.-sets and «k a cardinal. Then (a)
PEZ is equivalent to PE® «,2 and (b) PI¢ is equivalent to PI

Proof:

(a) We shall prove that PEZ, implies PES. Assume that PEZ, holds. Let A
be a structure of the form 4 = (A 8 R))ier, jes Where g;is a k; -ary function on
A for i € I and R; is a k;-ary relation on A4 for j € J. Let A be the structure de-
fined by

= (A<wa®,giap11Alst)iGI,jGJ,lew

where

(gi(ag,...,ak-1)), if k = k;,
a, otherwise,

8i((ag, . ..,ax-1)) ={
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foriel,

(01)9 lf [ < k,
a, otherwise,

p[((aO, . ,ak_l)) ={

for /€ w and
R; = {((ao, .- -,ax,—1) : (a0, . .. ,a-1) € A<* and R;(aq, . . . ,a,—1)}

for j € J. A is a structure in a binary language. For any structures 4 and B we
have that 4 is embeddable into B if and only if A is embeddable into B. Now
if IFp “A is embeddable into B” then IFp “A is embeddable into B”. By PEZ, it
follows that 4 is embeddable into B. Hence A is embeddable into B.

(b) is proved similarly.

By Theorem 3.3 and Lemma 5.3, we can also prove Lemma 5.5a without
model theoretic arguments: It is easy to prove that MA? is equivalent to MA,sz
for arbitrary condition &.

Let ¢ be the empty condition on p.o.-sets.

Problem 5.6 Is PPES , consistent?

This problem is also connected with the problem of consistency of the axiom
RFA considered in [9] and [8], since PPE§ , implies RFA” where RFA is equal
to RFAZ2. In [9] it is proved that RFA” is inconsistent for every n = 3. From this
we obtain:

Proposition 5.7 PPE( |, is inconsistent for all n = 3. In particular PPEg is
inconsistent.
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