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Unifying Some Modifications

of the Henkin Construction
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Abstract This paper is a continuation of the work of Leblanc, Roeper,
Thau, and Weaver, which modified the Henkin construction to yield various
necessary and sufficient conditions for extending a consistent set of sentences
in a countable first order language to a maximally consistent and ω-complete
set in that language. In this paper the theory of abstract deducibility relations
introduced by Goldblatt is extended to provide an abstract setting for these
and related results. Modifications of Henkin construction are replaced by
Goldblatt's Countable Henkin Principle to yield abstract forms of the ω-com-
pleteness theorem, the soundness and completeness of ω-logic, the theorem
to the effect that ω-logic is a conservative extension of standard logic for ω-
complete sets, and the theorem that all ω-complete sets are ω-consistent.
These abstract results specialize to yield the corresponding "concrete" ones.

The main technical innovation (the characterization of the smallest dedu-
cibility relation that respects all members of a family of premise-conclusion
arguments and extends a given deducibility relation) is motivated by the ob-
servation that the deducibility relation determined by ω-logic is the smallest
deducibility relation which extends the deducibility relation determined by
standard logic and under which every set of sentences respects the ω-rule.

1 Introduction In Henkin [3] the method of constants was introduced to
show that every consistent set of first order sentences has a model. The construc-
tion of this model is often called the Henkin construction. Part of the construc-
tion involves showing that the consistent set can be extended to a maximally
consistent set which contains a universal quantification if it contains all of its in-
stances. This extension is accomplished by adding "enough" new individual con-
stants to the nonlogical vocabulary of the language. This addition cannot, in
general, be avoided. It is easily shown that, even when the nonlogical vocabu-
lary of the language contains individual constants, there are consistent sets of
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sentences which do not have the desired extension in that language. However,
there are cases in which the addition of new constants is unnecessary.

Let <£i be a countable first order language whose nonlogical vocabulary con-
tains predicate constants of various degrees and infinitely many individual con-
stants c 0 , . . . , cn,... . Let S be a consistent set of sentences in £{, and consider
the following questions: (I) what conditions on S imply that the Henkin construc-
tion of a model of S can be carried out "inside" £χl (i.e., what conditions im-
ply that S has a maximally consistent extension in <£! which contains a universal
quantification in £1, if it contains each of its instances?); (II) how can the
Henkin construction be modified to produce the desired extension?

These questions were discussed in Leblanc et al. [4], where several candidates
were considered:

(1) S is ω-complete (i.e., if all instances of Vxφ(x) are provable from 5, then
Vxφ(x) is provable from 5);

(2) 5 is infinitely extendible (i.e., infinitely many individual constants are for-
eign to S);

(3) S is consistent in ω-logic; and
(4) S is ω-consistent (i.e., if for all n, ~φ(cn) is provable from S, then

3xφ(x) is not provable from S).

The following summarizes the relevant results of [4].

Theorem 1 If S is a consistent set of sentences in £i9 then each of the fol-
lowing implies that S has a maximally consistent ω-complete extension in £λ:
(1) S is ω-complete;
(2) 5 is infinitely extendible;
(3) S is consistent in ω-logic; and
(4) S is ω-consistent, when £χ does not contain equality and the nonlogical

vocabulary of £\ contains only one predicate and that predicate is unary.

It was also shown that: (1) consistency in ω-logic is a necessary and sufficient
condition for having a maximally consistent and ω-complete extension in £x; (2)
neither ω-completeness nor infinite extendibility are necessary conditions; and
(3) ω-consistency is a necessary but not sufficient condition except for £x as in
Theorem 1 (4).

When <£] contains equality, parts (1), (2), and (3) of Theorem 1 are conse-
quences of the omitting-types theorem. Let Σ(x) — {x Φ cn; for all n}. When S
is consistent and ω-complete, Σ(x) is a nonprincipal type of S. Hence S has a
model which omits Σ(x). The set of sentences true on this model is maximally
consistent and ω-complete. (2) follows from (1) and the observation that infinitely
extendible sets are ω-complete. Finally, (3) is also a consequence of (1) (cf. Chang
and Keisler [1], p. 81).

Proofs of parts (1), (2), and (3) of Theorem 1 were obtained in [4] by mod-
ifying the Henkin construction. In the following, ideas and results of Goldblatt
[2] are introduced to provide an abstract setting for these and related results. This
approach serves to unify the proofs of [4]. Applications of the Henkin construc-
tion and its modifications are replaced by a single abstract "Henkin Principle"
which yields various abstract results. These abstract results specialize to yield the
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completeness theorem as well as parts (1), (2), and (3) of Theorem 1 and related
results.

Here, in contrast with the current literature (e.g., [1], pp. 80-81), the omega-
concepts (i.e., ω-consistent, ω-complete, ω-rule, and ω-logic) are applied to count-
able first order languages with countably many constant terms whether or not
these terms are numerals. Thus, by 'ω-logic' is meant the result of adding the
ω-rule (see Section 2 below) to the deductive system of first order logic, allow-
ing proofs to be infinitely long, and restricting interpretations to those of stan-
dard first order logic in which each member of the domain is denoted by a
constant term.

Leblanc et al. [4] uses 'term-consistent' and 'term-complete' in the way that
'ω-consistent' and 'ω-complete' are used here. There is no terminology used in
that paper in the way that 'ω-rule' and 'ω-logic' are used here, although 'infinite
instantial induction' is used in a footnote in the way that 'ω-rule' is used here.

2 Goldblatt [2] extracts the essence of the Henkin construction and presents
it in the form of abstract principles. In this section the preliminary definitions
are reviewed and the relevant principles are stated.

Let £ be a language such that (1) if φ is a sentence in <£, then ~ ψ is also a
sentence in £ and (2) £ contains the sentence ± which is thought of as a con-
tradictory sentence. For convenience, £ will denote the set of sentences in £ .
(P(£) denotes the power set of £ .

Let h be a subset of the cartesian product (P(L) x £ , h is called a deducibil-
ity relation provided h satisfies the following:

Dl if S h φ and S Q S\ then S' h φ\
D2 if φGS, then SYφ;
D3 if S U [φ] h φ and S h φ, then S h ψ; and
D4 ShφiffSU [~φ] h-L.

h is a finitary deducibility relation provided h is a deducibility relation which
satisfies

D5 if S h φ, then there is S', a finite subset of S, such that S' h φ.

In [2] the following condition is used in place of D3:

D3' if S h ψ and S U {φ} h ±, then S\-±.

Clearly, D3 implies D3'. Moreover, if h satisfies Dl, D4, and D3', then h also
satisfies D3. To understand this suppose that h satisfies Dl, D4, and D3'. To
show that h satisfies D3, suppose that S U {φ} h ψ and S h φ. To show that
S h ψ. Since S h φ, by Dl S U {~ψ] h φ; further, since S U [φ] h φ, by D4
S U {~ψ] U {φ} h _L; hence by D3' S U {~ψ] h J_; and by D4 S h ψ.

Given S c £ , f- c (P(£) x £ , s is V-consistent provided S \f _L; S is finitely
^-consistent provided all finite subsets of S are h-consistent; S is maximally

finitely Y-consistent provided S is finitely h-consistent and no proper extension
of S is finitely h-consistent; finally, S is maximally [--consistent provided S is h-
consistent and no proper extension of S is h-consistent.
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Notice that if h is any subset of <?(<£) x <£, then finitely [--consistent sets
are closed under unions of chains. Thus, by Zorn's Lemma, we have:

Lemma 1 [Abstract Lindenbaum Principle: cf. [2]] IfV g <?(<£) x £ and S
is finitely V-consistent, then S has a maximally finitely V-consistent extension.

Notice that if h is a deducibility relation and S is finitely h-consistent, then
for all φ in <£, either SU \φ\ or S U {— φ\ is finitely h-consistent. Otherwise
there are S' and S" finite subsets of S such that S' U {φ] V _L and S" U {~φ] V -L.
Hence by Dl, S' U S" U [φ] V _L and S' U S ^ U h ^ h i . Thus by D4, S' U
S" h v?, and by D3, Sf U S" h _L. But S' U S" is a finite subset of S, a contradic-
tion. Therefore, if S is maximally finitely h-consistent, then for all φ in <£, ei-
ther φeS or ~<pGS. Otherwise, a s S c S U ( ^ ) a n d S c S ϋ (~φ], S is not
maximally h-consistent.

Further, if h is a deducibility relation and S is maximally h-consistent, then
for all φ E <£, (1) either ^ G S o r ~ ^ E 5 ; (2) it is not the case that φ E S and
~φ E 5; and (3) if 5 h <p, then φ E 5. To understand this suppose that h is a
deducibility relation and S is maximally h-consistent. Let φ E <£. Suppose that
<p ^ S and — ̂ > ^ S. Thus S U {̂ } and S U {~φ\ are extensions of S. Since 5 is
maximally h-consistent, S U ( ^ ) H l and 5 U [~φ] h ±. Thus by D4, S \-φ;
and by D3, S h _L; a contradiction. Now suppose that φ E S and ~<p E S. By
D2, {<?} h φ. Hence by D4, {<?,-??} h ±. Therefore by Dl, S h ±; a contradic-
tion. Finally, suppose that 5 h φ and <p ί S. By (1) above, ~<^€5; and by D4,
S U ( ~ ^ ) F l , a contradiction.

Members (£', <ρ) of (P(<£) X <£, are called premise-conclusion arguments (or
p-c arguments). S' is called the premises of (S\ φ) and <ρ is called the conclusion
of (S\ φ). Intuitively, p-c arguments are thought of as inferences and sets of p-c
arguments are thought of as rules of inference. Let (S\ φ) E (P(£) X <£, h <Ξ
(P(£) x £, S respects (S\ φ) (in h) provided if for all φeS^Sbφ, then S h <p;
S is closed under (S', φ) provided if S' Q 5, then φ E S'; and S decides (S'y φ)
provided either φ E S or there is ψ in S' such that ~ψ E 5. Let / Q (P(JL) X £,
S respects I (in h) provided S respects every member of / (in h); S is ctojβrf
WΛύfer / provided S is closed under every member of /; and S decides I iff S de-
cides every member if /.

Goldblatt extracted the following principle from the Henkin construction.

Theorem 2 [The Countable Abstract Henkin Principle: cf. [2]] IfV is a
deducibility relation, I is a countable set of p-c arguments, S is V-consistent and
each finite extension ofS respects I (in h), then S has a finitely V-consistent ex-
tension which decides I.

3 In this section attention is focused on ω-completeness. It is immediate from
the definitions of the last section that any set which extends a set which decides
/ also decides / and that any finitely h-consistent set which decides / is closed
under /(cf. Lemma 1, [2], p. 38). The major result of this section is an abstract
form of what some authors have called the ω-completeness theorem (cf. Vaught
[5], p. 27).
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Corollary 1 If V is a finitary deducibility relation, I is countable, S is K
consistent, and each finite extension of S respects I (in h), then S has a max-
imally Y-consistent extension which is closed under I.

Proof: By Theorem 2, S has a finitely h-consistent extension, S", which de-
cides /. By Lemma 1, there is S" such that S' c 5" and S" is maximally finitely
h-consistent. Hence S" also decides /; and S" is closed under /. Finally, since h
is finitary, S" is maximally h-consistent.

Now let h1 be the finitary deducibility relation on £χ provided by first or-
der logic. Let /(ω) denote [({ψ(cn): for all n], Vxψ(x)): for all ψ(x) a formula
in £ι)}. Intuitively, /(ω) is the ω-rule or the rule of infinite instantial induction
(see [4], note 6). Since £x is countable, I(ω) is also countable. Notice that S is
ω-complete iff S respects /(ω). Since any finite extension of a set which respects
/(ω) also respects /(ω) (see [4], Lemma 8), the following is immediate from Cor-
ollary 1.

Corollary 2 If Sis h1-consistent and respects /(ω), then S has a maximally
h1 -consistent extension which is closed under /(ω).

Since every infinitely extendible set is ω-complete (see [4], remarks follow-
ing the proof of Theorem 7), it follows from the above that if S is h1-consistent
and infinitely extendible, then S has a maximally h1-consistent extension which
is closed under /(ω). Further, even when £λ must be extended by introducing
infinitely many new individual constants, S is infinitely extendible (hence ω-com-
plete) in the larger language. Hence Corollary 1 specializes to cover both the stan-
dard Henkin construction, when new constants must be added, and the case
when S is ω-complete in £ 1 # Furthermore, Corollary 1 also specializes to yield
the countable omitting types theorem (see [2], p. 40).

4 In this section attention is focused on ω-logic. To this end the theory of
deducibility relations is developed further. The idea here is motivated by the ob-
servation that the deducibility relation provided by ω-logic (hω) is the smallest
deducibility relation which extends h1 and under which each subset of £\ re-
spects /(ω).

Lemma 2 If h is a deducibility relation, I Q (?(£) x <£, then there is a
unique deducibility relation which is the smallest deducibility relation which ex-
tends h and under which each subset of £ respects L

Proof: Let h be a deducibility relation, / c (?(£) x £ . Let Δ = {K: h £ K, K
is a deducibility relation and every subset of £ respects / (in K)} Notice that
(P(£) x £ G Δ. It is easily verified that ΠΔ G Δ. Hence ΠΔ is the smallest dedu-
cibility relation extending h under which each subset of £ respects /.

h/ denotes the smallest such deducibility relation. Intuitively, h/ is the de-
ducibility relation which results from adding the rule /to the logic which deter-
mines h Notice that h/ need not be finitary even if f- is. It will be shown below
that if the premise of each member of / is finite and h is finitary, then h/ is also
finitary.

The following abstract principle specializes to yield part (3) of Theorem 1.
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Theorem 3 If h is afinitary deducibility relation, I is countable and S is \-r

consistent, S has a maximally Y-consistent extension which is closed under I.

Proof: Let h be a finitary deducibility relation and / be a countable subset of
(?(<£) x <£. Suppose that S is Yrconsistent. Then by Theorem 2 and Lemma 1,
there is S" such that S £ S", S" is maximally finitely [-/-consistent and closed
under /. Further, for φ in £ either φ G S" or ~φ E S".

Since h C h/, S" is finitely h-consistent. As his finitary, S" is h-consistent.
It remains to show that S" is maximally h-consistent. Suppose otherwise. Then
there is φ in «£ such that S" <ZS" \J{φ] and S" U [φ] is h-consistent. Thus <p £
S", and ~φ e S". By D2, S" U {<?} h *>. Thus by D4, S" U [φ] U {-<?} h ±.
But S" U [φ] U {-^} = S" U {<̂ }. Hence Sr/ U {φ} is h-inconsistent, a contra-
diction.

The above and the observation (which follows from the soundness of ω-logic)
that hω = h/(ω) yields the following:

Corollary 3 If S is a subset of £x which is Inconsistent, then S has a max-
imally h1-consistent extension which is closed under I(ω).

It was mentioned above that hω -consistency is a necessary and sufficient
condition for having a maximally H-consistent extension which is closed under
/(ω). There is an abstract principle which specializes to yield this result as well:

Theorem 4 If Vis afinitary deducibility relation and I is countable, then the
following are equivalent:
(1) S is h/-consistent; and
(2) S has a maximally [--consistent extension which is closed under I.

This theorem is proved in the next section. Before proceeding, some of the
consequences of this result are established.

Corollary 4 IfVis a finitary deducibility relation, I is countable, S is h-
consistent and all finite extensions of S respect I (in h), then for all φ in <£,
SVφiffS Viφ.

Proof: Let h, /, and S be as above. Let φ be in <£. Suppose S h φ. Since by
construction h £ YI,SYIφ. Suppose that S h7 φ. To show that S h φ. Suppose
otherwise. By D4, S U {— φ] is h-consistent. By hypothesis, all finite extensions
of S U {~φ] respect / (in h). Hence by Corollary 1, S U {— φ] has a maximally
h-consistent extension which is closed under /. Thus by Theorem 4, SU {~φ}
\tf _L. But by supposition and D4, S U [~φ] h/ ±, a contradiction.

The following is immediate from Corollary 4 and the observation that finite
extensions of sets which respect I(ω) (in h1) also respect /(ω).

Corollary 5 If S <Ξ; £(l), S is h1 -consistent and respects I(ω) (in h1) then
for all φ in £l9 S h1 φ iffS hω φ.

Notice that Corollary 4 and Theorem 3 imply Theorem 4. Suppose that S has
a maximally h-consistent extension which is closed under /. Let S' be such an
extension. Notice that all finite extensions of S' respect /. Thus by Corollary 4,
S' is [-/-consistent. Thus, a s S ί S', S is [-/-consistent by Dl. In the next section
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Theorem 4 is proved by showing that the conclusion of Corollary 4 holds when
h is a deducibility relation and S is maximally (--consistent and closed under /.

5 This section is devoted to proving Theorem 4. It suffices to establish the
following: if h is a deducibility relation and S has a maximally h-consistent ex-
tension which is closed under /, then S is h/-consistent. This result is obtained
by giving a more detailed characterization of h/. In particular, h/ will be char-
acterized as the union of a chain of deducibility relations.

Lemma 3 If β is an infinite limit ordinal and {hα: a < β} is a chain of
deducibility relations (i.e., ifa<ot\ then \-aQ h ' ) , then U {hα: a < β] is a
deducibility relation.

Proof: Let bβ = U {\-a: a < β]. Let (S, φ) G (P(£) x <£. Notice that SVβφ iff
there is a < β such that S \-a φ. It is easily verified that hβ satisfies D1-D4.

Notice that it also follows that the union of a chain of finitary deducibility
relations is also a finitary deducibility relation.

Lemma 4 If\-Q(?(£)x£, then there is unique K such that (1) h Q K;
(2) K is a deducibility relation; and (3) // h" is any deducibility relation such
that h c K, then K g I".

Proof: Notice that the uniqueness of K is immediate. The existence of K can
be established by a proof analogous to that of Lemma 2. However, because a
more detailed characterization is needed below, a different proof is given here.

Let h be any subset of (?(£) x £.
Let:

Dl(h) = {(S,φ): there is S' g S, S' h φ};
Ό2(\-) = {{S,φ):φ(ΞS}

D3(h) = {(S,φ):SU {φ} \-φandS\-ψ}

Όqy ) = {(S9φ):SU{~φ}\-±] U [(SU{~φ]9±):S\-φ).

Define {K2: n > 0} as follows:

(1) H° = h
(2) \-n+ι = h Λ UDl( |- w ) UD2 (h Λ )UD3 (\-n) U D4 (H1).

Notice that \-n c h n + 1 . Let K = U{\-n:n > 0}. It is easily verified that K is
a deducibility relation. Let h" be any deducibility relation such that h c (-̂
It is easily verified by mathematical induction that \-n c |-" for each n. Thus,
K £ K.

Let h be a deducibility relation, / c (?(£) x <£, and let K be the least regular
cardinal such that for all (S', φ) G /the cardinality of S' < K. Define {hα: a < K }
as follows:

(1) Ho = h
(2) hα = U {hλ: λ < a} when a is an infinite limit ordinal; and
(3) \-a+ι is the least deducibility relation extending hα U [(S, φ): there is

(S; φ) in /and S Va ψ, for all ψ G S'}. Finally, let hκ = U {hα: α < K}.
By Lemma 3 and Lemma 4, hκ is a deducibility relation.
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Notice that K will never be any larger than the cardinal successor of the car-
dinality of <£. Further, if each member of/has only finitely many premises, then
K = Ko. When S \-κ φ, then there is a least ordinal a < K such that S \-a φ. When
a > 0, a is a successor ordinal, a is called the rank of (S, φ). It is shown below
that given / there is {\-a: a < K } such that \-κ = h/ and that when S is maximally
h-consistent and closed under /, then for all φ if S h/ φ, then the rank of (S, φ)
is zero.

Lemma 5 If' h is a deducibility relation and I c= (p(£) x £ , ^Λeπ h/ = hκ.

Proof: Given h, a deducibility relation, and / c (p(£) x £ , there is K a regu-
lar cardinal such that h c hκ and hκ is a deducibility relation. Let S c £ . To
show that 5 respects / in hκ. Let (S\ φ) E /. Suppose that for all φ E S\ S hκ φ.
To show that S \-κ φ. For each φ E S', there is α(ψ) < K such that S h α W \t.
Since the cardinality of S' < K and K is regular, there is a < K such that a(ψ) <
α, for all ^ e Sr. Thus \-a(Φ) c f-α, and for all ψ e S', S \-a ψ. Thus, by con-
struction S HQ +I φ; and 5 hΛ ̂ . Thus h/ ̂  hκ. It is easily verified by transfinite
induction on K that hα Q h/ for all α < K. Thus hκ ̂  h/.

When for all (Sf, φ) in /, S' is finite, it follows from the above that K = Ko

and that h/ is a finitary deducibility relation if h is.

Lemma 6 If V is a deducibility relation, 19 (P(<£) x £ α^rf S is maximally
^-consistent and closed under /, rte# /or #// φ,S \- φ iff S \-j φ.

Proof: Suppose h is a deducibility relation, /<Ξ (P(<£) X £ and S is maximally
h-consistent and closed under /. By Lemma 5, \-κ = h/. Thus, it suffices to
show that for all a < K, S h φ iff S hα φ. Proceed by transfinite induction on K.
Since h c hα, if S h ̂ ?, then S hα v?. Let T = {a : α < K and for all <p, if S hα >̂,
thenS (-<?}.

Since ho = h, by construction 0 E T. Let a be an ordinal <κ. Suppose for
all β < a that β E T. To show that α E Γ. Suppose that α is a limit ordinal. By
construction, \-a = U{\-β:β < a}. Suppose that S \-a φ. Then there is β < a
such that S \~β φ. Since β E Γ, S h φ.

Suppose that a is a successor ordinal. Thus α = β + 1, where β < α. By con-
struction 1-0+1 is the smallest deducibility relation extending h$ = h^ U {(£', <ρ):
there is (S", φ) in / such that for all ψ E S", S' bβ ψ].

Let hg+1 denote h£ U Dl(hg) U Ό2(\-n

β) U D3(h£) U D4(hg). By the proof
of Lemma 4, h^+i = U {h^: n > 0}. Thus S \-β+ι φ iff there is n > 0 such that
5 h£ >̂. We proceed by showing that for all n,SVβφ iff S Vn

β φ. Since h^ C h$,
it suffices to show that if S \-β φ, then S \-β φ.

We proceed by mathematical induction. Let T' = [n:n > 0 and for all
S" c S, if S" h^ «̂ , then Sϊ-βφ}. First we show that 0 E Γ'. Let S" c S. Sup-
pose that Sr/ h^ ̂ . Either S" h^ ̂  or there is (S r, ̂ ) E / such that S" h^ 0, for
all φ E S'. Suppose 5 r/ h^ φ. Since h^ is a deducibility relation, by Dl S \~β φ.
Suppose there is (5 r, φ)El such that for all φ E 5', S" \-β <p. By Dl S \-β φ, for
all φ E 5'. Since |8 E Γ and 5 is maximally h-consistent, S' c 5. And as S is
closed under I,φES. Thus by D2, S \-β φ.

Suppose that n E T'. To show that n + 1 E 7", let S" ^ S. Suppose that
5" hjΓ1 <*. By construction, h£ + 1 = h^ U Dl (Vn

β) U D2( hg) U D3( Vn

β) U D4( hjj).
There are five cases to consider.
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Case 1: Suppose that 5" (-£ φ. Since n E T\ S \-β φ.

Case2: Suppose that (S",φ)eΌl(h%). Thus there is S'" ς S " such thatS" hjg .̂
Since n E T and S'" Q S, S \-β φ.

Case 3: Suppose that (S", φ) E D2( h£). Thus φ E S". By D2, S" ĥ  φ\ and by
D l , S h ^ .

Cfl5̂  4: Suppose that (S", φ) E D3 (h£). Thus there is φ such that S" U {φ} Vn

βφ
and S" hβ φ. Since AZ E 7", and 0 E T9 S h <ρ. As S is maximally h-consistent,
ψ E S and S" U [φ] g S. Since n G T\ S \-β φ.

Case 5: Suppose that (S", φ) E D4( \rβ). Thus either S" U {~<p} hg ± or φ is ±,
and there is ψ such that S'' = 5W U {-1/Ί and S'" \-β ψ. Suppose that S" U
{~φ) \-β ±. To show that 5 \-β φ. Suppose that S \tβ φ. Since \-£\-β9SVφ. By
D2, φ£S. Since S is maximally h-consistent, ~φ E 5. Therefore S" U {-<̂ >} Q S
and, a s « G Γ , 5 ^ l . Since β E Γ, 5 h ±, a contradiction. Finally, we claim
that it is not the case that φ is ± and there is ψ such that S" = 57// U {~ψ] and
5W Vn

β φ. Suppose otherwise. Notice that S'" ς S a n d - ψ G S . Since n E 7",
and βE:T, S\-φ. Since Sis maximally h-consistent, φES. Hence, {î ,— }̂ ̂  *S,
a contradiction.

Thus for all n > 0, S hβ φ iff S \-%<p; and 0 + 1 = a E Γ. Therefore for all
α < K, all φ in £ if S \-a φ, then S h ^ .

It remains to show the following:

Lemma 7 If V is a deducibility relation, IQ (P(£) x £ and S has a max-
imally V-consistent extension which is closed under /, then S is Yj-consistent.

Proof: Let S" be a maximally h-consistent extension of S which is closed un-
der /. By Lemma 6, for all φ in £, S" h φ iff S" h/ φ. Thus, since S" is h-con-
sistent, S" \fj ±. Since h/ is a deducibility relation, by Dl, S \fτ ±. Thus, S is
(-/-consistent.

Theorem 4 is immediate from Lemma 7 and Theorem 3. The following is also
a consequence of Lemma 6.

Theorem 5 If' h is a deducibility relation, then
(1) S is maximally Yrconsistent iffS is maximally V-consistent and closed un-

der I; and
(2) // h is finitary and I countable, S is Vconsistent iff it has a maximally \-r

consistent extension.

Proof: Suppose that h is a deducibility relation.
(1) Suppose that S is maximally h-consistent and closed under /. By Lemma 6,

S is [-/-consistent. Suppose that φ £ S. To show that S U [φ] is not [-/-consis-
tent. Since Sis maximally h-consistent, ~φ E S. Hence [φ,~φ] ^S\J [φ] and
S U [φ] is not h/-consistent. Suppose that S is maximally [-/-consistent. Since
h £ h/, S is h-consistent. Further, if φ £ S, then S U {φ} is not h-consistent.
Hence S is maximally h-consistent. Let (S\ φ) E /. Suppose that S' c 5. By D2,
5 h/ φ for all ψ E S'. Hence 5 h/ <ρ; and since 5 is maximally [-/-consistent, φ E
S. Hence S is closed under 7.

(2) Suppose that h is finitary and / is countable. Suppose that S is h/-con-
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sistent. By Theorem 4, S has a maximally (--consistent extension which is closed
under /. By (1), this extension is maximally [-/-consistent. Clearly, if S has a
maximally [-/-consistent extension, S is itself [-/-consistent.

Theorem 5 provides a characterization of the maximally [-/-consistent sets
when h is a deducibility relation and a characterization of the [-/-consistent sets
when h is a finitary and / is countable. Theorem 5 specializes to yield that S
is hω-consistent iff S has a maximally hω-consistent extension.

The above setting also provides an abstract version of the fact that all con-
sistent and ω-complete sets are ω-consistent. Let h be a deducibility relation and
let / c (P(£) x £. S is I-consistent in h iff for all (S\ φ) in /, if S h ψ for all ψ
in S'f then S \f ~φ. Notice that if S c £ ( 1 ) , S is /(ω)-consistent in h1 iff S is
ω-consistent. Suppose that S, a subset of <£, is [--consistent and respects /.
Then S is /-consistent in h Suppose otherwise. Then there is (S", φ) in / such
that S h ψ for all ψ G S' and S h ~φ. As S respects I9S\-φ. Thus by D4, S U
[~φ] h ± . Hence by D3, S f- ±, and S is not [--consistent; a contradiction.
Thus we have:

Corollary 6 If his a deducibility relation, lQ(?(£)x£ and S^L, then if
S respects I and is V-consistent, then S is I-consistent in h

It is immediate from the above that all consistent and ω-complete sets are co-
consistent.

Goldblatt [2] used Theorem 2 and Lemma 1 to provide alternative proofs of
the completeness and omitting-types theorems for £ j and countable fragments
of £ooω. Thus it follows from earlier remarks that Theorem 2 and Lemma 1
yield proofs of parts (1), (2), and (3) of Theorem 1, when £γ contains equality.
It has been shown above that Theorem 2 and Lemma 1 imply, by purely com-
binatorial arguments, abstract forms of the ω-completeness theorem (Corol-
lary 1), the soundness and completeness of ω-logic (Theorem 4), and the theorem
to the effect that ω-logic is a conservative extension of standard logic for ω-com-
plete sets (Corollary 4). These abstract results yield alternative proofs of the cor-
responding "concrete" ones. In the case of Theorem 4, the corresponding result
is immediate from the soundness of ω-logic. In the other two cases, the corre-
sponding results follow from the observation that any finite extension of an ω-
complete set is ω-complete.

The novelty of the approach taken here is twofold: (1) it unifies the proofs
of Leblanc et al. in [4] by replacing various modifications of the Henkin con-
struction by a single abstract construction; and (2) it isolates that feature of ω-
complete sets which is essential to these results.
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